organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1-Phenyl-1H-benzimidazol-2-yl)phenol

aPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 4 December 2012; accepted 5 December 2012; online 8 December 2012)

In the title mol­ecule, C19H14N2O, the benzimidazole unit is close to being planar [maximum deviation = 0.0253 (11) Å] and forms dihedral angles of 68.98 (6) and 20.38 (7)° with the adjacent phenyl and benzene rings; the dihedral angle between the latter two planes is 64.30 (7)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯N and C—H⋯O hydrogen bonds, and consolidated into a three-dimensional architecture by ππ stacking inter­actions, with a centroid–centroid distance of 3.8428 (12) Å.

Related literature

For the range of pharmacological activities and toxicological properties of benzimidazole derivatives, see: Spasov et al. (1999[Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232-243.]). For closely related crystal structures, see: Jayamoorthy et al. (2012[Jayamoorthy, K., Rosepriya, S., Thiruvalluvar, A., Jayabharathi, J. & Butcher, R. J. (2012). Acta Cryst. E68, o2708.]); Rosepriya et al. (2012[Rosepriya, S., Thiruvalluvar, A., Jayamoorthy, K., Jayabharathi, J., Öztürk Yildirim, S. & Butcher, R. J. (2012). Acta Cryst. E68, o3283.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14N2O

  • Mr = 286.32

  • Triclinic, [P \overline 1]

  • a = 8.1941 (6) Å

  • b = 9.5983 (14) Å

  • c = 10.3193 (18) Å

  • α = 64.637 (16)°

  • β = 80.356 (10)°

  • γ = 83.610 (9)°

  • V = 722.3 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 123 K

  • 0.76 × 0.46 × 0.32 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), using a multi-faceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.731, Tmax = 0.811

  • 4335 measured reflections

  • 2826 independent reflections

  • 2420 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.171

  • S = 1.04

  • 2826 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O26—H26⋯N3 0.97 (3) 1.70 (3) 2.583 (2) 150 (3)
C14—H14⋯N3i 0.95 2.60 3.456 (3) 151
C16—H16⋯O26ii 0.95 2.49 3.388 (2) 157
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Spasov et al. (1999) have reviewed the wide range of pharmacological activities and toxicological properties of benzimidazole derivatives. Since our research group is working in organic light emitting devices, we are interested to use the title compound as ligand for synthesizing IrIII complexes. Further, we are interested to use the title compound as a ligand to study excited state intramolecular proton transfer (ESIPT) processes. Jayamoorthy et al. (2012) and Rosepriya et al. (2012) have reported closely related crystal structures of benzimidazole derivatives.

In the title molecule, C19H14N2O (Fig. 1), the benzimidazole unit is almost planar [maximum deviation = 0.0253 (11) Å for C2]. The dihedral angles between the planes of the benzimidazole and the phenyl ring at N1 and the benzene ring at C2 are 68.98 (6) and 20.38 (7)°, respectively. The dihedral angle between the planes of the adjacent phenyl and benzene rings is 64.30 (7)°. The molecular conformation is stabilized by an intramolecular O26—H26···N3 hydrogen bond, which generates an S(6) ring motif (Bernstein et al., 1995). In the crystal (Fig. 2), molecules are linked by C14—H14···N3 and C16—H16···O26 hydrogen bonds (Table 1). Further, ππ stacking interactions between symmetry-related imidazole and benzene rings [Cg1—Cg4iii = Cg4—Cg1iii = 3.8428 (12) Å, symmetry code (iii): 2 - x, - y, - z where Cg1 is the centroid of the imidazole ring (N1/C2/N3/C9/C8) and Cg4 is the centroid of the benzene ring defined by atoms C21—C26, respectively] (Fig. 3) are noted.

Related literature top

For the range of pharmacological activities and toxicological properties of benzimidazole derivatives, see: Spasov et al. (1999). For closely related crystal structures, see: Jayamoorthy et al. (2012); Rosepriya et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To N-phenyl-o-phenylenediamine (3.128 g, 17 mmol) in ethanol (10 ml), 2-hydroxybenzaldehyde (1.8 ml, 17 mmol) and ammonium acetate (4 g) were added over about 1 h while maintaining the temperature at 353 K. The reaction mixture was refluxed for the appropriate time and the completion of reaction was monitored by TLC. The reaction mixture extracted with dichloromethane. The solid that separated was purified by column chromatography using petroleum ether (60–80 °C) as the eluent. Yield: 2.43 g (50%). The title compound was dissolved in petroleum ether and chloroform (9:1) mixture and allowed to slow evaporate for two days to obtain crystals suitable for X-ray diffraction studies.

Refinement top

The O-bound H atom was located in a difference Fourier map and refined freely; O26—H26 = 0.97 (3) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

Spasov et al. (1999) have reviewed the wide range of pharmacological activities and toxicological properties of benzimidazole derivatives. Since our research group is working in organic light emitting devices, we are interested to use the title compound as ligand for synthesizing IrIII complexes. Further, we are interested to use the title compound as a ligand to study excited state intramolecular proton transfer (ESIPT) processes. Jayamoorthy et al. (2012) and Rosepriya et al. (2012) have reported closely related crystal structures of benzimidazole derivatives.

In the title molecule, C19H14N2O (Fig. 1), the benzimidazole unit is almost planar [maximum deviation = 0.0253 (11) Å for C2]. The dihedral angles between the planes of the benzimidazole and the phenyl ring at N1 and the benzene ring at C2 are 68.98 (6) and 20.38 (7)°, respectively. The dihedral angle between the planes of the adjacent phenyl and benzene rings is 64.30 (7)°. The molecular conformation is stabilized by an intramolecular O26—H26···N3 hydrogen bond, which generates an S(6) ring motif (Bernstein et al., 1995). In the crystal (Fig. 2), molecules are linked by C14—H14···N3 and C16—H16···O26 hydrogen bonds (Table 1). Further, ππ stacking interactions between symmetry-related imidazole and benzene rings [Cg1—Cg4iii = Cg4—Cg1iii = 3.8428 (12) Å, symmetry code (iii): 2 - x, - y, - z where Cg1 is the centroid of the imidazole ring (N1/C2/N3/C9/C8) and Cg4 is the centroid of the benzene ring defined by atoms C21—C26, respectively] (Fig. 3) are noted.

For the range of pharmacological activities and toxicological properties of benzimidazole derivatives, see: Spasov et al. (1999). For closely related crystal structures, see: Jayamoorthy et al. (2012); Rosepriya et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. The dashed line indicates the intramolecular O—H···N hydrogen bond.
[Figure 2] Fig. 2. The packing of the title compound, viewed approximately down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of compound, showing the formation of ππ stacking interactions. Symmetry code: 2 - x, - y, - z
2-(1-Phenyl-1H-benzimidazol-2-yl)phenol top
Crystal data top
C19H14N2OZ = 2
Mr = 286.32F(000) = 300
Triclinic, P1Dx = 1.316 Mg m3
Hall symbol: -P 1Melting point: 387 K
a = 8.1941 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.5983 (14) ÅCell parameters from 772 reflections
c = 10.3193 (18) Åθ = 4.8–75.4°
α = 64.637 (16)°µ = 0.66 mm1
β = 80.356 (10)°T = 123 K
γ = 83.610 (9)°Block, colourless
V = 722.3 (2) Å30.76 × 0.46 × 0.32 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
2826 independent reflections
Radiation source: Enhance (Cu) X-ray Source2420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 10.5081 pixels mm-1θmax = 75.8°, θmin = 5.5°
ω scansh = 1010
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model (Clark & Reid, 1995)]
k = 912
Tmin = 0.731, Tmax = 0.811l = 1212
4335 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1182P)2 + 0.1646P]
where P = (Fo2 + 2Fc2)/3
2826 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H14N2Oγ = 83.610 (9)°
Mr = 286.32V = 722.3 (2) Å3
Triclinic, P1Z = 2
a = 8.1941 (6) ÅCu Kα radiation
b = 9.5983 (14) ŵ = 0.66 mm1
c = 10.3193 (18) ÅT = 123 K
α = 64.637 (16)°0.76 × 0.46 × 0.32 mm
β = 80.356 (10)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
2826 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model (Clark & Reid, 1995)]
2420 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.811Rint = 0.076
4335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
2826 reflectionsΔρmin = 0.31 e Å3
203 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O260.61570 (15)0.11111 (15)0.08352 (15)0.0336 (4)
N10.78361 (16)0.03924 (16)0.19436 (15)0.0249 (4)
N30.70983 (17)0.15812 (16)0.15919 (16)0.0262 (4)
C20.75812 (18)0.01378 (18)0.09515 (18)0.0238 (4)
C40.6537 (2)0.3401 (2)0.4242 (2)0.0331 (5)
C50.6508 (2)0.3488 (2)0.5613 (2)0.0384 (5)
C60.6940 (3)0.2238 (2)0.5834 (2)0.0386 (6)
C70.7442 (2)0.0876 (2)0.4680 (2)0.0340 (5)
C80.7465 (2)0.07982 (18)0.33084 (19)0.0272 (5)
C90.70108 (19)0.20226 (19)0.30605 (19)0.0269 (5)
C110.8035 (2)0.19445 (18)0.17495 (18)0.0250 (5)
C120.9424 (2)0.2276 (2)0.2142 (2)0.0301 (5)
C130.9554 (2)0.3752 (2)0.2042 (2)0.0344 (5)
C140.8320 (2)0.4876 (2)0.1542 (2)0.0331 (5)
C150.6936 (2)0.4524 (2)0.1156 (2)0.0345 (5)
C160.6775 (2)0.30484 (19)0.1263 (2)0.0306 (5)
C210.77729 (18)0.07290 (18)0.06192 (18)0.0245 (5)
C220.8703 (2)0.2056 (2)0.13605 (19)0.0286 (5)
C230.8821 (2)0.2863 (2)0.2849 (2)0.0343 (5)
C240.7977 (2)0.2376 (2)0.3632 (2)0.0359 (5)
C250.7070 (2)0.1065 (2)0.2933 (2)0.0330 (5)
C260.69972 (19)0.0214 (2)0.14465 (19)0.0272 (5)
H40.624390.425230.410120.0397*
H50.618850.441360.642700.0460*
H60.688560.232870.679340.0463*
H70.775670.003490.482460.0408*
H121.027920.150690.247560.0361*
H131.049930.398900.231890.0413*
H140.842180.588630.146490.0397*
H150.608630.529660.081290.0414*
H160.581780.280370.100800.0367*
H220.926330.240720.082870.0343*
H230.947520.374480.333270.0411*
H240.802490.294660.464940.0431*
H250.649020.074210.347400.0395*
H260.629 (4)0.158 (3)0.018 (3)0.057 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O260.0296 (6)0.0337 (7)0.0436 (8)0.0070 (5)0.0042 (5)0.0208 (6)
N10.0230 (7)0.0213 (7)0.0301 (7)0.0004 (5)0.0039 (5)0.0105 (6)
N30.0218 (6)0.0218 (7)0.0342 (8)0.0001 (5)0.0030 (5)0.0113 (6)
C20.0175 (7)0.0225 (7)0.0316 (8)0.0013 (5)0.0026 (6)0.0123 (6)
C40.0269 (8)0.0230 (8)0.0422 (10)0.0008 (6)0.0021 (7)0.0078 (7)
C50.0349 (9)0.0295 (9)0.0374 (10)0.0012 (7)0.0001 (8)0.0032 (8)
C60.0390 (10)0.0397 (10)0.0310 (9)0.0025 (8)0.0034 (8)0.0106 (8)
C70.0360 (9)0.0297 (9)0.0360 (9)0.0011 (7)0.0065 (7)0.0135 (8)
C80.0222 (7)0.0231 (8)0.0335 (9)0.0006 (6)0.0020 (6)0.0103 (7)
C90.0209 (7)0.0236 (8)0.0342 (9)0.0019 (6)0.0034 (6)0.0111 (7)
C110.0252 (8)0.0201 (8)0.0287 (8)0.0022 (6)0.0007 (6)0.0100 (6)
C120.0244 (8)0.0262 (8)0.0401 (10)0.0016 (6)0.0068 (7)0.0140 (7)
C130.0265 (8)0.0341 (10)0.0474 (10)0.0045 (7)0.0055 (7)0.0206 (8)
C140.0331 (9)0.0237 (8)0.0422 (10)0.0041 (7)0.0008 (7)0.0149 (7)
C150.0289 (9)0.0243 (8)0.0481 (11)0.0034 (6)0.0053 (7)0.0141 (8)
C160.0234 (8)0.0251 (8)0.0433 (10)0.0007 (6)0.0068 (7)0.0135 (7)
C210.0170 (7)0.0243 (8)0.0322 (9)0.0023 (6)0.0018 (6)0.0130 (7)
C220.0208 (7)0.0293 (9)0.0347 (9)0.0009 (6)0.0013 (6)0.0134 (7)
C230.0285 (9)0.0318 (9)0.0357 (10)0.0009 (7)0.0019 (7)0.0100 (8)
C240.0316 (9)0.0406 (10)0.0300 (9)0.0077 (7)0.0027 (7)0.0122 (8)
C250.0259 (8)0.0399 (10)0.0368 (10)0.0059 (7)0.0054 (7)0.0208 (8)
C260.0189 (7)0.0295 (8)0.0352 (9)0.0029 (6)0.0018 (6)0.0170 (7)
Geometric parameters (Å, º) top
O26—C261.361 (2)C21—C261.411 (3)
O26—H260.97 (3)C21—C221.405 (3)
N1—C21.376 (2)C22—C231.384 (3)
N1—C81.392 (2)C23—C241.390 (3)
N1—C111.440 (2)C24—C251.381 (3)
N3—C91.379 (2)C25—C261.389 (3)
N3—C21.328 (2)C4—H40.9500
C2—C211.460 (2)C5—H50.9500
C4—C91.401 (3)C6—H60.9500
C4—C51.377 (3)C7—H70.9500
C5—C61.405 (3)C12—H120.9500
C6—C71.385 (3)C13—H130.9500
C7—C81.382 (3)C14—H140.9500
C8—C91.404 (3)C15—H150.9500
C11—C121.381 (2)C16—H160.9500
C11—C161.384 (3)C22—H220.9500
C12—C131.391 (3)C23—H230.9500
C13—C141.381 (3)C24—H240.9500
C14—C151.382 (2)C25—H250.9500
C15—C161.392 (3)
C26—O26—H26106.6 (19)C23—C24—C25120.11 (17)
C2—N1—C8106.88 (15)C24—C25—C26120.62 (17)
C8—N1—C11121.93 (15)O26—C26—C25117.70 (16)
C2—N1—C11129.56 (15)C21—C26—C25120.26 (17)
C2—N3—C9106.46 (15)O26—C26—C21122.04 (16)
N1—C2—C21126.44 (16)C5—C4—H4121.00
N3—C2—C21121.90 (16)C9—C4—H4121.00
N1—C2—N3111.66 (15)C4—C5—H5119.00
C5—C4—C9118.13 (18)C6—C5—H5119.00
C4—C5—C6121.46 (18)C5—C6—H6119.00
C5—C6—C7121.27 (18)C7—C6—H6119.00
C6—C7—C8116.87 (18)C6—C7—H7122.00
N1—C8—C7131.52 (18)C8—C7—H7122.00
N1—C8—C9105.57 (15)C11—C12—H12120.00
C7—C8—C9122.88 (17)C13—C12—H12120.00
N3—C9—C8109.43 (16)C12—C13—H13120.00
C4—C9—C8119.38 (17)C14—C13—H13120.00
N3—C9—C4131.18 (18)C13—C14—H14120.00
N1—C11—C16119.08 (15)C15—C14—H14120.00
C12—C11—C16121.35 (18)C14—C15—H15120.00
N1—C11—C12119.43 (16)C16—C15—H15120.00
C11—C12—C13119.07 (17)C11—C16—H16121.00
C12—C13—C14120.50 (17)C15—C16—H16121.00
C13—C14—C15119.69 (19)C21—C22—H22119.00
C14—C15—C16120.66 (17)C23—C22—H22119.00
C11—C16—C15118.73 (16)C22—C23—H23120.00
C2—C21—C26118.85 (16)C24—C23—H23120.00
C22—C21—C26117.79 (16)C23—C24—H24120.00
C2—C21—C22123.35 (16)C25—C24—H24120.00
C21—C22—C23121.43 (17)C24—C25—H25120.00
C22—C23—C24119.65 (18)C26—C25—H25120.00
C8—N1—C2—N30.83 (19)C6—C7—C8—N1177.26 (19)
C8—N1—C2—C21178.31 (15)C6—C7—C8—C90.1 (3)
C11—N1—C2—N3166.19 (16)N1—C8—C9—N30.26 (19)
C11—N1—C2—C2113.0 (3)N1—C8—C9—C4179.06 (15)
C2—N1—C8—C7177.06 (18)C7—C8—C9—N3177.69 (16)
C2—N1—C8—C90.64 (18)C7—C8—C9—C41.1 (3)
C11—N1—C8—C710.3 (3)N1—C11—C12—C13175.74 (16)
C11—N1—C8—C9167.36 (15)C16—C11—C12—C130.1 (3)
C2—N1—C11—C12124.86 (19)N1—C11—C16—C15176.42 (16)
C2—N1—C11—C1659.4 (2)C12—C11—C16—C150.8 (3)
C8—N1—C11—C1271.7 (2)C11—C12—C13—C140.7 (3)
C8—N1—C11—C16104.04 (19)C12—C13—C14—C150.8 (3)
C9—N3—C2—N10.66 (19)C13—C14—C15—C160.2 (3)
C9—N3—C2—C21178.53 (15)C14—C15—C16—C110.6 (3)
C2—N3—C9—C4178.37 (18)C2—C21—C22—C23178.51 (17)
C2—N3—C9—C80.23 (19)C26—C21—C22—C231.8 (3)
N1—C2—C21—C2219.6 (3)C2—C21—C26—O263.8 (3)
N1—C2—C21—C26160.78 (16)C2—C21—C26—C25176.02 (16)
N3—C2—C21—C22161.38 (17)C22—C21—C26—O26175.86 (16)
N3—C2—C21—C2618.3 (2)C22—C21—C26—C254.3 (3)
C9—C4—C5—C60.1 (3)C21—C22—C23—C241.4 (3)
C5—C4—C9—N3177.34 (17)C22—C23—C24—C252.1 (3)
C5—C4—C9—C81.2 (3)C23—C24—C25—C260.4 (3)
C4—C5—C6—C71.2 (3)C24—C25—C26—O26176.50 (17)
C5—C6—C7—C81.2 (3)C24—C25—C26—C213.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O26—H26···N30.97 (3)1.70 (3)2.583 (2)150 (3)
C14—H14···N3i0.952.603.456 (3)151
C16—H16···O26ii0.952.493.388 (2)157
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H14N2O
Mr286.32
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)8.1941 (6), 9.5983 (14), 10.3193 (18)
α, β, γ (°)64.637 (16), 80.356 (10), 83.610 (9)
V3)722.3 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.76 × 0.46 × 0.32
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model (Clark & Reid, 1995)]
Tmin, Tmax0.731, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
4335, 2826, 2420
Rint0.076
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.171, 1.04
No. of reflections2826
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O26—H26···N30.97 (3)1.70 (3)2.583 (2)150 (3)
C14—H14···N3i0.952.603.456 (3)151
C16—H16···O26ii0.952.493.388 (2)157
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

KJ thanks the DST (No. SRS1IC-73/2010) for a fellowship. JJ thanks the DST (No. SRSIC-73/2010), the UGC [F. No. 36–21/2008 (SR)] and the DRDO (NRB-213/MAT/10–11) for providing funds for this research. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayamoorthy, K., Rosepriya, S., Thiruvalluvar, A., Jayabharathi, J. & Butcher, R. J. (2012). Acta Cryst. E68, o2708.  CSD CrossRef IUCr Journals Google Scholar
First citationRosepriya, S., Thiruvalluvar, A., Jayamoorthy, K., Jayabharathi, J., Öztürk Yildirim, S. & Butcher, R. J. (2012). Acta Cryst. E68, o3283.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232–243.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds