organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-({4-[(E)-(2-Hy­dr­oxy­naphthalen-1-yl)methyl­­idene­amino]­phen­yl}sulfan­yl)phen­yl]ethanone

aDépartement de Chimie, Faculté des Sciences Exactes, Université Mentouri Constantine, Route de Ain El Bey, Constantine, Algeria, and bDépartement de Chimie Industrielle, Faculté des Sciences de l'Ingénieur, Université Mentouri Constantine, Campus Chaab Erssas, Constantine, Algeria
*Correspondence e-mail: abmousser@yahoo.fr

(Received 30 November 2012; accepted 5 December 2012; online 12 December 2012)

The title Schiff base compound, C25H19NO2S, crystallizes in a statistically disordered structure comprising keto and enol tautomeric forms. In the enol form, the benzenoid arrangment is promoted by a strong intra­molecular O—H⋯N hydrogen bond and adopts an E conformation about the imine bond. In the keto form there is an intramolecular N—H⋯O hydrogen bond. In the crystal, an extended network of C—H⋯O hydrogen bonds stabilizes columns parallel to the c axis, forming large voids (there are four cavities of 108 Å3 per unit cell) with highly disordered residual electron density. The SQUEEZE procedure in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155] was used to eliminate the contribution of this electron density from the intensity data, and the solvent-free model was employed for the final refinement. The contribution of this undetermined solvent was ignored in the calculation of the unit-cell characteristics.

Related literature

For related structures, see: Blagus & Kaitner (2011[Blagus, A. & Kaitner, B. (2011). Acta Cryst. E67, o2958-o2959.]); Farag et al. (2010[Farag, A. M., Teoh, S. G., Osman, H., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o1227-o1228.]); Venkatachalam et al. (2011[Venkatachalam, T. K., Pierens, G. K., Bernhardt, P. V., Hammond, L. & Reutens, D. C. (2011). J. Chem. Crystallogr. 41, 944-951.]). For background to Schiff bases and their applications, see: Li et al. (2003[Li, Y., Yang, Z. S., Zhang, H., Cao, B. J. & Wang, F. D. (2003). Bioorg. Med. Chem. 11, 4363-4368.]); Villar et al. (2004[Villar, R., Encio, I., Migliaccio, M., Gil, M. G. & Martinez-Merino, V. (2004). Bioorg. Med. Chem. 12, 963-968.]); Kagkelari et al. (2009[Kagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279-3283.]); Ourari et al. (2008[Ourari, A., Ouari, K., Khan, M. A. & Bouet, G. (2008). J. Coord. Chem. 61, 3846-3859.]); Zidane et al. (2011[Zidane, Y., Ourari, A., Mousser, H. & Mousser, A. (2011). Acta Cryst. E67, m1069-m1070.]).

[Scheme 1]

Experimental

Crystal data
  • C25H19NO2S

  • Mr = 397.47

  • Monoclinic, C c

  • a = 10.695 (3) Å

  • b = 44.458 (14) Å

  • c = 4.4437 (11) Å

  • β = 99.004 (9)°

  • V = 2086.8 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 150 K

  • 0.58 × 0.17 × 0.06 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.898, Tmax = 0.990

  • 8026 measured reflections

  • 3680 independent reflections

  • 2952 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 0.98

  • 3680 reflections

  • 263 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1291 Friedel pairs

  • Flack parameter: −0.06 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N13A 0.84 1.80 2.558 (4) 149
N13B—H13B⋯O1B 0.88 1.85 2.558 (4) 136
C9—H9⋯O28i 0.95 2.46 (1) 3.398 (4) 168
C19A—H19A⋯O28i 0.95 2.56 (1) 3.506 (4) 174
C22—H22⋯O1Aii 0.95 2.44 (1) 3.337 (4) 157
C27—H27B⋯O1Ai 0.98 2.49 (1) 3.442 (4) 164
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff bases are important compounds owing to their wide range of biological activities and industrial applications (Li et al., 2003; Villar et al., 2004). They have also been used as ligands in coordination chemistry (Kagkelari et al., 2009; Ourari et al. 2008; Zidane et al., 2011). Schiff bases are generally synthesized by nucleophilic condensation of an aromatic amine and a carbonyl compound, followed by the dehydration of the hemiaminal intermediate to generate the imine (Blagus et al., 2011).

In the present paper, we describe the synthesis and structural study of E-2-{[4-(4-acetylphenylsulfanyl)phenyl-amino]methyl} 2-oxo-naphthalene. The titled compound (Fig. 1) crystallizes in a disordered keto–amino tautomer [Csp2—O 1.277 (4) Å]. The C12—N13A bond length [1.334 (4) Å] is longer than CN but in the same range of those observed in the literature for related compounds (Blagus et al., 2011; Farag et al., 2010; Venkatachalam et al., 2011) in accordance with the observed keto–amino tautomer form. The benzenoid arrangement is promoted by a strong intramolecular hydrogen bond O—H···N [N···O 2.558 (4) Å].

The Schiff base adopts a E conformation about the C12N13 bond with a C11—C12—N13A—C14A torsion angle = -178.5 (3) Å. The central part of the molecule is planar with a dihedral angle between the benzene and naphthalene rings being less than 1 °. The molecule is twisted around the sulfide atom, so the average dihedral angle between the acetyl phenyl ring and the oxo naphthalen ring system is about 71°. The electron delocalisation between the two sulfur-bound lone pairs and π electrons of the adjacent phenyl rings leads to a slightly tighter Ssp3 angle (C17A—S1—C20 = 104.88 (15)°). The two similar sulfide carbone single bonds [C17A—S1 1.780 (3) Å and C20—S1 1.764 (3) Å] are as expected. The short bond C3—C4 distance [1.354 (5) Å] adjacent to the O1 oxygen atom of the naphthalen core indicates the presence of quinoid effect.

In the crystal, molecules are aligned head to foot along b axis, in columns parallel to [0 0 1] axis and the structure is stabilized by four kinds of C—H···O interactions (Fig. 2, Table 1). This arrangement separates the equivalent groups in columns by 4.444 (1) Å.

The large void channels in the structure (Fig. 3) contains residual electrons density with high disorder. The residual electron density were difficult to model and therefore, the SQUEEZE function of PLATON (Spek, 2009) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement. There are four cavities of 108 Å3 per unit cell. PLATON estimated that each cavity contains 12 electrons which may correspond to a solvent molecule.

Related literature top

For related structures, see: Blagus et al. (2011); Farag et al. (2010); Venkatachalam et al. (2011). For background to Schiff bases and their applications, see: Li et al. (2003); Villar et al. (2004); Kagkelari et al. (2009); Ourari et al. (2008); Zidane et al. (2011).

Experimental top

The title Schiff base was prepared by the condensation of 4-amino-4-acetyl diphenylsulfide and 2-hydroxy naphthaldehyde in a 1:1 molar ratio in ethanol solution. The mixture was stirred under reflux three hours. The crystals of title compound crystallized from a mixture of chloroforme/hexane (1/1). The orange needles were collected by filtration and dried in air. Yield: 61%. Melting Point: 451 K.

Refinement top

H atoms were positioned geometrically, using a riding model with C—H = 0.98 Å [Uiso(H) = 1.5 × Ueq(methyl-C)] and with C—H = 0.95 Å [Uiso(H) =1.2 × Ueq(aromatic-C)]. The model included free rotation about the C—C(methyl) bond

Since one hydrogen is not very well localized between N13 and O1, the structure is described as the presence of two tautomers. Hydrogen is bonded to O1 in the first one (part A) and to N13 in the second (part B). This disorder was modeled by refining part A (except H on N13), with O—H = 0.84 Å (Uiso(H) = 1.5), and part B (except H on O1) with equivalence of N13 and central phenyl ring (C14 to C19) atoms, with N—H = 0.88 Å (Uiso(H) = 1.5).

Large voids in the structure contains residual electrons density with hight disorder and or thermal motions. The SQUEEZE procedure of PLATON was used to eliminate the contribution of this residual electron density from the intensity data, and the solvent-free model was employed for the final refinement.

Structure description top

Schiff bases are important compounds owing to their wide range of biological activities and industrial applications (Li et al., 2003; Villar et al., 2004). They have also been used as ligands in coordination chemistry (Kagkelari et al., 2009; Ourari et al. 2008; Zidane et al., 2011). Schiff bases are generally synthesized by nucleophilic condensation of an aromatic amine and a carbonyl compound, followed by the dehydration of the hemiaminal intermediate to generate the imine (Blagus et al., 2011).

In the present paper, we describe the synthesis and structural study of E-2-{[4-(4-acetylphenylsulfanyl)phenyl-amino]methyl} 2-oxo-naphthalene. The titled compound (Fig. 1) crystallizes in a disordered keto–amino tautomer [Csp2—O 1.277 (4) Å]. The C12—N13A bond length [1.334 (4) Å] is longer than CN but in the same range of those observed in the literature for related compounds (Blagus et al., 2011; Farag et al., 2010; Venkatachalam et al., 2011) in accordance with the observed keto–amino tautomer form. The benzenoid arrangement is promoted by a strong intramolecular hydrogen bond O—H···N [N···O 2.558 (4) Å].

The Schiff base adopts a E conformation about the C12N13 bond with a C11—C12—N13A—C14A torsion angle = -178.5 (3) Å. The central part of the molecule is planar with a dihedral angle between the benzene and naphthalene rings being less than 1 °. The molecule is twisted around the sulfide atom, so the average dihedral angle between the acetyl phenyl ring and the oxo naphthalen ring system is about 71°. The electron delocalisation between the two sulfur-bound lone pairs and π electrons of the adjacent phenyl rings leads to a slightly tighter Ssp3 angle (C17A—S1—C20 = 104.88 (15)°). The two similar sulfide carbone single bonds [C17A—S1 1.780 (3) Å and C20—S1 1.764 (3) Å] are as expected. The short bond C3—C4 distance [1.354 (5) Å] adjacent to the O1 oxygen atom of the naphthalen core indicates the presence of quinoid effect.

In the crystal, molecules are aligned head to foot along b axis, in columns parallel to [0 0 1] axis and the structure is stabilized by four kinds of C—H···O interactions (Fig. 2, Table 1). This arrangement separates the equivalent groups in columns by 4.444 (1) Å.

The large void channels in the structure (Fig. 3) contains residual electrons density with high disorder. The residual electron density were difficult to model and therefore, the SQUEEZE function of PLATON (Spek, 2009) was used to eliminate the contribution of the electron density in the solvent region from the intensity data, and the solvent-free model was employed for the final refinement. There are four cavities of 108 Å3 per unit cell. PLATON estimated that each cavity contains 12 electrons which may correspond to a solvent molecule.

For related structures, see: Blagus et al. (2011); Farag et al. (2010); Venkatachalam et al. (2011). For background to Schiff bases and their applications, see: Li et al. (2003); Villar et al. (2004); Kagkelari et al. (2009); Ourari et al. (2008); Zidane et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability displacement ellipsoids for non-H atoms. Disorder is present between the (illustrated) enol and keto forms.
[Figure 2] Fig. 2. The four intermolecular C—H···O interactions bonds (symmetry codes: C9—H9···O28i, C19A—H19A···O28i, C27—H27B···O1Ai [(i): x - 1/2, -y + 1/2, z - 1/2] and C22–H22···O1Aii [(ii): x - 1/2, -y + 1/2, z + 1/2]).
[Figure 3] Fig. 3. A view of the unit-cell contents in projection down the c axis in (I), highlighting large void channels within the unit cell.
1-[4-({4-[(E)-(2-Hydroxynaphthalen-1- yl)methylideneamino]phenyl}sulfanyl)phenyl]ethanone top
Crystal data top
C25H19NO2SF(000) = 832
Mr = 397.47Dx = 1.265 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1817 reflections
a = 10.695 (3) Åθ = 2.4–26.0°
b = 44.458 (14) ŵ = 0.18 mm1
c = 4.4437 (11) ÅT = 150 K
β = 99.004 (9)°Stick, orange
V = 2086.8 (10) Å30.58 × 0.17 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS, Sheldrick, 2002)
h = 1213
Tmin = 0.898, Tmax = 0.990k = 5757
8026 measured reflectionsl = 45
3680 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0718P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.005
3680 reflectionsΔρmax = 0.24 e Å3
263 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack (1983), 1291 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (10)
Crystal data top
C25H19NO2SV = 2086.8 (10) Å3
Mr = 397.47Z = 4
Monoclinic, CcMo Kα radiation
a = 10.695 (3) ŵ = 0.18 mm1
b = 44.458 (14) ÅT = 150 K
c = 4.4437 (11) Å0.58 × 0.17 × 0.06 mm
β = 99.004 (9)°
Data collection top
Bruker APEXII
diffractometer
3680 independent reflections
Absorption correction: multi-scan
(SADABS, Sheldrick, 2002)
2952 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.990Rint = 0.036
8026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.125Δρmax = 0.24 e Å3
S = 0.98Δρmin = 0.22 e Å3
3680 reflectionsAbsolute structure: Flack (1983), 1291 Friedel pairs
263 parametersAbsolute structure parameter: 0.06 (10)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Since hydrogen is not very well localized between N13 and O1, the structure is described as the presence of two tautomers. Hydrogen is bonded to O1 in the first one (part A) and to N13 in the second (part B). This disorder was modeled by refining part A (except H on N13) and part B (except H on O1) with equivalence of N13 and central phenyl ring (C14 to C19) atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.9261 (2)0.89274 (5)0.2227 (5)0.0432 (6)0.5
H1A0.88040.87810.25480.065*0.5
O1B0.9261 (2)0.89274 (5)0.2227 (5)0.0432 (6)0.5
C20.8665 (3)0.90927 (7)0.0128 (7)0.0343 (7)
C30.9267 (3)0.93567 (7)0.0798 (8)0.0404 (8)
H31.00960.94050.01870.048*
C40.8695 (3)0.95396 (7)0.3033 (8)0.0404 (8)
H40.91350.97110.35940.048*
C50.7436 (3)0.94802 (7)0.4576 (7)0.0339 (7)
C60.6843 (4)0.96779 (7)0.6875 (8)0.0402 (8)
H60.72910.98490.74080.048*
C70.5643 (3)0.96264 (7)0.8334 (7)0.0423 (9)
H70.52530.97610.98620.051*
C80.4992 (4)0.93702 (8)0.7531 (7)0.0408 (8)
H80.41550.93320.8530.049*
C90.5551 (3)0.91739 (7)0.5316 (8)0.0357 (7)
H90.50920.90030.48250.043*
C100.6785 (3)0.92219 (6)0.3773 (7)0.0317 (7)
C110.7411 (3)0.90245 (6)0.1401 (7)0.0306 (7)
C120.6792 (3)0.87685 (7)0.0513 (7)0.0321 (7)
H120.59630.87250.1530.039*
N13A0.7319 (3)0.85845 (5)0.1698 (6)0.0320 (6)0.5
C14A0.6753 (3)0.83248 (6)0.2696 (7)0.0285 (6)0.5
C15A0.7471 (3)0.81538 (7)0.4960 (7)0.0325 (7)0.5
H15A0.83060.82160.57760.039*0.5
C16A0.6980 (3)0.78934 (7)0.6035 (7)0.0343 (7)0.5
H16A0.74670.77820.76260.041*0.5
C17A0.5781 (3)0.77958 (6)0.4798 (7)0.0296 (7)0.5
C18A0.5070 (3)0.79663 (7)0.2544 (7)0.0324 (7)0.5
H18A0.42420.79010.17060.039*0.5
C19A0.5541 (3)0.82303 (7)0.1483 (7)0.0345 (7)0.5
H19A0.5040.83450.00580.041*0.5
N13B0.7319 (3)0.85845 (5)0.1698 (6)0.0320 (6)0.5
H13B0.80870.86290.26110.038*0.5
C14B0.6753 (3)0.83248 (6)0.2696 (7)0.0285 (6)0.5
C15B0.7471 (3)0.81538 (7)0.4960 (7)0.0325 (7)0.5
H15B0.83060.82160.57760.039*0.5
C16B0.6980 (3)0.78934 (7)0.6035 (7)0.0343 (7)0.5
H16B0.74670.77820.76260.041*0.5
C17B0.5781 (3)0.77958 (6)0.4798 (7)0.0296 (7)0.5
C18B0.5070 (3)0.79663 (7)0.2544 (7)0.0324 (7)0.5
H18B0.42420.79010.17060.039*0.5
C19B0.5541 (3)0.82303 (7)0.1483 (7)0.0345 (7)0.5
H19B0.5040.83450.00580.041*0.5
S10.50675 (10)0.747532 (16)0.62296 (19)0.0362 (2)
C200.5814 (3)0.71639 (6)0.4809 (7)0.0288 (7)
C210.5376 (3)0.68797 (7)0.5525 (7)0.0342 (7)
H210.470.68640.66740.041*
C220.5921 (3)0.66202 (7)0.4567 (7)0.0344 (7)
H220.56080.64290.50510.041*
C230.6915 (3)0.66362 (7)0.2916 (7)0.0309 (7)
C240.7347 (3)0.69227 (7)0.2182 (7)0.0317 (7)
H240.80240.69380.10380.038*
C250.6800 (3)0.71807 (7)0.3103 (7)0.0305 (7)
H250.70980.73720.2570.037*
C260.7554 (3)0.63638 (7)0.1932 (8)0.0367 (8)
C270.7015 (4)0.60589 (7)0.2401 (9)0.0474 (9)
H27A0.75460.59040.16710.071*
H27B0.61540.60460.12640.071*
H27C0.69920.60280.45760.071*
O280.8519 (3)0.63891 (6)0.0759 (6)0.0530 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0444 (14)0.0349 (12)0.0494 (16)0.0022 (10)0.0045 (11)0.0044 (10)
O1B0.0444 (14)0.0349 (12)0.0494 (16)0.0022 (10)0.0045 (11)0.0044 (10)
C20.044 (2)0.0286 (16)0.032 (2)0.0051 (14)0.0121 (14)0.0093 (13)
C30.0406 (19)0.0355 (17)0.047 (2)0.0029 (15)0.0120 (16)0.0151 (15)
C40.048 (2)0.0319 (16)0.046 (2)0.0078 (15)0.0241 (17)0.0102 (15)
C50.048 (2)0.0278 (15)0.0299 (19)0.0021 (14)0.0177 (14)0.0072 (12)
C60.064 (2)0.0293 (16)0.0320 (19)0.0051 (15)0.0218 (16)0.0041 (13)
C70.061 (2)0.0339 (17)0.033 (2)0.0001 (16)0.0109 (17)0.0036 (14)
C80.049 (2)0.0396 (18)0.034 (2)0.0013 (15)0.0062 (16)0.0023 (14)
C90.048 (2)0.0294 (15)0.0310 (18)0.0037 (14)0.0092 (14)0.0008 (13)
C100.0457 (19)0.0240 (13)0.0287 (18)0.0010 (13)0.0159 (14)0.0066 (12)
C110.0410 (18)0.0249 (14)0.0279 (17)0.0011 (13)0.0112 (13)0.0068 (12)
C120.0397 (18)0.0296 (15)0.0279 (18)0.0039 (13)0.0082 (13)0.0055 (12)
N13A0.0375 (14)0.0286 (13)0.0308 (15)0.0022 (11)0.0082 (11)0.0019 (11)
C14A0.0362 (17)0.0263 (14)0.0248 (17)0.0041 (12)0.0101 (12)0.0052 (12)
C15A0.0359 (18)0.0332 (16)0.0278 (19)0.0001 (13)0.0034 (13)0.0021 (12)
C16A0.0368 (18)0.0370 (17)0.0284 (19)0.0042 (14)0.0029 (14)0.0051 (13)
C17A0.0358 (18)0.0267 (14)0.0270 (18)0.0034 (12)0.0069 (13)0.0017 (12)
C18A0.0342 (17)0.0327 (16)0.0312 (19)0.0045 (13)0.0078 (13)0.0033 (12)
C19A0.0403 (18)0.0311 (16)0.0311 (19)0.0048 (13)0.0030 (14)0.0036 (13)
N13B0.0375 (14)0.0286 (13)0.0308 (15)0.0022 (11)0.0082 (11)0.0019 (11)
C14B0.0362 (17)0.0263 (14)0.0248 (17)0.0041 (12)0.0101 (12)0.0052 (12)
C15B0.0359 (18)0.0332 (16)0.0278 (19)0.0001 (13)0.0034 (13)0.0021 (12)
C16B0.0368 (18)0.0370 (17)0.0284 (19)0.0042 (14)0.0029 (14)0.0051 (13)
C17B0.0358 (18)0.0267 (14)0.0270 (18)0.0034 (12)0.0069 (13)0.0017 (12)
C18B0.0342 (17)0.0327 (16)0.0312 (19)0.0045 (13)0.0078 (13)0.0033 (12)
C19B0.0403 (18)0.0311 (16)0.0311 (19)0.0048 (13)0.0030 (14)0.0036 (13)
S10.0411 (4)0.0342 (4)0.0357 (5)0.0028 (4)0.0138 (3)0.0048 (4)
C200.0311 (16)0.0305 (15)0.0233 (18)0.0001 (12)0.0005 (12)0.0028 (12)
C210.0350 (18)0.0354 (17)0.033 (2)0.0023 (13)0.0092 (13)0.0063 (13)
C220.0394 (18)0.0310 (16)0.0326 (19)0.0070 (13)0.0047 (14)0.0037 (13)
C230.0325 (17)0.0294 (15)0.0297 (18)0.0039 (12)0.0018 (13)0.0025 (12)
C240.0325 (17)0.0331 (16)0.0296 (19)0.0035 (13)0.0049 (13)0.0028 (13)
C250.0337 (17)0.0284 (15)0.0297 (18)0.0010 (12)0.0062 (13)0.0047 (12)
C260.0362 (19)0.0362 (17)0.035 (2)0.0004 (14)0.0013 (14)0.0015 (14)
C270.052 (2)0.0334 (17)0.057 (3)0.0055 (16)0.0088 (17)0.0002 (16)
O280.0506 (16)0.0421 (14)0.0705 (18)0.0027 (12)0.0222 (13)0.0073 (13)
Geometric parameters (Å, º) top
O1A—C21.277 (4)C15A—H15A0.95
O1A—H1A0.84C16A—C17A1.383 (5)
C2—C31.429 (4)C16A—H16A0.95
C2—C111.438 (5)C17A—C18A1.385 (4)
C3—C41.354 (5)C17A—S11.780 (3)
C3—H30.95C18A—C19A1.389 (4)
C4—C51.437 (5)C18A—H18A0.95
C4—H40.95C19A—H19A0.95
C5—C101.417 (4)S1—C201.764 (3)
C5—C61.420 (5)C20—C251.394 (4)
C6—C71.363 (5)C20—C211.401 (4)
C6—H60.95C21—C221.389 (4)
C7—C81.410 (5)C21—H210.95
C7—H70.95C22—C231.385 (5)
C8—C91.380 (5)C22—H220.95
C8—H80.95C23—C241.410 (4)
C9—C101.404 (5)C23—C261.489 (4)
C9—H90.95C24—C251.378 (4)
C10—C111.453 (4)C24—H240.95
C11—C121.404 (4)C25—H250.95
C12—N13A1.334 (4)C26—O281.232 (4)
C12—H120.95C26—C271.500 (4)
N13A—C14A1.407 (4)C27—H27A0.98
C14A—C19A1.388 (4)C27—H27B0.98
C14A—C15A1.393 (5)C27—H27C0.98
C15A—C16A1.387 (4)
C2—O1A—H1A109.5C17A—C16A—C15A120.2 (3)
O1A—C2—C3119.1 (3)C17A—C16A—H16A119.9
O1A—C2—C11123.1 (3)C15A—C16A—H16A119.9
C3—C2—C11117.8 (3)C16A—C17A—C18A119.1 (3)
C4—C3—C2122.1 (3)C16A—C17A—S1122.1 (2)
C4—C3—H3118.9C18A—C17A—S1118.6 (2)
C2—C3—H3118.9C17A—C18A—C19A121.3 (3)
C3—C4—C5121.5 (3)C17A—C18A—H18A119.3
C3—C4—H4119.3C19A—C18A—H18A119.3
C5—C4—H4119.3C18A—C19A—C14A119.4 (3)
C10—C5—C6120.1 (3)C18A—C19A—H19A120.3
C10—C5—C4119.3 (3)C14A—C19A—H19A120.3
C6—C5—C4120.6 (3)C20—S1—C17A104.88 (15)
C7—C6—C5121.3 (3)C25—C20—C21118.7 (3)
C7—C6—H6119.4C25—C20—S1125.2 (2)
C5—C6—H6119.4C21—C20—S1116.1 (2)
C6—C7—C8118.7 (3)C22—C21—C20120.5 (3)
C6—C7—H7120.6C22—C21—H21119.8
C8—C7—H7120.6C20—C21—H21119.8
C9—C8—C7121.0 (3)C23—C22—C21120.9 (3)
C9—C8—H8119.5C23—C22—H22119.5
C7—C8—H8119.5C21—C22—H22119.5
C8—C9—C10121.4 (3)C22—C23—C24118.3 (3)
C8—C9—H9119.3C22—C23—C26122.6 (3)
C10—C9—H9119.3C24—C23—C26119.0 (3)
C9—C10—C5117.5 (3)C25—C24—C23120.9 (3)
C9—C10—C11123.6 (3)C25—C24—H24119.5
C5—C10—C11118.9 (3)C23—C24—H24119.5
C12—C11—C2119.0 (3)C24—C25—C20120.6 (3)
C12—C11—C10120.6 (3)C24—C25—H25119.7
C2—C11—C10120.4 (3)C20—C25—H25119.7
N13A—C12—C11122.7 (3)O28—C26—C23120.2 (3)
N13A—C12—H12118.7O28—C26—C27120.4 (3)
C11—C12—H12118.7C23—C26—C27119.3 (3)
C12—N13A—C14A125.6 (3)C26—C27—H27A109.5
C19A—C14A—C15A119.4 (3)C26—C27—H27B109.5
C19A—C14A—N13A123.2 (3)H27A—C27—H27B109.5
C15A—C14A—N13A117.4 (3)C26—C27—H27C109.5
C16A—C15A—C14A120.6 (3)H27A—C27—H27C109.5
C16A—C15A—H15A119.7H27B—C27—H27C109.5
C14A—C15A—H15A119.7
O1A—C2—C3—C4179.2 (3)C19A—C14A—C15A—C16A0.9 (5)
C11—C2—C3—C40.0 (4)N13A—C14A—C15A—C16A179.4 (3)
C2—C3—C4—C50.9 (5)C14A—C15A—C16A—C17A2.0 (5)
C3—C4—C5—C100.9 (5)C15A—C16A—C17A—C18A1.9 (5)
C3—C4—C5—C6178.8 (3)C15A—C16A—C17A—S1176.4 (2)
C10—C5—C6—C70.6 (5)C16A—C17A—C18A—C19A0.8 (5)
C4—C5—C6—C7179.2 (3)S1—C17A—C18A—C19A175.5 (2)
C5—C6—C7—C80.3 (5)C17A—C18A—C19A—C14A0.3 (5)
C6—C7—C8—C90.1 (5)C15A—C14A—C19A—C18A0.2 (5)
C7—C8—C9—C100.2 (5)N13A—C14A—C19A—C18A178.1 (3)
C8—C9—C10—C50.0 (5)C16A—C17A—S1—C2076.5 (3)
C8—C9—C10—C11179.2 (3)C18A—C17A—S1—C20109.0 (3)
C6—C5—C10—C90.4 (4)C17A—S1—C20—C253.5 (3)
C4—C5—C10—C9179.4 (3)C17A—S1—C20—C21177.5 (2)
C6—C5—C10—C11179.7 (3)C25—C20—C21—C220.4 (4)
C4—C5—C10—C110.1 (4)S1—C20—C21—C22178.6 (3)
O1A—C2—C11—C121.6 (4)C20—C21—C22—C230.7 (5)
C3—C2—C11—C12179.3 (3)C21—C22—C23—C241.1 (4)
O1A—C2—C11—C10180.0 (3)C21—C22—C23—C26178.0 (3)
C3—C2—C11—C100.8 (4)C22—C23—C24—C250.5 (4)
C9—C10—C11—C120.0 (5)C26—C23—C24—C25178.7 (3)
C5—C10—C11—C12179.2 (3)C23—C24—C25—C200.6 (4)
C9—C10—C11—C2178.5 (3)C21—C20—C25—C241.1 (4)
C5—C10—C11—C20.8 (4)S1—C20—C25—C24177.9 (2)
C2—C11—C12—N13A0.1 (4)C22—C23—C26—O28172.1 (3)
C10—C11—C12—N13A178.5 (3)C24—C23—C26—O287.0 (4)
C11—C12—N13A—C14A180.0 (3)C22—C23—C26—C277.5 (5)
C12—N13A—C14A—C19A0.8 (5)C24—C23—C26—C27173.4 (3)
C12—N13A—C14A—C15A177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N13A0.841.802.558 (4)149
N13B—H13B···O1B0.881.852.558 (4)136
C9—H9···O28i0.952.46 (1)3.398 (4)168
C19A—H19A···O28i0.952.56 (1)3.506 (4)174
C22—H22···O1Aii0.952.44 (1)3.337 (4)157
C27—H27B···O1Ai0.982.49 (1)3.442 (4)164
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H19NO2S
Mr397.47
Crystal system, space groupMonoclinic, Cc
Temperature (K)150
a, b, c (Å)10.695 (3), 44.458 (14), 4.4437 (11)
β (°) 99.004 (9)
V3)2086.8 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.58 × 0.17 × 0.06
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS, Sheldrick, 2002)
Tmin, Tmax0.898, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
8026, 3680, 2952
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 0.98
No. of reflections3680
No. of parameters263
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22
Absolute structureFlack (1983), 1291 Friedel pairs
Absolute structure parameter0.06 (10)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N13A0.841.802.558 (4)149
N13B—H13B···O1B0.881.852.558 (4)136
C9—H9···O28i0.952.460 (0)3.398 (4)168
C19A—H19A···O28i0.952.559 (0)3.506 (4)174
C22—H22···O1Aii0.952.441 (0)3.337 (4)157
C27—H27B···O1Ai0.982.490 (1)3.442 (4)164
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Dr Lahcène Ouahab and Thierry Roisnel from the Institut des Sciences Chimiques de Rennes UMR CNRS 6226 for the data collection and helpful discussions, and the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlagus, A. & Kaitner, B. (2011). Acta Cryst. E67, o2958–o2959.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarag, A. M., Teoh, S. G., Osman, H., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o1227–o1228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKagkelari, A., Papaefstahiou, G. S., Raptopoulou, C. P. & Zafiropoulos, T. F. (2009). Polyhedron, 28, 3279–3283.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Yang, Z. S., Zhang, H., Cao, B. J. & Wang, F. D. (2003). Bioorg. Med. Chem. 11, 4363–4368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOurari, A., Ouari, K., Khan, M. A. & Bouet, G. (2008). J. Coord. Chem. 61, 3846–3859.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkatachalam, T. K., Pierens, G. K., Bernhardt, P. V., Hammond, L. & Reutens, D. C. (2011). J. Chem. Crystallogr. 41, 944–951.  Web of Science CSD CrossRef CAS Google Scholar
First citationVillar, R., Encio, I., Migliaccio, M., Gil, M. G. & Martinez-Merino, V. (2004). Bioorg. Med. Chem. 12, 963–968.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZidane, Y., Ourari, A., Mousser, H. & Mousser, A. (2011). Acta Cryst. E67, m1069–m1070.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds