organic compounds
1-{(Z)-[3-(1-Hydroxyethyl)anilino]methylidene}naphthalen-2(1H)-one
aSchool of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ England, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, El-Minia, Egypt, and ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title compound, C19H17NO2, the dihedral angle between the benzene ring and the naphthalene ring system is 9.72 (5)°, while the torsion angle of the C—N—C—C bridging group is 179.24 (17)°. The methyl group of the 1-phenylethanol moiety is disordered over two positions with a refined occupancy ratio of 0.775 (5):0.225 (5). The molecular conformation is stabilized by an intramolecular N—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, molecules are linked by O—H⋯O hydrogen bonds, forming zigzag chains propagating along the c-axis direction. Neighbouring chains are linked via C—H⋯O interactions, forming a two-dimensional slab-like network parallel to the bc plane.
Related literature
For the biological and industrial properties of et al. (2009); Suslick & Reinert (1988); Tisato et al. (1994). For the synthesis and coordination chemistry of see, for example: Singh & Adhikari (2012). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).
see: KeypourExperimental
Crystal data
|
Refinement
|
Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), PARST (Nardelli, 1995) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812050635/su2542sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812050635/su2542Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812050635/su2542Isup3.cml
A mixture of 1 mmol (172 mg) 2-hydroxynaphthalene-1-carbaldehyde and 1 mmol (122 mg) 1-phenylethanol in 50 ml ethanol was refluxed for 5 h at 350 K. The reaction mixture was left to cool down at ambient temperature for 24 h when a solid precipitate was deposited. The reddish crude product was crystallized from ethanol to afford a good yield (195 mg; 67%) of high quality orange plate-like crystals suitable for X-ray diffraction analysis.
All the H-atoms were placed in calculated positions and treated as riding atoms: O—H = 0.84 Å, N—H = 0.88 Å, C—H = 0.95(aromatic), 0.98(methyl) and 1.00(methine) Å, with Uiso(H) = k × Ueq(C,N,O), where k = 1.5 for OH and methyl H atoms, and = 1.2 for other H atoms. The methyl group of the 1-phenylethanol moiety, C19, is disordered over two positions with a refined occupancy ratio of 0.775 (5):0.225 (5).
Schiff-base complexes are considered to be among the most important stereochemical models in main group and transition metal coordination chemistry due to their preparative accessibility and structural variety (Keypour et al., 2009). With the increasing incidence of deep mycosis, there has been intense emphasis on the screening of new and more effective antimicrobial drugs with low toxicity. A considerable number of Schiff-base complexes have potential biological interest, being used as more or less successful models of biological compounds (Suslick & Reinert, 1988). Not only have they played a seminal role in the development of modern coordination chemistry (Singh & Adhikari, 2012), but they can also be found at key points in the development of inorganic biochemistry, catalysis and optical materials (Tisato et al., 1994). Further to our on going study on synthesis of versatile bioactive molecules we herein report the synthesis and
of the title compound.In the title molecule, Fig.1, the C12–C17 benzene ring and the C1–C10 naphthalene ring system make a dihedral angle of 9.72 (5) °. The torsion angle of the C12—N1—C11—C1 bridging group between these rings is 179.24 (17)°. The bond lengths and angles are within the normal range (Allen et al., 1987). The
of is stabilized by an intramolecular N—H···O hydrogen bond generating an S(6) ring motif (Table 1; Bernstein et al., 1995).In the crystal, molecules are linked by C—H···O and O—H···O hydrogen bonds (Table 1 and Fig. 2), forming zigzag chains running parallel to the ac plane along the c axis direction. These chains are linked via C-H···O interactions forming a two-dimensional slab-like network lying parallel to the bc plane.
For the biological and industrial properties of
see: Keypour et al. (2009); Suslick & Reinert (1988); Tisato et al. (1994). For the synthesis and coordination chemistry of see, for example: Singh & Adhikari (2012). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell
CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), PARST (Nardelli, 1995) and PLATON (Spek, 2009).C19H17NO2 | F(000) = 616 |
Mr = 291.34 | Dx = 1.337 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ybc | Cell parameters from 3255 reflections |
a = 18.9837 (10) Å | θ = 2.5–27.5° |
b = 4.740 (2) Å | µ = 0.09 mm−1 |
c = 16.105 (8) Å | T = 100 K |
β = 92.927 (9)° | Plate, orange |
V = 1447.3 (9) Å3 | 0.21 × 0.10 × 0.03 mm |
Z = 4 |
Rigaku AFC12 (Right) diffractometer | 3169 independent reflections |
Radiation source: Rotating Anode | 2836 reflections with I > 2σ(I) |
Detector resolution: 28.5714 pixels mm-1 | Rint = 0.021 |
profile data from ω–scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) | h = −22→24 |
Tmin = 0.982, Tmax = 0.997 | k = −5→6 |
7947 measured reflections | l = −19→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.175 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0842P)2 + 0.8621P] where P = (Fo2 + 2Fc2)/3 |
3169 reflections | (Δ/σ)max < 0.001 |
200 parameters | Δρmax = 0.42 e Å−3 |
6 restraints | Δρmin = −0.40 e Å−3 |
C19H17NO2 | V = 1447.3 (9) Å3 |
Mr = 291.34 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 18.9837 (10) Å | µ = 0.09 mm−1 |
b = 4.740 (2) Å | T = 100 K |
c = 16.105 (8) Å | 0.21 × 0.10 × 0.03 mm |
β = 92.927 (9)° |
Rigaku AFC12 (Right) diffractometer | 3169 independent reflections |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) | 2836 reflections with I > 2σ(I) |
Tmin = 0.982, Tmax = 0.997 | Rint = 0.021 |
7947 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 6 restraints |
wR(F2) = 0.175 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.42 e Å−3 |
3169 reflections | Δρmin = −0.40 e Å−3 |
200 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.24195 (7) | 0.6722 (3) | 0.13570 (9) | 0.0357 (4) | |
O2 | 0.30336 (7) | −0.3769 (3) | 0.49991 (9) | 0.0353 (4) | |
N1 | 0.28516 (8) | 0.3859 (3) | 0.26369 (10) | 0.0273 (4) | |
C1 | 0.19536 (9) | 0.7409 (4) | 0.26860 (11) | 0.0274 (5) | |
C2 | 0.19913 (9) | 0.8010 (4) | 0.18140 (12) | 0.0300 (6) | |
C3 | 0.15259 (10) | 1.0149 (5) | 0.14572 (13) | 0.0334 (6) | |
C4 | 0.10697 (10) | 1.1537 (5) | 0.19253 (13) | 0.0349 (6) | |
C5 | 0.10260 (9) | 1.1025 (4) | 0.28010 (13) | 0.0319 (6) | |
C6 | 0.05493 (10) | 1.2531 (5) | 0.32734 (15) | 0.0384 (7) | |
C7 | 0.05156 (11) | 1.2097 (5) | 0.41139 (15) | 0.0409 (7) | |
C8 | 0.09706 (11) | 1.0136 (5) | 0.45051 (14) | 0.0382 (6) | |
C9 | 0.14383 (10) | 0.8623 (4) | 0.40615 (13) | 0.0337 (6) | |
C10 | 0.14765 (9) | 0.8979 (4) | 0.31905 (12) | 0.0286 (5) | |
C11 | 0.23989 (9) | 0.5345 (4) | 0.30527 (11) | 0.0272 (5) | |
C12 | 0.33197 (9) | 0.1781 (4) | 0.29629 (11) | 0.0259 (5) | |
C13 | 0.32893 (10) | 0.0716 (4) | 0.37676 (11) | 0.0301 (6) | |
C14 | 0.37591 (10) | −0.1355 (5) | 0.40543 (12) | 0.0318 (6) | |
C15 | 0.42692 (10) | −0.2333 (4) | 0.35367 (12) | 0.0316 (6) | |
C16 | 0.42992 (10) | −0.1285 (4) | 0.27363 (12) | 0.0306 (6) | |
C17 | 0.38249 (10) | 0.0757 (4) | 0.24463 (12) | 0.0288 (5) | |
C18 | 0.37040 (11) | −0.2558 (6) | 0.49218 (13) | 0.0427 (6) | |
C19A | 0.39187 (15) | −0.0604 (7) | 0.55719 (17) | 0.0427 (6) | 0.775 (5) |
C19B | 0.4279 (3) | −0.288 (2) | 0.5443 (5) | 0.049 (3)* | 0.225 (5) |
H1 | 0.28620 | 0.42020 | 0.21010 | 0.0330* | |
H2 | 0.29650 | −0.40430 | 0.55040 | 0.0530* | |
H4 | 0.07660 | 1.29040 | 0.16670 | 0.0420* | |
H6 | 0.02440 | 1.38770 | 0.30060 | 0.0460* | |
H7 | 0.01880 | 1.31150 | 0.44250 | 0.0490* | |
H8 | 0.09560 | 0.98470 | 0.50880 | 0.0460* | |
H9 | 0.17430 | 0.73090 | 0.43430 | 0.0400* | |
H11 | 0.23730 | 0.49980 | 0.36310 | 0.0330* | |
H13 | 0.29440 | 0.14120 | 0.41230 | 0.0360* | |
H15 | 0.45980 | −0.37230 | 0.37320 | 0.0380* | |
H16 | 0.46470 | −0.19700 | 0.23840 | 0.0370* | |
H17 | 0.38460 | 0.14550 | 0.18950 | 0.0350* | |
H18A | 0.40480 | −0.41550 | 0.49660 | 0.0510* | 0.775 (5) |
H19A | 0.38530 | −0.14750 | 0.61150 | 0.0640* | 0.775 (5) |
H19B | 0.36320 | 0.11110 | 0.55180 | 0.0640* | 0.775 (5) |
H19C | 0.44170 | −0.01220 | 0.55260 | 0.0640* | 0.775 (5) |
H3 | 0.15420 | 1.05860 | 0.08830 | 0.0400* | |
H18B | 0.35580 | −0.07110 | 0.51590 | 0.0510* | 0.225 (5) |
H19D | 0.45850 | −0.12250 | 0.54060 | 0.0730* | 0.225 (5) |
H19E | 0.45380 | −0.45720 | 0.52860 | 0.0730* | 0.225 (5) |
H19F | 0.41320 | −0.30840 | 0.60140 | 0.0730* | 0.225 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0371 (7) | 0.0427 (8) | 0.0281 (7) | 0.0014 (6) | 0.0089 (6) | 0.0039 (7) |
O2 | 0.0445 (8) | 0.0360 (8) | 0.0263 (7) | −0.0094 (6) | 0.0095 (6) | −0.0020 (6) |
N1 | 0.0282 (7) | 0.0306 (8) | 0.0233 (8) | −0.0037 (6) | 0.0043 (6) | 0.0008 (7) |
C1 | 0.0262 (8) | 0.0290 (9) | 0.0272 (9) | −0.0057 (7) | 0.0032 (7) | −0.0007 (8) |
C2 | 0.0271 (9) | 0.0324 (10) | 0.0307 (10) | −0.0053 (7) | 0.0026 (7) | 0.0008 (8) |
C3 | 0.0320 (9) | 0.0375 (11) | 0.0306 (10) | −0.0048 (8) | −0.0005 (7) | 0.0053 (9) |
C4 | 0.0283 (9) | 0.0351 (11) | 0.0409 (12) | −0.0024 (8) | −0.0023 (8) | 0.0042 (9) |
C5 | 0.0257 (9) | 0.0322 (10) | 0.0380 (11) | −0.0052 (7) | 0.0025 (7) | −0.0023 (9) |
C6 | 0.0299 (10) | 0.0368 (11) | 0.0485 (13) | 0.0009 (8) | 0.0029 (8) | −0.0019 (10) |
C7 | 0.0361 (11) | 0.0398 (12) | 0.0476 (13) | −0.0011 (9) | 0.0112 (9) | −0.0113 (11) |
C8 | 0.0397 (11) | 0.0393 (11) | 0.0364 (11) | −0.0050 (9) | 0.0096 (8) | −0.0065 (10) |
C9 | 0.0342 (10) | 0.0349 (11) | 0.0325 (10) | −0.0017 (8) | 0.0053 (8) | −0.0030 (9) |
C10 | 0.0244 (8) | 0.0293 (9) | 0.0324 (10) | −0.0066 (7) | 0.0033 (7) | −0.0019 (8) |
C11 | 0.0278 (9) | 0.0290 (9) | 0.0251 (9) | −0.0065 (7) | 0.0039 (7) | −0.0031 (8) |
C12 | 0.0269 (8) | 0.0263 (9) | 0.0245 (9) | −0.0057 (7) | 0.0013 (6) | 0.0001 (8) |
C13 | 0.0283 (9) | 0.0393 (11) | 0.0229 (9) | −0.0063 (7) | 0.0039 (7) | −0.0023 (8) |
C14 | 0.0292 (9) | 0.0411 (11) | 0.0248 (9) | −0.0091 (8) | −0.0017 (7) | 0.0050 (9) |
C15 | 0.0315 (9) | 0.0310 (10) | 0.0316 (10) | −0.0045 (7) | −0.0037 (7) | 0.0035 (9) |
C16 | 0.0348 (10) | 0.0297 (10) | 0.0275 (10) | 0.0001 (7) | 0.0035 (7) | −0.0030 (8) |
C17 | 0.0354 (9) | 0.0295 (10) | 0.0219 (9) | −0.0020 (7) | 0.0047 (7) | 0.0018 (8) |
C18 | 0.0393 (9) | 0.0592 (12) | 0.0294 (8) | −0.0086 (8) | −0.0012 (6) | 0.0102 (8) |
C19A | 0.0393 (9) | 0.0592 (12) | 0.0294 (8) | −0.0086 (8) | −0.0012 (6) | 0.0102 (8) |
O1—C2 | 1.279 (2) | C15—C16 | 1.385 (3) |
O2—C18 | 1.407 (3) | C16—C17 | 1.387 (3) |
O2—H2 | 0.8400 | C18—C19B | 1.351 (7) |
N1—C11 | 1.320 (2) | C18—C19A | 1.441 (4) |
N1—C12 | 1.410 (2) | C3—H3 | 0.9500 |
N1—H1 | 0.8800 | C4—H4 | 0.9500 |
C1—C10 | 1.452 (3) | C6—H6 | 0.9500 |
C1—C11 | 1.403 (3) | C7—H7 | 0.9500 |
C1—C2 | 1.438 (3) | C8—H8 | 0.9500 |
C2—C3 | 1.445 (3) | C9—H9 | 0.9500 |
C3—C4 | 1.348 (3) | C11—H11 | 0.9500 |
C4—C5 | 1.438 (3) | C13—H13 | 0.9500 |
C5—C10 | 1.418 (3) | C15—H15 | 0.9500 |
C5—C6 | 1.406 (3) | C16—H16 | 0.9500 |
C6—C7 | 1.374 (3) | C17—H17 | 0.9500 |
C7—C8 | 1.397 (3) | C18—H18A | 1.0000 |
C8—C9 | 1.370 (3) | C18—H18B | 1.0000 |
C9—C10 | 1.418 (3) | C19A—H19A | 0.9800 |
C12—C17 | 1.389 (3) | C19A—H19B | 0.9800 |
C12—C13 | 1.395 (3) | C19A—H19C | 0.9800 |
C13—C14 | 1.389 (3) | C19B—H19D | 0.9800 |
C14—C18 | 1.518 (3) | C19B—H19E | 0.9800 |
C14—C15 | 1.389 (3) | C19B—H19F | 0.9800 |
C18—O2—H2 | 110.00 | C4—C3—H3 | 119.00 |
C11—N1—C12 | 126.75 (16) | C3—C4—H4 | 119.00 |
C11—N1—H1 | 117.00 | C5—C4—H4 | 119.00 |
C12—N1—H1 | 117.00 | C5—C6—H6 | 119.00 |
C2—C1—C10 | 120.55 (16) | C7—C6—H6 | 119.00 |
C2—C1—C11 | 119.34 (16) | C6—C7—H7 | 121.00 |
C10—C1—C11 | 120.08 (16) | C8—C7—H7 | 120.00 |
C1—C2—C3 | 117.87 (17) | C7—C8—H8 | 120.00 |
O1—C2—C3 | 119.99 (18) | C9—C8—H8 | 119.00 |
O1—C2—C1 | 122.14 (17) | C8—C9—H9 | 119.00 |
C2—C3—C4 | 121.15 (19) | C10—C9—H9 | 119.00 |
C3—C4—C5 | 122.5 (2) | N1—C11—H11 | 118.00 |
C4—C5—C6 | 121.06 (18) | C1—C11—H11 | 118.00 |
C4—C5—C10 | 119.06 (17) | C12—C13—H13 | 120.00 |
C6—C5—C10 | 119.87 (19) | C14—C13—H13 | 120.00 |
C5—C6—C7 | 121.4 (2) | C14—C15—H15 | 120.00 |
C6—C7—C8 | 119.0 (2) | C16—C15—H15 | 120.00 |
C7—C8—C9 | 121.0 (2) | C15—C16—H16 | 120.00 |
C8—C9—C10 | 121.37 (18) | C17—C16—H16 | 120.00 |
C1—C10—C5 | 118.83 (17) | C12—C17—H17 | 120.00 |
C1—C10—C9 | 123.86 (17) | C16—C17—H17 | 120.00 |
C5—C10—C9 | 117.31 (17) | O2—C18—H18A | 106.00 |
N1—C11—C1 | 123.53 (16) | O2—C18—H18B | 93.00 |
C13—C12—C17 | 119.52 (17) | C14—C18—H18A | 106.00 |
N1—C12—C13 | 122.93 (16) | C14—C18—H18B | 93.00 |
N1—C12—C17 | 117.54 (16) | C19A—C18—H18A | 106.00 |
C12—C13—C14 | 120.55 (17) | C19B—C18—H18B | 95.00 |
C13—C14—C15 | 119.45 (18) | C18—C19A—H19A | 109.00 |
C13—C14—C18 | 119.88 (18) | C18—C19A—H19B | 109.00 |
C15—C14—C18 | 120.66 (19) | C18—C19A—H19C | 109.00 |
C14—C15—C16 | 120.11 (18) | H19A—C19A—H19B | 109.00 |
C15—C16—C17 | 120.46 (18) | H19A—C19A—H19C | 109.00 |
C12—C17—C16 | 119.90 (18) | H19B—C19A—H19C | 110.00 |
O2—C18—C19A | 114.92 (19) | C18—C19B—H19D | 110.00 |
C14—C18—C19B | 121.5 (4) | C18—C19B—H19E | 109.00 |
O2—C18—C19B | 127.2 (4) | C18—C19B—H19F | 110.00 |
C14—C18—C19A | 113.4 (2) | H19D—C19B—H19E | 109.00 |
O2—C18—C14 | 109.87 (16) | H19D—C19B—H19F | 110.00 |
C2—C3—H3 | 119.00 | H19E—C19B—H19F | 109.00 |
C11—N1—C12—C17 | −170.74 (18) | C6—C5—C10—C1 | 178.70 (18) |
C12—N1—C11—C1 | 179.24 (17) | C6—C5—C10—C9 | −2.2 (3) |
C11—N1—C12—C13 | 9.9 (3) | C5—C6—C7—C8 | 0.6 (3) |
C10—C1—C2—O1 | 178.02 (17) | C6—C7—C8—C9 | −1.0 (3) |
C10—C1—C2—C3 | −1.9 (3) | C7—C8—C9—C10 | −0.3 (3) |
C11—C1—C2—O1 | 0.0 (3) | C8—C9—C10—C1 | −179.09 (19) |
C11—C1—C2—C3 | −179.93 (17) | C8—C9—C10—C5 | 1.9 (3) |
C11—C1—C10—C9 | 1.8 (3) | N1—C12—C13—C14 | 179.28 (18) |
C2—C1—C11—N1 | −1.1 (3) | C17—C12—C13—C14 | 0.0 (3) |
C10—C1—C11—N1 | −179.17 (17) | N1—C12—C17—C16 | 179.89 (17) |
C11—C1—C10—C5 | −179.16 (17) | C13—C12—C17—C16 | −0.8 (3) |
C2—C1—C10—C5 | 2.8 (3) | C12—C13—C14—C15 | 1.0 (3) |
C2—C1—C10—C9 | −176.24 (17) | C12—C13—C14—C18 | −178.05 (19) |
O1—C2—C3—C4 | 180.0 (2) | C13—C14—C15—C16 | −1.2 (3) |
C1—C2—C3—C4 | −0.1 (3) | C18—C14—C15—C16 | 177.85 (19) |
C2—C3—C4—C5 | 1.2 (3) | C13—C14—C18—O2 | 59.0 (3) |
C3—C4—C5—C6 | 179.3 (2) | C13—C14—C18—C19A | −71.1 (3) |
C3—C4—C5—C10 | −0.2 (3) | C15—C14—C18—O2 | −120.0 (2) |
C4—C5—C6—C7 | −178.5 (2) | C15—C14—C18—C19A | 109.8 (3) |
C10—C5—C6—C7 | 1.0 (3) | C14—C15—C16—C17 | 0.4 (3) |
C4—C5—C10—C1 | −1.8 (3) | C15—C16—C17—C12 | 0.6 (3) |
C4—C5—C10—C9 | 177.36 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.88 | 1.86 | 2.567 (2) | 136 |
O2—H2···O1i | 0.84 | 2.08 | 2.710 (2) | 132 |
C11—H11···O2ii | 0.95 | 2.55 | 3.327 (3) | 140 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C19H17NO2 |
Mr | 291.34 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 18.9837 (10), 4.740 (2), 16.105 (8) |
β (°) | 92.927 (9) |
V (Å3) | 1447.3 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.21 × 0.10 × 0.03 |
Data collection | |
Diffractometer | Rigaku AFC12 (Right) |
Absorption correction | Multi-scan (CrystalClear-SM Expert; Rigaku, 2012) |
Tmin, Tmax | 0.982, 0.997 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7947, 3169, 2836 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.175, 1.06 |
No. of reflections | 3169 |
No. of parameters | 200 |
No. of restraints | 6 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.40 |
Computer programs: CrystalClear-SM Expert (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012), PARST (Nardelli, 1995) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.88 | 1.86 | 2.567 (2) | 136 |
O2—H2···O1i | 0.84 | 2.08 | 2.710 (2) | 132 |
C11—H11···O2ii | 0.95 | 2.55 | 3.327 (3) | 140 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y+1, z. |
Acknowledgements
The EPSRC National Crystallography Service is gratefully acknowledged for the X-ray diffraction data. The authors are thankful to Manchester Metropolitan and Erciyes Universitry for supporting this study.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Keypour, H., Rezaeivala, M., Valencia, L., Perez-Lourido, P. & Khavasi, H. R. (2009). Polyhedron, 28, 3755–3758. Web of Science CSD CrossRef CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, K. B. & Adhikari, D. (2012). Int. J. Basic Appl. Chem. Sci. 2, 84–107. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suslick, K. S. & Reinert, T. J. (1988). J. Chem. Educ. 62, 974–983. CrossRef Google Scholar
Tisato, F., Refosco, F. & Bandoli, G. (1994). Coord. Chem. Rev. 135, 325–397. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff-base complexes are considered to be among the most important stereochemical models in main group and transition metal coordination chemistry due to their preparative accessibility and structural variety (Keypour et al., 2009). With the increasing incidence of deep mycosis, there has been intense emphasis on the screening of new and more effective antimicrobial drugs with low toxicity. A considerable number of Schiff-base complexes have potential biological interest, being used as more or less successful models of biological compounds (Suslick & Reinert, 1988). Not only have they played a seminal role in the development of modern coordination chemistry (Singh & Adhikari, 2012), but they can also be found at key points in the development of inorganic biochemistry, catalysis and optical materials (Tisato et al., 1994). Further to our on going study on synthesis of versatile bioactive molecules we herein report the synthesis and crystal structure of the title compound.
In the title molecule, Fig.1, the C12–C17 benzene ring and the C1–C10 naphthalene ring system make a dihedral angle of 9.72 (5) °. The torsion angle of the C12—N1—C11—C1 bridging group between these rings is 179.24 (17)°. The bond lengths and angles are within the normal range (Allen et al., 1987). The molecular conformation of is stabilized by an intramolecular N—H···O hydrogen bond generating an S(6) ring motif (Table 1; Bernstein et al., 1995).
In the crystal, molecules are linked by C—H···O and O—H···O hydrogen bonds (Table 1 and Fig. 2), forming zigzag chains running parallel to the ac plane along the c axis direction. These chains are linked via C-H···O interactions forming a two-dimensional slab-like network lying parallel to the bc plane.