organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bosentan monohydrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PP Box 77000, Port Elizabeth 6031, South Africa, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 28 November 2012; accepted 29 November 2012; online 5 December 2012)

In the title compound, C27H29N5O6S·H2O {systematic name: 4-tert-butyl-N-[6-(2-hy­droxy­eth­oxy)-5-(2-meth­oxy­phen­oxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]benzene-1-sulfonamide monohydrate], the dihedral angle between the mean planes of the pyrimidine rings is 27.0 (1)°. The dihedral angle between the mean planes of the benzene rings is 47.7 (8)°, forming a U-shaped channel around the chain of twisted pyrimidine rings. The crystal packing is stabilized by O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds with a single water mol­ecule, and weak O—H⋯N inter­molecular inter­actions between the hy­droxy group and one of the pyrimidine rings producing an two-dimensional supra­molecular array in the bc plane. The title compound studied was a merohedral twin with the major component being approximately 57%.

Related literature

For reviews of bosentan in the management of pulmonary arterial hypertension and systemic sclerosis, see: Gabbay et al. (2007[Gabbay, E., Fraser, J. & McNeil, K. (2007). Vasc. Health Risk Manag. 3, 887-900.]); Kumar et al. (2011[Kumar, D., Sreenivas, S. A., Samal, H. B., Dey, S. & Yellamanchalli, P. (2011). J. Pharm. Res. 4, 1713-1715.]); Oldfield & Lyseng-Williamson (2006[Oldfield, V. & Lyseng-Williamson, K. A. (2006). Am. J. Cardiovasc. Drugs, 6, 189-208.]). For related structures, see: Singh et al. (1985[Singh, T. P., Tiwari, R. K. & Singh, M. (1985). Acta Cryst. C41, 752-755.]); El-Ghamry et al. (2008[El-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1673-o1674.]); Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Kumar, M., Mallesha, L. & Sridhar, M. A. (2012). Acta Cryst. E68, o2590-o2591.]).

[Scheme 1]

Experimental

Crystal data
  • C27H29N5O6S·H2O

  • Mr = 569.63

  • Monoclinic, P 21 /c

  • a = 12.3393 (4) Å

  • b = 15.1238 (6) Å

  • c = 14.6988 (4) Å

  • β = 95.037 (3)°

  • V = 2732.46 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.52 mm−1

  • T = 123 K

  • 0.79 × 0.43 × 0.22 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]) Tmin = 0.535, Tmax = 0.766

  • 9563 measured reflections

  • 9563 independent reflections

  • 7477 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.163

  • S = 1.03

  • 9563 reflections

  • 373 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯N3i 0.84 2.51 3.317 (2) 162
O6—H6⋯N4i 0.84 2.60 3.141 (2) 124
O1W—H1W⋯O4 0.80 (2) 2.30 (2) 3.013 (2) 150 (3)
O1W—H2W⋯N4ii 0.81 (2) 2.07 (2) 2.873 (2) 174 (3)
N1—H1A⋯O1W 0.88 1.87 2.721 (2) 163
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bosentan (chemically, 4-tert-butyl-N-[6-(2-hydroxyethoxy)-5-(2-methoxyphenoxy) -2-(pyrimidin-2-yl)pyrimidin-4-yl]benzene-1-sulfonamide) is a dual endothelin receptor antagonist used in the treatment of pulmonary artery hypertension (PAH). Bosentan is used to treat pulmonary hypertension by blocking the action of endothelin molecules that would otherwise promote narrowing of the blood vessels and lead to high blood pressure. A review of bosentan in the management of pulmonary arterial hypertension is published (Gabbay et al., 2007). Another review on the use of bosentan in pulmonary arterial hypertension and systemic sclerosis is also published (Oldfield & Lyseng-Williamson, 2006). A spectrophotometric method for the determination of bosentan monohydrate in bulk and pharmaceutical dosage forms is reported (Kumar et al., 2011). The crystal structures of some related compounds, viz., N1-(2,6-dimethyl-4-pyrimidinyl)sulphanilamide (Singh et al., 1985), 4-[(3-formyl-4-hydroxyphenyl)diazenyl]-N-(pyrimidin-2-yl)benzenesulfonamide (El-Ghamry et al., 2008) and N-(2-{[5-bromo-2-(morpholin-4-yl)pyrimidin-4-yl]sulfanyl}-4-methoxyphenyl)- 4-methyl benzenesulfonamide (Kant et al., 2012), have been reported. In view of the importance of the title compound, (I), the paper reports its crystal structure.

In (I), the dihedral angle between the mean planes of the two pyrimidine rings is 27.0 (1)° (Fig. 1). The dihedral angle between the mean planes of the two benzene rings is 47.7 (8)° forming a U-shaped channel around the chain of twisted pyrimidine rings. Crystal packing is stabilized by O—H···O, O—H···N and N—H···O hydrogen bonds with a single water molecule and weak O—H···N intermolecular interactions between the hydroxy group and one of the nearby pyrimidine rings (Fig. 2).

Related literature top

For reviews of bosentan in the management of pulmonary arterial hypertension and systemic sclerosis, see: Gabbay et al. (2007); Kumar et al. (2011); Oldfield & Lyseng-Williamson (2006). For related structures, see: Singh et al. (1985); El-Ghamry et al. (2008); Kant et al. (2012).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bengaluru, India. X-ray quality crystals were obtained by slow evaporation of ethanol solution (m.p.: 383–385 K).

Refinement top

Water-bound H1W and H2W were located in a Fourier map and restrained (O—H = 0.82 and H1w···H2w = 1.30). All remaining H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3) and 0.86 Å (NH). Uiso were set to 1.19-1.21 (CH, CH2), 1.49 (CH3) or 1.20 (NH) times Ueq of the parent atom. The title compound refines as a merohedral twin with BASF = 0.431.

Structure description top

Bosentan (chemically, 4-tert-butyl-N-[6-(2-hydroxyethoxy)-5-(2-methoxyphenoxy) -2-(pyrimidin-2-yl)pyrimidin-4-yl]benzene-1-sulfonamide) is a dual endothelin receptor antagonist used in the treatment of pulmonary artery hypertension (PAH). Bosentan is used to treat pulmonary hypertension by blocking the action of endothelin molecules that would otherwise promote narrowing of the blood vessels and lead to high blood pressure. A review of bosentan in the management of pulmonary arterial hypertension is published (Gabbay et al., 2007). Another review on the use of bosentan in pulmonary arterial hypertension and systemic sclerosis is also published (Oldfield & Lyseng-Williamson, 2006). A spectrophotometric method for the determination of bosentan monohydrate in bulk and pharmaceutical dosage forms is reported (Kumar et al., 2011). The crystal structures of some related compounds, viz., N1-(2,6-dimethyl-4-pyrimidinyl)sulphanilamide (Singh et al., 1985), 4-[(3-formyl-4-hydroxyphenyl)diazenyl]-N-(pyrimidin-2-yl)benzenesulfonamide (El-Ghamry et al., 2008) and N-(2-{[5-bromo-2-(morpholin-4-yl)pyrimidin-4-yl]sulfanyl}-4-methoxyphenyl)- 4-methyl benzenesulfonamide (Kant et al., 2012), have been reported. In view of the importance of the title compound, (I), the paper reports its crystal structure.

In (I), the dihedral angle between the mean planes of the two pyrimidine rings is 27.0 (1)° (Fig. 1). The dihedral angle between the mean planes of the two benzene rings is 47.7 (8)° forming a U-shaped channel around the chain of twisted pyrimidine rings. Crystal packing is stabilized by O—H···O, O—H···N and N—H···O hydrogen bonds with a single water molecule and weak O—H···N intermolecular interactions between the hydroxy group and one of the nearby pyrimidine rings (Fig. 2).

For reviews of bosentan in the management of pulmonary arterial hypertension and systemic sclerosis, see: Gabbay et al. (2007); Kumar et al. (2011); Oldfield & Lyseng-Williamson (2006). For related structures, see: Singh et al. (1985); El-Ghamry et al. (2008); Kant et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids. The dashed indicates N1—H1···O1W hydrogen bonding within the asymmetric unit.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate O—H···O, O—H···N and N—H···O hydrogen bonds with a single water molecule and weak O—H···N intermolecular interactions between the hydroxy group and one of the nearby pyrimidine rings. The remaining H atoms have been removed for clarity.
4-tert-butyl-N-[6-(2-hydroxyethoxy)-5-(2-methoxyphenoxy)- 2-(pyrimidin-2-yl)pyrimidin-4-yl]benzene-1-sulfonamide monohydrate top
Crystal data top
C27H29N5O6S·H2OF(000) = 1200
Mr = 569.63Dx = 1.385 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3219 reflections
a = 12.3393 (4) Åθ = 2.9–75.5°
b = 15.1238 (6) ŵ = 1.52 mm1
c = 14.6988 (4) ÅT = 123 K
β = 95.037 (3)°Prism, colourless
V = 2732.46 (16) Å30.79 × 0.43 × 0.22 mm
Z = 4
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
9563 independent reflections
Radiation source: Enhance (Cu) X-ray Source7477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 10.5081 pixels mm-1θmax = 76.1°, θmin = 3.6°
ω scansh = 1514
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012)
k = 1818
Tmin = 0.535, Tmax = 0.766l = 1818
9563 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1185P)2]
where P = (Fo2 + 2Fc2)/3
9563 reflections(Δ/σ)max < 0.001
373 parametersΔρmax = 0.44 e Å3
3 restraintsΔρmin = 0.77 e Å3
Crystal data top
C27H29N5O6S·H2OV = 2732.46 (16) Å3
Mr = 569.63Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.3393 (4) ŵ = 1.52 mm1
b = 15.1238 (6) ÅT = 123 K
c = 14.6988 (4) Å0.79 × 0.43 × 0.22 mm
β = 95.037 (3)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
9563 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012)
7477 reflections with I > 2σ(I)
Tmin = 0.535, Tmax = 0.766Rint = 0.000
9563 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0553 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
9563 reflectionsΔρmin = 0.77 e Å3
373 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61088 (3)0.25246 (3)0.77145 (3)0.02158 (12)
O10.52137 (11)0.26956 (9)0.70499 (10)0.0278 (3)
O20.60422 (11)0.17933 (9)0.83307 (9)0.0286 (3)
O30.90811 (10)0.17574 (9)0.64520 (9)0.0223 (3)
O41.00833 (11)0.03046 (9)0.69883 (10)0.0319 (3)
O50.96944 (10)0.26749 (8)0.49814 (9)0.0211 (3)
O61.06737 (13)0.43628 (11)0.54935 (14)0.0466 (5)
H61.09950.48510.54740.056*
O1W0.80006 (14)0.07096 (12)0.78315 (12)0.0431 (4)
H1W0.8518 (18)0.0432 (19)0.772 (2)0.065*
H2W0.774 (2)0.050 (2)0.8265 (16)0.065*
N10.72198 (13)0.23031 (11)0.72150 (11)0.0240 (3)
H1A0.76010.18390.74130.029*
N20.70609 (12)0.35062 (10)0.62171 (10)0.0201 (3)
N30.83084 (11)0.37054 (10)0.50764 (10)0.0193 (3)
N40.69029 (12)0.49778 (11)0.43244 (10)0.0228 (3)
N50.63133 (12)0.51751 (10)0.58109 (11)0.0216 (3)
C10.63930 (15)0.34843 (13)0.83661 (13)0.0234 (4)
C20.61384 (14)0.43168 (13)0.80149 (12)0.0229 (4)
H2A0.58390.43830.74010.027*
C30.63269 (15)0.50540 (13)0.85735 (13)0.0254 (4)
H3A0.61440.56240.83370.031*
C40.67792 (16)0.49731 (14)0.94734 (13)0.0274 (4)
C50.7032 (2)0.41272 (16)0.97988 (15)0.0376 (5)
H5A0.73480.40581.04070.045*
C60.68348 (19)0.33858 (15)0.92605 (15)0.0354 (5)
H6A0.70010.28140.95010.042*
C70.70065 (18)0.57723 (14)1.01064 (14)0.0315 (4)
C80.6619 (3)0.66378 (17)0.96631 (19)0.0588 (8)
H8A0.58330.66090.95010.088*
H8B0.69930.67360.91100.088*
H8C0.67830.71261.00920.088*
C90.8239 (2)0.5843 (2)1.03558 (19)0.0508 (7)
H9A0.83900.63371.07790.076*
H9B0.86070.59440.98010.076*
H9C0.85070.52921.06470.076*
C100.6441 (2)0.56343 (18)1.09732 (16)0.0451 (6)
H10A0.56570.55651.08160.068*
H10B0.65710.61481.13750.068*
H10C0.67290.51021.12880.068*
C110.76040 (14)0.27812 (12)0.65145 (12)0.0193 (4)
C120.85494 (14)0.25075 (12)0.61345 (12)0.0194 (3)
C130.88431 (14)0.29866 (12)0.53861 (12)0.0193 (3)
C140.74497 (13)0.39270 (12)0.55183 (12)0.0189 (4)
C150.68504 (13)0.47494 (12)0.51997 (12)0.0192 (3)
C160.63172 (15)0.56851 (13)0.40389 (13)0.0251 (4)
H16A0.63210.58650.34200.030*
C170.57088 (15)0.61632 (12)0.46094 (14)0.0249 (4)
H17A0.52810.66550.43950.030*
C180.57539 (14)0.58898 (12)0.55099 (14)0.0244 (4)
H18A0.53740.62220.59290.029*
C191.01482 (14)0.18540 (13)0.68486 (12)0.0221 (4)
C201.06708 (15)0.10674 (13)0.71295 (13)0.0252 (4)
C211.17366 (16)0.11063 (15)0.75333 (13)0.0301 (4)
H21A1.21020.05780.77290.036*
C221.22647 (16)0.19136 (16)0.76497 (13)0.0328 (5)
H22A1.29900.19360.79250.039*
C231.17412 (16)0.26824 (15)0.73685 (14)0.0300 (4)
H23A1.21050.32340.74510.036*
C241.06718 (15)0.26529 (13)0.69604 (12)0.0245 (4)
H24A1.03110.31830.67620.029*
C251.06856 (19)0.05017 (16)0.7061 (2)0.0476 (7)
H25A1.02130.09940.68470.071*
H25B1.09540.06010.77010.071*
H25C1.13030.04640.66870.071*
C261.02013 (15)0.32487 (12)0.43522 (12)0.0233 (4)
H26A0.96520.36580.40560.028*
H26B1.05020.28900.38700.028*
C271.10957 (16)0.37666 (15)0.48616 (15)0.0323 (5)
H27A1.16130.33550.51950.039*
H27B1.14980.41040.44220.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0224 (2)0.0212 (2)0.0225 (2)0.00108 (16)0.00979 (17)0.00304 (17)
O10.0249 (6)0.0310 (7)0.0278 (7)0.0014 (6)0.0043 (5)0.0023 (6)
O20.0328 (7)0.0243 (7)0.0309 (7)0.0008 (5)0.0143 (6)0.0062 (6)
O30.0210 (6)0.0199 (6)0.0267 (6)0.0018 (5)0.0055 (5)0.0054 (5)
O40.0299 (7)0.0247 (7)0.0424 (8)0.0056 (6)0.0109 (6)0.0106 (6)
O50.0216 (6)0.0202 (6)0.0228 (6)0.0026 (5)0.0095 (5)0.0023 (5)
O60.0369 (8)0.0366 (9)0.0694 (12)0.0127 (7)0.0228 (8)0.0265 (9)
O1W0.0474 (9)0.0412 (10)0.0453 (10)0.0189 (7)0.0300 (8)0.0228 (8)
N10.0266 (8)0.0201 (8)0.0271 (8)0.0047 (6)0.0125 (6)0.0057 (6)
N20.0211 (7)0.0189 (7)0.0209 (7)0.0013 (6)0.0060 (6)0.0008 (6)
N30.0213 (7)0.0196 (7)0.0174 (7)0.0011 (6)0.0050 (6)0.0005 (6)
N40.0250 (7)0.0230 (8)0.0211 (7)0.0019 (6)0.0056 (6)0.0018 (6)
N50.0216 (7)0.0201 (7)0.0238 (7)0.0004 (6)0.0055 (6)0.0004 (6)
C10.0250 (8)0.0220 (9)0.0244 (9)0.0010 (7)0.0082 (7)0.0005 (7)
C20.0248 (8)0.0247 (9)0.0200 (8)0.0008 (7)0.0070 (7)0.0040 (7)
C30.0276 (9)0.0258 (9)0.0238 (9)0.0020 (7)0.0075 (7)0.0051 (8)
C40.0318 (10)0.0272 (10)0.0238 (9)0.0008 (8)0.0053 (8)0.0014 (8)
C50.0529 (13)0.0321 (11)0.0262 (10)0.0074 (10)0.0055 (9)0.0013 (9)
C60.0473 (12)0.0284 (11)0.0295 (11)0.0073 (9)0.0014 (9)0.0056 (9)
C70.0409 (11)0.0285 (11)0.0255 (10)0.0000 (9)0.0046 (8)0.0042 (9)
C80.105 (2)0.0305 (13)0.0398 (14)0.0115 (14)0.0028 (15)0.0075 (11)
C90.0438 (13)0.0553 (16)0.0545 (16)0.0129 (12)0.0121 (12)0.0205 (14)
C100.0534 (14)0.0508 (15)0.0335 (12)0.0131 (12)0.0168 (11)0.0133 (11)
C110.0226 (8)0.0179 (8)0.0183 (8)0.0028 (6)0.0061 (7)0.0018 (7)
C120.0210 (8)0.0168 (8)0.0207 (9)0.0009 (6)0.0040 (7)0.0011 (7)
C130.0208 (8)0.0193 (8)0.0184 (8)0.0015 (6)0.0053 (6)0.0020 (7)
C140.0206 (8)0.0191 (9)0.0173 (8)0.0012 (6)0.0042 (6)0.0010 (7)
C150.0184 (7)0.0183 (8)0.0213 (8)0.0014 (6)0.0045 (6)0.0004 (7)
C160.0273 (9)0.0232 (9)0.0247 (9)0.0001 (7)0.0026 (7)0.0051 (8)
C170.0222 (8)0.0183 (9)0.0342 (10)0.0006 (7)0.0017 (7)0.0025 (8)
C180.0226 (8)0.0187 (8)0.0326 (10)0.0020 (7)0.0062 (7)0.0028 (8)
C190.0212 (8)0.0287 (10)0.0175 (8)0.0046 (7)0.0071 (7)0.0034 (7)
C200.0258 (9)0.0285 (10)0.0230 (9)0.0068 (7)0.0110 (7)0.0074 (8)
C210.0293 (9)0.0401 (12)0.0220 (9)0.0123 (8)0.0078 (8)0.0075 (8)
C220.0267 (10)0.0491 (13)0.0226 (9)0.0051 (9)0.0027 (8)0.0023 (9)
C230.0277 (9)0.0385 (12)0.0239 (10)0.0031 (8)0.0033 (7)0.0014 (9)
C240.0260 (9)0.0296 (10)0.0182 (9)0.0025 (7)0.0046 (7)0.0007 (7)
C250.0388 (12)0.0261 (11)0.0796 (19)0.0088 (9)0.0140 (12)0.0183 (12)
C260.0282 (9)0.0229 (9)0.0206 (9)0.0027 (7)0.0132 (7)0.0016 (7)
C270.0274 (9)0.0297 (11)0.0422 (12)0.0023 (8)0.0163 (9)0.0050 (9)
Geometric parameters (Å, º) top
S1—O11.4324 (14)C7—C91.537 (3)
S1—O21.4365 (14)C8—H8A0.9800
S1—N11.6455 (15)C8—H8B0.9800
S1—C11.757 (2)C8—H8C0.9800
O3—C121.372 (2)C9—H9A0.9800
O3—C191.400 (2)C9—H9B0.9800
O4—C201.369 (2)C9—H9C0.9800
O4—C251.427 (2)C10—H10A0.9800
O5—C131.338 (2)C10—H10B0.9800
O5—C261.450 (2)C10—H10C0.9800
O6—C271.425 (2)C11—C121.400 (2)
O6—H60.8400C12—C131.392 (2)
O1W—H1W0.795 (16)C14—C151.501 (2)
O1W—H2W0.805 (16)C16—C171.378 (3)
N1—C111.376 (2)C16—H16A0.9500
N1—H1A0.8800C17—C181.383 (3)
N2—C141.333 (2)C17—H17A0.9500
N2—C111.338 (2)C18—H18A0.9500
N3—C131.331 (2)C19—C241.373 (3)
N3—C141.333 (2)C19—C201.398 (3)
N4—C161.338 (2)C20—C211.396 (3)
N4—C151.339 (2)C21—C221.387 (3)
N5—C151.329 (2)C21—H21A0.9500
N5—C181.337 (2)C22—C231.376 (3)
C1—C61.386 (3)C22—H22A0.9500
C1—C21.386 (3)C23—C241.401 (3)
C2—C31.392 (3)C23—H23A0.9500
C2—H2A0.9500C24—H24A0.9500
C3—C41.395 (3)C25—H25A0.9800
C3—H3A0.9500C25—H25B0.9800
C4—C51.391 (3)C25—H25C0.9800
C4—C71.536 (3)C26—C271.499 (3)
C5—C61.381 (3)C26—H26A0.9900
C5—H5A0.9500C26—H26B0.9900
C6—H6A0.9500C27—H27A0.9900
C7—C101.520 (3)C27—H27B0.9900
C7—C81.520 (3)
O1—S1—O2119.06 (9)N2—C11—N1118.65 (15)
O1—S1—N1110.81 (8)N2—C11—C12121.54 (16)
O2—S1—N1102.75 (8)N1—C11—C12119.81 (17)
O1—S1—C1109.13 (9)O3—C12—C13123.34 (16)
O2—S1—C1108.18 (9)O3—C12—C11119.96 (16)
N1—S1—C1106.09 (9)C13—C12—C11116.46 (16)
C12—O3—C19117.36 (14)N3—C13—O5121.38 (15)
C20—O4—C25116.32 (16)N3—C13—C12122.68 (16)
C13—O5—C26118.20 (14)O5—C13—C12115.93 (16)
C27—O6—H6109.5N2—C14—N3127.63 (17)
H1W—O1W—H2W110 (2)N2—C14—C15115.81 (15)
C11—N1—S1125.60 (13)N3—C14—C15116.56 (15)
C11—N1—H1A117.2N5—C15—N4126.42 (17)
S1—N1—H1A117.2N5—C15—C14116.86 (16)
C14—N2—C11116.05 (15)N4—C15—C14116.71 (15)
C13—N3—C14115.46 (15)N4—C16—C17122.46 (18)
C16—N4—C15115.93 (16)N4—C16—H16A118.8
C15—N5—C18116.21 (16)C17—C16—H16A118.8
C6—C1—C2120.54 (18)C16—C17—C18116.55 (17)
C6—C1—S1118.11 (15)C16—C17—H17A121.7
C2—C1—S1121.29 (15)C18—C17—H17A121.7
C1—C2—C3119.15 (17)N5—C18—C17122.32 (17)
C1—C2—H2A120.4N5—C18—H18A118.8
C3—C2—H2A120.4C17—C18—H18A118.8
C2—C3—C4121.41 (18)C24—C19—C20120.89 (18)
C2—C3—H3A119.3C24—C19—O3123.86 (17)
C4—C3—H3A119.3C20—C19—O3115.26 (17)
C5—C4—C3117.74 (19)O4—C20—C21124.53 (18)
C5—C4—C7119.46 (18)O4—C20—C19116.62 (17)
C3—C4—C7122.81 (19)C21—C20—C19118.85 (19)
C6—C5—C4121.77 (19)C22—C21—C20120.29 (19)
C6—C5—H5A119.1C22—C21—H21A119.9
C4—C5—H5A119.1C20—C21—H21A119.9
C5—C6—C1119.39 (19)C23—C22—C21120.24 (19)
C5—C6—H6A120.3C23—C22—H22A119.9
C1—C6—H6A120.3C21—C22—H22A119.9
C10—C7—C8109.1 (2)C22—C23—C24120.1 (2)
C10—C7—C4109.08 (18)C22—C23—H23A120.0
C8—C7—C4112.58 (18)C24—C23—H23A120.0
C10—C7—C9109.1 (2)C19—C24—C23119.65 (19)
C8—C7—C9108.1 (2)C19—C24—H24A120.2
C4—C7—C9108.85 (18)C23—C24—H24A120.2
C7—C8—H8A109.5O4—C25—H25A109.5
C7—C8—H8B109.5O4—C25—H25B109.5
H8A—C8—H8B109.5H25A—C25—H25B109.5
C7—C8—H8C109.5O4—C25—H25C109.5
H8A—C8—H8C109.5H25A—C25—H25C109.5
H8B—C8—H8C109.5H25B—C25—H25C109.5
C7—C9—H9A109.5O5—C26—C27109.51 (15)
C7—C9—H9B109.5O5—C26—H26A109.8
H9A—C9—H9B109.5C27—C26—H26A109.8
C7—C9—H9C109.5O5—C26—H26B109.8
H9A—C9—H9C109.5C27—C26—H26B109.8
H9B—C9—H9C109.5H26A—C26—H26B108.2
C7—C10—H10A109.5O6—C27—C26111.16 (16)
C7—C10—H10B109.5O6—C27—H27A109.4
H10A—C10—H10B109.5C26—C27—H27A109.4
C7—C10—H10C109.5O6—C27—H27B109.4
H10A—C10—H10C109.5C26—C27—H27B109.4
H10B—C10—H10C109.5H27A—C27—H27B108.0
O1—S1—N1—C1147.22 (18)C26—O5—C13—C12165.22 (15)
O2—S1—N1—C11175.43 (16)O3—C12—C13—N3178.87 (16)
C1—S1—N1—C1171.10 (18)C11—C12—C13—N34.5 (3)
O1—S1—C1—C6150.77 (16)O3—C12—C13—O50.3 (3)
O2—S1—C1—C619.86 (18)C11—C12—C13—O5174.61 (16)
N1—S1—C1—C689.80 (17)C11—N2—C14—N30.7 (3)
O1—S1—C1—C226.27 (17)C11—N2—C14—C15178.84 (15)
O2—S1—C1—C2157.18 (15)C13—N3—C14—N21.2 (3)
N1—S1—C1—C293.16 (16)C13—N3—C14—C15178.36 (15)
C6—C1—C2—C30.3 (3)C18—N5—C15—N41.6 (3)
S1—C1—C2—C3176.65 (13)C18—N5—C15—C14177.86 (15)
C1—C2—C3—C40.9 (3)C16—N4—C15—N52.9 (3)
C2—C3—C4—C50.4 (3)C16—N4—C15—C14176.55 (15)
C2—C3—C4—C7179.51 (17)N2—C14—C15—N526.1 (2)
C3—C4—C5—C60.7 (3)N3—C14—C15—N5153.49 (16)
C7—C4—C5—C6179.4 (2)N2—C14—C15—N4153.35 (16)
C4—C5—C6—C11.2 (4)N3—C14—C15—N427.0 (2)
C2—C1—C6—C50.7 (3)C15—N4—C16—C171.1 (3)
S1—C1—C6—C5177.78 (18)N4—C16—C17—C181.7 (3)
C5—C4—C7—C1055.2 (3)C15—N5—C18—C171.6 (3)
C3—C4—C7—C10124.9 (2)C16—C17—C18—N53.1 (3)
C5—C4—C7—C8176.5 (2)C12—O3—C19—C242.1 (2)
C3—C4—C7—C83.7 (3)C12—O3—C19—C20177.61 (15)
C5—C4—C7—C963.8 (3)C25—O4—C20—C2115.3 (3)
C3—C4—C7—C9116.1 (2)C25—O4—C20—C19165.06 (19)
C14—N2—C11—N1177.91 (16)C24—C19—C20—O4179.91 (16)
C14—N2—C11—C122.5 (3)O3—C19—C20—O40.2 (2)
S1—N1—C11—N22.0 (3)C24—C19—C20—C210.4 (3)
S1—N1—C11—C12178.44 (14)O3—C19—C20—C21179.89 (15)
C19—O3—C12—C1368.0 (2)O4—C20—C21—C22179.81 (18)
C19—O3—C12—C11117.88 (18)C19—C20—C21—C220.2 (3)
N2—C11—C12—O3179.54 (16)C20—C21—C22—C230.1 (3)
N1—C11—C12—O30.9 (3)C21—C22—C23—C240.2 (3)
N2—C11—C12—C135.0 (3)C20—C19—C24—C230.5 (3)
N1—C11—C12—C13175.48 (16)O3—C19—C24—C23179.80 (16)
C14—N3—C13—O5177.48 (16)C22—C23—C24—C190.4 (3)
C14—N3—C13—C121.6 (3)C13—O5—C26—C2790.58 (19)
C26—O5—C13—N315.6 (2)O5—C26—C27—O665.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N3i0.842.513.317 (2)162
O6—H6···N4i0.842.603.141 (2)124
O1W—H1W···O40.80 (2)2.30 (2)3.013 (2)150 (3)
O1W—H2W···N4ii0.81 (2)2.07 (2)2.873 (2)174 (3)
N1—H1A···O1W0.881.872.721 (2)163
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H29N5O6S·H2O
Mr569.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)12.3393 (4), 15.1238 (6), 14.6988 (4)
β (°) 95.037 (3)
V3)2732.46 (16)
Z4
Radiation typeCu Kα
µ (mm1)1.52
Crystal size (mm)0.79 × 0.43 × 0.22
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.535, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
9563, 9563, 7477
Rint0.000
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.163, 1.03
No. of reflections9563
No. of parameters373
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.77

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N3i0.842.513.317 (2)162
O6—H6···N4i0.842.603.141 (2)124
O1W—H1W···O40.795 (16)2.297 (19)3.013 (2)150 (3)
O1W—H2W···N4ii0.805 (16)2.071 (16)2.873 (2)174 (3)
N1—H1A···O1W0.881.872.721 (2)163
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

MK thanks the UOM for research facilities. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.  Google Scholar
First citationEl-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1673–o1674.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGabbay, E., Fraser, J. & McNeil, K. (2007). Vasc. Health Risk Manag. 3, 887–900.  PubMed CAS Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Kumar, M., Mallesha, L. & Sridhar, M. A. (2012). Acta Cryst. E68, o2590–o2591.  CSD CrossRef IUCr Journals Google Scholar
First citationKumar, D., Sreenivas, S. A., Samal, H. B., Dey, S. & Yellamanchalli, P. (2011). J. Pharm. Res. 4, 1713–1715.  CAS Google Scholar
First citationOldfield, V. & Lyseng-Williamson, K. A. (2006). Am. J. Cardiovasc. Drugs, 6, 189–208.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, T. P., Tiwari, R. K. & Singh, M. (1985). Acta Cryst. C41, 752–755.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds