organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{3,5-Bis[(2-but­­oxy­eth­­oxy)carbon­yl]-2,6-di­methyl-1,4-di­hydro­pyridin-4-yl}-1-[(3,4,5-trimeth­­oxy­benzo­yl)meth­yl]pyridinium bromide

aLatvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga LV-1006, Latvia
*Correspondence e-mail: mishnevs@osi.lv

(Received 22 November 2012; accepted 5 December 2012; online 8 December 2012)

In the title salt, C37H51N2O10+·Br, the 1,4-dihydro­pyridine (1,4-DHP) ring adopts a slighly puckered boat conformation. The N and opposite C atoms deviate from the least-squares plane calculated through the four other ring atoms by 0.068 (5) and 0.224 (5) Å, respectively. The orientation of both C=O groups is similar (cis with respect to the double bonds of 1,4-DHP. The pyridinium ring has an axial orientation with respect to the1,4-DHP ring and is almost perpendicular to the least-squares plane of the 1,4-DHP ring, making a dihedral angle of 89.2 (3)°. The mol­ecule has a compact shape due to the parallel orientation of the long-chain substituents. One of the but­oxy groups was fond to be disordered (occupancy ratio 0.70:0.30). In the crystal, the bromide anion accepts a weak hydrogen bond from the N—H group of a neighboring 1,4-DHP ring.

Related literature

For general information on the relationship between 1,4-dihydro­pyridine ring substituents and pharmaceutical effects, see: Hasko & Pacher (2008[Hasko, G. & Pacher, P. (2008). J. Leukoc. Biol. 83, 447-455.]); Niebauer & Robinson (2006[Niebauer, R. T. & Robinson, A. S. (2006). Protein Expres. Purif. 46, 204-211.]); Ruiz et al. (2012[Ruiz, E., Rodriguez, H., Coro, J., Niebla, V., Rodriguez, A., Martinez-Alvarez, R., Novoa de Armas, H., Suarez, M. & Nazario, M. (2012). Ultrason. Sonochem. 19, 221-226.]); Swarnalatha et al. (2011[Swarnalatha, G., Prasanthi, G., Sirisha, N. & Madhusudhana Chetty, C. (2011). Int. J. ChemTech Res. 3, 75-89.]). For the synthesis of the DHP 3-pyridyl derivative, see: Saini et al. (2008[Saini, A., Kumar, S. & Sandhu, J. S. J. (2008). J. Sci. Ind. Res. 67, 95-111.]).

[Scheme 1]

Experimental

Crystal data
  • C37H51N2O10+·Br

  • Mr = 763.71

  • Triclinic, [P \overline 1]

  • a = 8.9501 (2) Å

  • b = 12.4741 (3) Å

  • c = 17.6994 (5) Å

  • α = 93.057 (1)°

  • β = 91.658 (1)°

  • γ = 108.024 (1)°

  • V = 1874.25 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 190 K

  • 0.32 × 0.18 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 13618 measured reflections

  • 8822 independent reflections

  • 6509 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.127

  • S = 1.03

  • 8822 reflections

  • 469 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1i 0.86 2.61 3.421 (2) 157
Symmetry code: (i) x, y+1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nowadays considerable attention is paid to the synthesis of 1,4-dihydropyridine (1,4-DHP) derivatives because of their wide spectrum of biological activity. Slight variations in 1,4-DHP ring substituents can result in considerable changes in pharmacological effects (Swarnalatha et al., 2011). 1,4-Dihydropyridines are considered as privileged structures, because these compounds are capable to bind to multiple receptors with high affinity (Ruiz et al., 2012).

It was found that the concentration of adenosine, the natural ligand of the A2A receptor, changes in the ischemia, hypoxia and inflammation conditions (Hasko & Pacher, 2008). The A2A receptor is believed to play a role in cardioprotection, inflammation, stroke and certain central nervous system disorders (Niebauer & Robinson, 2006). We were looking for molecules based on 1,4-DHP able to bind A2A adenosine receptors and possessing enhanced water solubility.

Fig. 1 shows a view of the crystal structure of the title compound. For the disordered butoxy fragment only atoms with the higher occupation factor are shown. In the crystal structure, the 1,4-DHP ring adopts a slightly puckered boat conformation. Atoms N1 and C4 deviate from the least-squares plane calculated through the four other ring atoms by 0.068 (5) Å and 0.224 (5) Å, respectively. The orientation of both C=O groups is cis with respect to the double bonds of 1,4-DHP. The pyridinium ring has an axial orientation with respect to the 1,4-DHP ring and is almost perpendicular to the least-squares average plane of the 1,4-DHP ring with a dihedral angle between both planes of 89.2 (3)°. The molecule has a compact shape with all long chain substituents oriented approximately in one direction. All bonds in the substituents at the 3 and 5 position of 1,4-DHP have trans orientation except for bonds C29B—C30B and C33—C34 (gauche-). The bromine anion forms a weak hydrogen bond with N1—H1 of a neighboring 1,4-DHP ring. The distance between the bromine ion and the positively charged N2 atom is 4.185 (5) Å.

Related literature top

For general information on the relationship between 1,4-dihydropyridine ring substituents and pharmaceutical effects, see: Hasko & Pacher (2008); Niebauer & Robinson (2006); Ruiz et al. (2012); Swarnalatha et al. (2011). For the synthesis of the DHP 3-pyridyl derivative, see: Saini et al. (2008).

Experimental top

First the DHP 3-pyridyl derivative was obtained by means of the Hantzsch method as described by Saini et al. (2008). After the structure confirmation the intermediate (1 mmol) was added to α-bromo-(3,4,5-trimethoxy)-acetophenone (1 mmol) in 30 ml acetone. Reaction mixture was boiled for 24 h, and after completion (monitored by TLC) cooled to ambient temperature. This procedure gives the title compound pyridinium salt as block crystals, suitable for X-ray analysis. 1H-NMR (400 MHz, DMSO-d6), δ/p.p.m.: 9.08 (m, 1H, py-2-H), 8.78–8.82 (m, 1H, py-6-H), 8.46 (d, 1H, J=8.0 Hz, py-4-H), 7.71–7.77(m, 2H, py-5-H and N—H), 7.46 (s, 2H, Ph-2,6-H), 6.95 (m, 2H, N+CH2), 5.16(s, 1H, 4-H), 4.17 (t, 4H, J=4.8 Hz, COOCH2CH2), 3.98 (s, 6H,Ar—H), 3.92 (s, 3H, Ar-4-OCH3), 3.52–3.62 (m, 4H, 3,5-COOCH2CH2),3.36–3.45 (m, 4H, 3,5-CH2CH2CH2CH3), 2.46 (s, 6H, 2,6-CH3),1.46–1.53(m, 4H, 3,5-CH2CH2CH2CH3), 1.25–1,35 (m, 4H,3,5-CH2CH2CH2CH3), 0.85–0.89 (t, 6H, J=7.6 Hz,3,5-CH2CH2CH2CH3); MS (ESI) m/z: 684 [M—Br]+; Anal. Calcd for C37H51BrN2O10: C, 58.19; H, 6.73; N, 3.67; found: C, 58.11; H, 6.76; N, 3.61.

Refinement top

The H-atoms were included in the refinement at calculated positions (N—H = 0.86 Å, C—H = 0.93 to 0.98 Å) and treated using a riding-model approximation as implemented in SHELXL97 software. Disorder was detected in the butoxy group with occupancies of 0.7 for atoms C28, C29, C30 and C31 and 0.3 for C28B, C29B, C30B and C31B. The maximum difference density is rather high (1.15 e Å-3) because of Fourier series truncation errors expected for a structure containing a heavy atom Br.

Structure description top

Nowadays considerable attention is paid to the synthesis of 1,4-dihydropyridine (1,4-DHP) derivatives because of their wide spectrum of biological activity. Slight variations in 1,4-DHP ring substituents can result in considerable changes in pharmacological effects (Swarnalatha et al., 2011). 1,4-Dihydropyridines are considered as privileged structures, because these compounds are capable to bind to multiple receptors with high affinity (Ruiz et al., 2012).

It was found that the concentration of adenosine, the natural ligand of the A2A receptor, changes in the ischemia, hypoxia and inflammation conditions (Hasko & Pacher, 2008). The A2A receptor is believed to play a role in cardioprotection, inflammation, stroke and certain central nervous system disorders (Niebauer & Robinson, 2006). We were looking for molecules based on 1,4-DHP able to bind A2A adenosine receptors and possessing enhanced water solubility.

Fig. 1 shows a view of the crystal structure of the title compound. For the disordered butoxy fragment only atoms with the higher occupation factor are shown. In the crystal structure, the 1,4-DHP ring adopts a slightly puckered boat conformation. Atoms N1 and C4 deviate from the least-squares plane calculated through the four other ring atoms by 0.068 (5) Å and 0.224 (5) Å, respectively. The orientation of both C=O groups is cis with respect to the double bonds of 1,4-DHP. The pyridinium ring has an axial orientation with respect to the 1,4-DHP ring and is almost perpendicular to the least-squares average plane of the 1,4-DHP ring with a dihedral angle between both planes of 89.2 (3)°. The molecule has a compact shape with all long chain substituents oriented approximately in one direction. All bonds in the substituents at the 3 and 5 position of 1,4-DHP have trans orientation except for bonds C29B—C30B and C33—C34 (gauche-). The bromine anion forms a weak hydrogen bond with N1—H1 of a neighboring 1,4-DHP ring. The distance between the bromine ion and the positively charged N2 atom is 4.185 (5) Å.

For general information on the relationship between 1,4-dihydropyridine ring substituents and pharmaceutical effects, see: Hasko & Pacher (2008); Niebauer & Robinson (2006); Ruiz et al. (2012); Swarnalatha et al. (2011). For the synthesis of the DHP 3-pyridyl derivative, see: Saini et al. (2008).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability elipsoids. No hydrogen atoms shown for clarity. For the disordered butoxy fragment only atoms with the higher occupation factor are shown (C28 - C31).
3-{3,5-Bis[(2-butoxyethoxy)carbonyl]-2,6-dimethyl-1,4-dihydropyridin-4-yl}- 1-[(3,4,5-trimethoxybenzoyl)methyl]pyridinium bromide top
Crystal data top
C37H51N2O10+·BrZ = 2
Mr = 763.71F(000) = 804
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9501 (2) ÅCell parameters from 20441 reflections
b = 12.4741 (3) Åθ = 1.0–27.9°
c = 17.6994 (5) ŵ = 1.16 mm1
α = 93.057 (1)°T = 190 K
β = 91.658 (1)°Block, colourless
γ = 108.024 (1)°0.32 × 0.18 × 0.16 mm
V = 1874.25 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
6509 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.8°, θmin = 2.1°
CCD scansh = 1111
13618 measured reflectionsk = 1616
8822 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.040P)2 + 2.P]
where P = (Fo2 + 2Fc2)/3
8822 reflections(Δ/σ)max = 0.001
469 parametersΔρmax = 1.15 e Å3
4 restraintsΔρmin = 0.41 e Å3
Crystal data top
C37H51N2O10+·Brγ = 108.024 (1)°
Mr = 763.71V = 1874.25 (8) Å3
Triclinic, P1Z = 2
a = 8.9501 (2) ÅMo Kα radiation
b = 12.4741 (3) ŵ = 1.16 mm1
c = 17.6994 (5) ÅT = 190 K
α = 93.057 (1)°0.32 × 0.18 × 0.16 mm
β = 91.658 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6509 reflections with I > 2σ(I)
13618 measured reflectionsRint = 0.035
8822 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0564 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 1.15 e Å3
8822 reflectionsΔρmin = 0.41 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.37986 (4)0.16649 (2)0.524390 (18)0.03630 (11)
O50.0812 (2)0.54844 (16)0.61743 (11)0.0294 (4)
O60.1497 (2)0.35179 (17)0.69842 (12)0.0354 (5)
N20.2738 (3)0.43048 (18)0.64368 (12)0.0233 (5)
O80.2588 (3)0.03534 (18)0.93630 (12)0.0410 (5)
O40.1071 (2)0.62698 (18)0.50837 (12)0.0377 (5)
O100.0811 (3)0.10148 (19)0.72532 (13)0.0512 (6)
O20.2910 (3)0.71278 (18)0.81572 (11)0.0362 (5)
N10.2834 (3)0.90617 (19)0.59677 (14)0.0310 (5)
H10.32530.96280.57040.037*
O90.0265 (3)0.12535 (18)0.86279 (13)0.0474 (6)
O10.4524 (3)0.8906 (2)0.82333 (13)0.0491 (6)
C320.0378 (3)0.6335 (2)0.56916 (15)0.0264 (6)
O70.4044 (3)0.3582 (2)0.75908 (14)0.0528 (7)
C100.4047 (3)0.6509 (2)0.61258 (15)0.0263 (6)
H100.44950.72580.60150.032*
C130.2062 (3)0.5076 (2)0.66831 (15)0.0243 (6)
H130.11700.48540.69650.029*
C40.1812 (3)0.7049 (2)0.67322 (15)0.0243 (6)
H40.10250.67250.70990.029*
C50.0976 (3)0.7251 (2)0.60136 (15)0.0248 (6)
C140.2046 (3)0.3118 (2)0.66100 (16)0.0264 (6)
H14A0.21350.26280.61810.032*
H14B0.09390.29670.67010.032*
C60.1559 (3)0.8212 (2)0.56498 (16)0.0279 (6)
C160.2225 (3)0.1752 (2)0.76203 (16)0.0285 (6)
C120.4066 (3)0.4596 (2)0.60494 (15)0.0261 (6)
H120.45160.40500.58870.031*
C110.4746 (3)0.5706 (2)0.58965 (16)0.0277 (6)
H110.56740.59180.56400.033*
C150.2887 (3)0.2872 (2)0.73052 (17)0.0309 (6)
C90.2681 (3)0.6197 (2)0.65203 (14)0.0229 (5)
C330.1872 (3)0.4421 (2)0.58642 (17)0.0312 (6)
H33A0.12950.40090.55760.037*
H33B0.26630.45500.55270.037*
C20.3479 (3)0.9060 (2)0.66820 (16)0.0283 (6)
C210.1014 (3)0.0893 (2)0.72309 (17)0.0304 (6)
H210.06430.09960.67530.036*
O30.3297 (3)0.5876 (3)0.98920 (14)0.0642 (8)
C170.2812 (3)0.1598 (2)0.83288 (17)0.0310 (6)
H170.36360.21680.85760.037*
C340.2639 (3)0.3750 (3)0.64977 (18)0.0346 (7)
H34A0.32080.41670.67850.041*
H34B0.33890.30450.62940.041*
C70.0949 (4)0.8480 (3)0.49096 (17)0.0372 (7)
H7A0.11440.79990.45090.056*
H7B0.14740.92550.48180.056*
H7C0.01620.83590.49280.056*
C190.0922 (4)0.0265 (2)0.82862 (17)0.0358 (7)
C250.3563 (4)0.8138 (3)0.78638 (17)0.0326 (6)
C200.0376 (4)0.0115 (2)0.75696 (17)0.0352 (7)
C30.2964 (3)0.8140 (2)0.70859 (15)0.0269 (6)
C80.4740 (4)1.0140 (2)0.69322 (19)0.0386 (7)
H8A0.43571.05420.73190.058*
H8B0.50241.05980.65080.058*
H8C0.56470.99720.71290.058*
C260.3417 (4)0.7075 (3)0.89303 (17)0.0438 (8)
H26A0.31350.76270.92550.053*
H26B0.45500.72400.89710.053*
C180.2157 (4)0.0586 (3)0.86639 (16)0.0323 (6)
C240.1484 (4)0.0902 (3)0.65342 (19)0.0461 (8)
H24A0.19650.03140.65770.069*
H24B0.22640.16020.63660.069*
H24C0.06750.07150.61740.069*
C360.1104 (4)0.2827 (3)0.81904 (19)0.0467 (9)
H36A0.06520.35910.84140.056*
H36B0.02560.25820.79910.056*
C220.3969 (4)0.1114 (3)0.9727 (2)0.0550 (10)
H22A0.48520.11500.94230.083*
H22B0.41430.08571.02130.083*
H22C0.38490.18520.97910.083*
C230.1099 (5)0.1226 (3)0.9026 (2)0.0635 (12)
H23A0.15310.19270.92580.095*
H23B0.18720.11180.86760.095*
H23C0.08080.06150.94090.095*
C350.2229 (4)0.2823 (3)0.7565 (2)0.0519 (9)
H32A0.27040.20550.73520.062*
H32B0.30600.30890.77630.062*
C270.2631 (5)0.5922 (3)0.9163 (2)0.0582 (10)
H27A0.15050.57840.91820.070*
H27B0.28190.53620.88100.070*
C370.1891 (6)0.2048 (5)0.8804 (3)0.0757 (13)
H37A0.27540.22890.89890.091*
H37B0.23360.12880.85740.091*
C380.0868 (6)0.2013 (5)0.9449 (3)0.0794 (14)
H38A0.14650.15170.98040.119*
H38B0.04290.27590.96880.119*
H38C0.00350.17410.92790.119*
C280.2319 (8)0.5017 (5)1.0321 (3)0.0560 (15)0.70
H28A0.18950.43320.99950.067*0.70
H28B0.14420.52541.04900.067*0.70
C290.3162 (9)0.4762 (6)1.0992 (3)0.0622 (18)0.70
H29A0.38610.54691.12240.075*0.70
H29B0.38110.43131.08180.075*0.70
C300.2131 (9)0.4145 (6)1.1593 (4)0.0618 (18)0.70
H30A0.16290.46471.18400.074*0.70
H30B0.13100.35051.13530.074*0.70
C310.3027 (7)0.3732 (4)1.2181 (3)0.0540 (14)0.70
H31A0.23200.33531.25500.081*0.70
H31B0.38320.43631.24260.081*0.70
H31C0.35010.32171.19420.081*0.70
C28B0.300 (2)0.4835 (14)1.0220 (10)0.090*0.30
H28C0.34900.43470.99490.108*0.30
H28D0.18790.44501.02340.108*0.30
C29B0.376 (2)0.5201 (13)1.1025 (9)0.062 (5)*0.30
H29C0.48930.54971.09980.074*0.30
H29D0.33900.57951.12470.074*0.30
C30B0.334 (2)0.4200 (13)1.1518 (9)0.071 (4)*0.30
H30C0.33480.35281.12180.086*0.30
H30D0.41340.43331.19270.086*0.30
C31B0.177 (3)0.400 (3)1.1845 (16)0.100*0.30
H31D0.15430.33401.21340.150*0.30
H31E0.09830.38771.14430.150*0.30
H31F0.17770.46401.21680.150*0.30
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0452 (2)0.02315 (15)0.03853 (18)0.00647 (12)0.00596 (13)0.00699 (11)
O50.0275 (10)0.0252 (10)0.0299 (10)0.0006 (8)0.0061 (8)0.0031 (8)
O60.0267 (11)0.0348 (12)0.0421 (12)0.0041 (9)0.0009 (9)0.0138 (9)
N20.0235 (12)0.0192 (11)0.0251 (11)0.0036 (9)0.0029 (9)0.0043 (9)
O80.0500 (14)0.0376 (12)0.0297 (11)0.0037 (10)0.0017 (10)0.0126 (9)
O40.0413 (12)0.0334 (11)0.0328 (11)0.0039 (10)0.0123 (9)0.0072 (9)
O100.0711 (17)0.0278 (12)0.0394 (13)0.0068 (11)0.0079 (12)0.0053 (10)
O20.0437 (12)0.0343 (12)0.0262 (11)0.0063 (10)0.0071 (9)0.0024 (9)
N10.0343 (13)0.0214 (12)0.0345 (13)0.0036 (10)0.0003 (11)0.0076 (10)
O90.0687 (16)0.0267 (11)0.0385 (13)0.0011 (11)0.0061 (11)0.0095 (9)
O10.0562 (15)0.0393 (13)0.0401 (13)0.0007 (11)0.0164 (11)0.0043 (10)
C320.0262 (14)0.0264 (14)0.0263 (14)0.0077 (12)0.0006 (11)0.0030 (11)
O70.0429 (14)0.0422 (14)0.0581 (15)0.0104 (11)0.0206 (12)0.0251 (11)
C100.0277 (14)0.0211 (13)0.0261 (14)0.0013 (11)0.0014 (11)0.0052 (11)
C130.0237 (14)0.0246 (14)0.0236 (13)0.0061 (11)0.0013 (11)0.0036 (11)
C40.0235 (14)0.0223 (13)0.0260 (14)0.0056 (11)0.0010 (11)0.0029 (11)
C50.0246 (14)0.0219 (13)0.0276 (14)0.0075 (11)0.0016 (11)0.0001 (11)
C140.0238 (14)0.0185 (13)0.0336 (15)0.0017 (11)0.0001 (11)0.0035 (11)
C60.0304 (15)0.0246 (14)0.0299 (15)0.0102 (12)0.0010 (12)0.0027 (11)
C160.0279 (15)0.0243 (14)0.0352 (16)0.0092 (12)0.0052 (12)0.0095 (12)
C120.0248 (14)0.0252 (14)0.0283 (14)0.0079 (11)0.0007 (11)0.0022 (11)
C110.0231 (14)0.0285 (14)0.0291 (15)0.0043 (11)0.0024 (11)0.0044 (11)
C150.0285 (15)0.0290 (15)0.0346 (16)0.0073 (13)0.0007 (12)0.0083 (12)
C90.0252 (14)0.0200 (13)0.0210 (13)0.0041 (11)0.0066 (10)0.0007 (10)
C330.0272 (15)0.0258 (14)0.0356 (16)0.0022 (12)0.0060 (12)0.0013 (12)
C20.0287 (15)0.0223 (14)0.0327 (15)0.0069 (12)0.0006 (12)0.0016 (11)
C210.0352 (16)0.0246 (14)0.0303 (15)0.0069 (12)0.0029 (12)0.0056 (11)
O30.0659 (18)0.082 (2)0.0400 (14)0.0141 (16)0.0042 (12)0.0262 (14)
C170.0261 (15)0.0301 (15)0.0351 (16)0.0053 (12)0.0011 (12)0.0072 (12)
C340.0265 (15)0.0303 (16)0.0421 (18)0.0024 (12)0.0052 (13)0.0029 (13)
C70.0472 (19)0.0268 (15)0.0349 (17)0.0071 (14)0.0043 (14)0.0089 (13)
C190.0495 (19)0.0229 (14)0.0328 (16)0.0068 (14)0.0066 (14)0.0066 (12)
C250.0335 (16)0.0304 (15)0.0329 (16)0.0097 (13)0.0038 (13)0.0024 (13)
C200.0442 (18)0.0212 (14)0.0363 (17)0.0048 (13)0.0032 (14)0.0005 (12)
C30.0276 (14)0.0246 (14)0.0272 (14)0.0072 (12)0.0023 (11)0.0030 (11)
C80.0358 (17)0.0247 (15)0.0508 (19)0.0040 (13)0.0024 (14)0.0016 (14)
C260.054 (2)0.050 (2)0.0262 (16)0.0135 (17)0.0073 (14)0.0052 (14)
C180.0379 (17)0.0318 (16)0.0285 (15)0.0115 (13)0.0054 (12)0.0066 (12)
C240.053 (2)0.0328 (17)0.044 (2)0.0022 (16)0.0047 (16)0.0020 (15)
C360.044 (2)0.060 (2)0.0438 (19)0.0244 (18)0.0135 (16)0.0187 (17)
C220.048 (2)0.064 (2)0.043 (2)0.0007 (19)0.0078 (16)0.0201 (18)
C230.081 (3)0.043 (2)0.049 (2)0.009 (2)0.023 (2)0.0077 (17)
C350.040 (2)0.044 (2)0.061 (2)0.0057 (16)0.0009 (17)0.0230 (17)
C270.069 (3)0.057 (2)0.040 (2)0.006 (2)0.0143 (18)0.0160 (17)
C370.070 (3)0.095 (4)0.067 (3)0.025 (3)0.020 (2)0.043 (3)
C380.095 (4)0.092 (4)0.066 (3)0.043 (3)0.026 (3)0.038 (3)
C280.091 (5)0.037 (3)0.037 (3)0.015 (3)0.010 (3)0.008 (2)
C290.079 (5)0.059 (4)0.042 (3)0.010 (4)0.009 (3)0.020 (3)
C300.072 (5)0.036 (3)0.074 (5)0.013 (3)0.004 (3)0.004 (3)
C310.075 (4)0.042 (3)0.037 (3)0.006 (3)0.001 (3)0.007 (2)
Geometric parameters (Å, º) top
O5—C321.367 (3)C7—H7C0.9600
O5—C331.441 (3)C19—C201.388 (4)
O6—C351.422 (4)C19—C181.396 (4)
O6—C341.424 (4)C25—C31.463 (4)
N2—C131.347 (3)C8—H8A0.9600
N2—C121.349 (3)C8—H8B0.9600
N2—C141.470 (3)C8—H8C0.9600
O8—C181.358 (4)C26—C271.479 (5)
O8—C221.417 (4)C26—H26A0.9700
O4—C321.212 (3)C26—H26B0.9700
O10—C201.365 (4)C24—H24A0.9600
O10—C241.424 (4)C24—H24B0.9600
O2—C251.353 (4)C24—H24C0.9600
O2—C261.440 (4)C36—C351.473 (5)
N1—C21.375 (4)C36—C371.534 (5)
N1—C61.376 (4)C36—H36A0.9700
N1—H10.8600C36—H36B0.9700
O9—C191.373 (4)C22—H22A0.9600
O9—C231.435 (5)C22—H22B0.9600
O1—C251.215 (4)C22—H22C0.9600
C32—C51.460 (4)C23—H23A0.9600
O7—C151.211 (4)C23—H23B0.9600
C10—C91.384 (4)C23—H23C0.9600
C10—C111.386 (4)C35—H32A0.9700
C10—H100.9300C35—H32B0.9700
C13—C91.385 (4)C27—H27A0.9700
C13—H130.9300C27—H27B0.9700
C4—C31.520 (4)C37—C381.452 (6)
C4—C51.528 (4)C37—H37A0.9700
C4—C91.537 (4)C37—H37B0.9700
C4—H40.9800C38—H38A0.9600
C5—C61.356 (4)C38—H38B0.9600
C14—C151.518 (4)C38—H38C0.9600
C14—H14A0.9700C28—C291.490 (8)
C14—H14B0.9700C28—H28A0.9700
C6—C71.498 (4)C28—H28B0.9700
C16—C171.391 (4)C29—C301.510 (9)
C16—C211.399 (4)C29—H29A0.9700
C16—C151.485 (4)C29—H29B0.9700
C12—C111.375 (4)C30—C311.501 (9)
C12—H120.9300C30—H30A0.9700
C11—H110.9300C30—H30B0.9700
C33—C341.489 (4)C31—H31A0.9600
C33—H33A0.9700C31—H31B0.9600
C33—H33B0.9700C31—H31C0.9600
C2—C31.349 (4)C28B—C29B1.544 (17)
C2—C81.501 (4)C28B—H28C0.9700
C21—C201.387 (4)C28B—H28D0.9700
C21—H210.9300C29B—C30B1.520 (16)
O3—C28B1.404 (15)C29B—H29C0.9700
O3—C271.417 (4)C29B—H29D0.9700
O3—C281.427 (6)C30B—C31B1.486 (17)
C17—C181.390 (4)C30B—H30C0.9700
C17—H170.9300C30B—H30D0.9700
C34—H34A0.9700C31B—H31D0.9600
C34—H34B0.9700C31B—H31E0.9600
C7—H7A0.9600C31B—H31F0.9600
C7—H7B0.9600
C32—O5—C33116.7 (2)C27—C26—H26A110.1
C35—O6—C34111.0 (2)O2—C26—H26B110.1
C13—N2—C12121.7 (2)C27—C26—H26B110.1
C13—N2—C14119.6 (2)H26A—C26—H26B108.4
C12—N2—C14118.7 (2)O8—C18—C17124.9 (3)
C18—O8—C22117.6 (3)O8—C18—C19115.4 (3)
C20—O10—C24118.0 (3)C17—C18—C19119.8 (3)
C25—O2—C26114.4 (2)O10—C24—H24A109.5
C2—N1—C6124.0 (2)O10—C24—H24B109.5
C2—N1—H1118.0H24A—C24—H24B109.5
C6—N1—H1118.0O10—C24—H24C109.5
C19—O9—C23111.4 (3)H24A—C24—H24C109.5
O4—C32—O5121.2 (2)H24B—C24—H24C109.5
O4—C32—C5128.1 (3)C35—C36—C37111.8 (3)
O5—C32—C5110.7 (2)C35—C36—H36A109.3
C9—C10—C11120.0 (3)C37—C36—H36A109.3
C9—C10—H10120.0C35—C36—H36B109.3
C11—C10—H10120.0C37—C36—H36B109.3
N2—C13—C9120.7 (2)H36A—C36—H36B107.9
N2—C13—H13119.7O8—C22—H22A109.5
C9—C13—H13119.7O8—C22—H22B109.5
C3—C4—C5111.6 (2)H22A—C22—H22B109.5
C3—C4—C9110.2 (2)O8—C22—H22C109.5
C5—C4—C9108.0 (2)H22A—C22—H22C109.5
C3—C4—H4109.0H22B—C22—H22C109.5
C5—C4—H4109.0O9—C23—H23A109.5
C9—C4—H4109.0O9—C23—H23B109.5
C6—C5—C32120.9 (2)H23A—C23—H23B109.5
C6—C5—C4120.8 (2)O9—C23—H23C109.5
C32—C5—C4118.0 (2)H23A—C23—H23C109.5
N2—C14—C15110.2 (2)H23B—C23—H23C109.5
N2—C14—H14A109.6O6—C35—C36112.1 (3)
C15—C14—H14A109.6O6—C35—H32A109.2
N2—C14—H14B109.6C36—C35—H32A109.2
C15—C14—H14B109.6O6—C35—H32B109.2
H14A—C14—H14B108.1C36—C35—H32B109.2
C5—C6—N1119.6 (3)H32A—C35—H32B107.9
C5—C6—C7126.7 (3)O3—C27—C26105.7 (3)
N1—C6—C7113.7 (2)O3—C27—H27A110.6
C17—C16—C21121.1 (3)C26—C27—H27A110.6
C17—C16—C15117.7 (3)O3—C27—H27B110.6
C21—C16—C15121.2 (3)C26—C27—H27B110.6
N2—C12—C11119.4 (2)H27A—C27—H27B108.7
N2—C12—H12120.3C38—C37—C36115.5 (4)
C11—C12—H12120.3C38—C37—H37A108.4
C12—C11—C10119.9 (3)C36—C37—H37A108.4
C12—C11—H11120.1C38—C37—H37B108.4
C10—C11—H11120.1C36—C37—H37B108.4
O7—C15—C16122.1 (3)H37A—C37—H37B107.5
O7—C15—C14120.1 (3)C37—C38—H38A109.5
C16—C15—C14117.7 (2)C37—C38—H38B109.5
C10—C9—C13118.3 (2)H38A—C38—H38B109.5
C10—C9—C4121.3 (2)C37—C38—H38C109.5
C13—C9—C4120.4 (2)H38A—C38—H38C109.5
O5—C33—C34108.9 (2)H38B—C38—H38C109.5
O5—C33—H33A109.9O3—C28—C29113.3 (5)
C34—C33—H33A109.9O3—C28—H28A108.9
O5—C33—H33B109.9C29—C28—H28A108.9
C34—C33—H33B109.9O3—C28—H28B108.9
H33A—C33—H33B108.3C29—C28—H28B108.9
C3—C2—N1120.0 (2)H28A—C28—H28B107.7
C3—C2—C8126.3 (3)C28—C29—C30115.8 (6)
N1—C2—C8113.7 (3)C28—C29—H29A108.3
C20—C21—C16118.9 (3)C30—C29—H29A108.3
C20—C21—H21120.5C28—C29—H29B108.3
C16—C21—H21120.5C30—C29—H29B108.3
C28B—O3—C27119.8 (8)H29A—C29—H29B107.4
C28B—O3—C2830.1 (8)C31—C30—C29112.9 (6)
C27—O3—C28113.2 (3)C31—C30—H30A109.0
C18—C17—C16119.4 (3)C29—C30—H30A109.0
C18—C17—H17120.3C31—C30—H30B109.0
C16—C17—H17120.3C29—C30—H30B109.0
O6—C34—C33110.7 (2)H30A—C30—H30B107.8
O6—C34—H34A109.5C30—C31—H31A109.5
C33—C34—H34A109.5C30—C31—H31B109.5
O6—C34—H34B109.5H31A—C31—H31B109.5
C33—C34—H34B109.5C30—C31—H31C109.5
H34A—C34—H34B108.1H31A—C31—H31C109.5
C6—C7—H7A109.5H31B—C31—H31C109.5
C6—C7—H7B109.5O3—C28B—C29B101.9 (12)
H7A—C7—H7B109.5O3—C28B—H28C111.4
C6—C7—H7C109.5C29B—C28B—H28C111.4
H7A—C7—H7C109.5O3—C28B—H28D111.4
H7B—C7—H7C109.5C29B—C28B—H28D111.4
O9—C19—C20120.4 (3)H28C—C28B—H28D109.3
O9—C19—C18119.3 (3)C30B—C29B—C28B110.1 (13)
C20—C19—C18120.3 (3)C30B—C29B—H29C109.6
O1—C25—O2120.9 (3)C28B—C29B—H29C109.6
O1—C25—C3127.7 (3)C30B—C29B—H29D109.6
O2—C25—C3111.4 (2)C28B—C29B—H29D109.6
O10—C20—C21124.7 (3)H29C—C29B—H29D108.2
O10—C20—C19114.8 (3)C31B—C30B—C29B112.6 (17)
C21—C20—C19120.5 (3)C31B—C30B—H30C109.1
C2—C3—C25121.1 (3)C29B—C30B—H30C109.1
C2—C3—C4121.0 (2)C31B—C30B—H30D109.1
C25—C3—C4117.8 (2)C29B—C30B—H30D109.1
C2—C8—H8A109.5H30C—C30B—H30D107.8
C2—C8—H8B109.5C30B—C31B—H31D109.5
H8A—C8—H8B109.5C30B—C31B—H31E109.5
C2—C8—H8C109.5H31D—C31B—H31E109.5
H8A—C8—H8C109.5C30B—C31B—H31F109.5
H8B—C8—H8C109.5H31D—C31B—H31F109.5
O2—C26—C27107.9 (3)H31E—C31B—H31F109.5
O2—C26—H26A110.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br1i0.862.613.421 (2)157
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC37H51N2O10+·Br
Mr763.71
Crystal system, space groupTriclinic, P1
Temperature (K)190
a, b, c (Å)8.9501 (2), 12.4741 (3), 17.6994 (5)
α, β, γ (°)93.057 (1), 91.658 (1), 108.024 (1)
V3)1874.25 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.32 × 0.18 × 0.16
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13618, 8822, 6509
Rint0.035
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.127, 1.03
No. of reflections8822
No. of parameters469
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.41

Computer programs: COLLECT (Hooft, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br1i0.862.613.421 (2)157
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The study was supported by the Latvian National Research programme 2010–2013 `Development of prevention, treatment, diagnostic means and practices, and biomedicine technologies for improvement of public health'.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHasko, G. & Pacher, P. (2008). J. Leukoc. Biol. 83, 447–455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNiebauer, R. T. & Robinson, A. S. (2006). Protein Expres. Purif. 46, 204–211.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRuiz, E., Rodriguez, H., Coro, J., Niebla, V., Rodriguez, A., Martinez-Alvarez, R., Novoa de Armas, H., Suarez, M. & Nazario, M. (2012). Ultrason. Sonochem. 19, 221–226.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaini, A., Kumar, S. & Sandhu, J. S. J. (2008). J. Sci. Ind. Res. 67, 95–111.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwarnalatha, G., Prasanthi, G., Sirisha, N. & Madhusudhana Chetty, C. (2011). Int. J. ChemTech Res. 3, 75–89.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds