metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tris­­(aceto­nitrile-κN)praseodymium(III)]tris­­(μ-tri­fluoro­methane­sulfonato-κ2O:O′)]

aEuropean Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
*Correspondence e-mail: olaf.walter@ec.europa.eu

(Received 26 November 2012; accepted 3 December 2012; online 8 December 2012)

In the colourless title compound, [Pr(CF3O3S)3(CH3CN)3]n, the three trifluoro­methane­sulfonate anions form three bridges via O:O′-coordination between two PrIII atoms. The structure contains [Pr(NCMe)3-μ2(OTf)3—Pr(NCMe)3-μ2(OTf)3]n (NCMe is acetonitrile; OTf is trifluoromethanesulfonate) chains parallel to the a axis. The PrIII atom is nine-coordinate in a distorted tricapped trigonal-prismatic environment.

Related literature

For the isostructural EuIII and UIII compounds, see: Tang et al. (2011[Tang, S. (2011). Cryst. Growth Des. 11, 1437-1440.]) and Natrajan et al. (2005[Natrajan, L., Mazzanti, M., Bezombes, J.-P. & Pecaut, J. (2005). Inorg. Chem. 44, 6115-6121.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [Pr(CF3O3S)3(C2H3N)3]

  • Mr = 711.28

  • Triclinic, [P \overline 1]

  • a = 5.8044 (6) Å

  • b = 10.5062 (10) Å

  • c = 18.9887 (19) Å

  • α = 97.307 (1)°

  • β = 94.163 (1)°

  • γ = 91.695 (1)°

  • V = 1144.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.52 mm−1

  • T = 103 K

  • 0.24 × 0.02 × 0.01 mm

Data collection
  • Bruker APEXII Quazar diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.578, Tmax = 0.978

  • 20544 measured reflections

  • 5251 independent reflections

  • 4674 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.076

  • S = 1.16

  • 5251 reflections

  • 311 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Selected bond lengths (Å)

Pr1—O1i 2.435 (3)
Pr1—O2 2.464 (3)
Pr1—O4i 2.455 (3)
Pr1—O5 2.464 (3)
Pr1—O7 2.459 (3)
Pr1—O8i 2.473 (3)
Pr1—N1 2.621 (4)
Pr1—N2 2.648 (4)
Pr1—N3 2.651 (4)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XPMA (Zsolnai, 1996[Zsolnai, L. (1996). XPMA. University of Heidelberg, Germany.]) and ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The coordination environment of the PrIII atom ion in the title compound can be described as a distorted trigonal tri-capped prism. 6 O atoms are forming the trigonal prismatic environment around the PrIII atom and the three N atoms of the coordinated MeCN solvent molecules are forming the cappings over the rectangular sides of the prism. The metal-O distances in the title compound are with an average of 2.458 (13) Å about 0.05 Å longer than in the corresponding Eu complex (Tang et al., 2011) and 0.04 Å shorter than in its U analogue (Natrajan et al., 2005) reflecting the effects of the lanthanide contraction and also the change from a lanthanide to an actinide ion. The metal-N distances with 2.588 (17) Å for the Eu complex are about 0.05 Å shorter than for the here presented Pr compound with 2.640 (17) Å, whereas the latter are found to be in very good agreement with those in the U complex with 2.651 (14) Å. The ion size increase while changing the metal ion in the complex from Pr to U seems to influence more the shorter metal-O distances than the longer metal-N distances for the solvent molecules forming the cappings of the trigonal prism.

Related literature top

For the isostructural EuIII and UIII compounds, see: Tang et al. (2011) and Natrajan et al. (2005), respectively.

Experimental top

Crystals from the title compound precipitated after a ligand exchange reaction from 103.1 mg (0.13 mmol) [Pr(H2O)9](OTf)3 in 2 ml of MeCN. Crystals in the form of needles suitable for x-ray analysis were obtained by re-crystallization from hot MeCN.

Refinement top

All H atoms were placed on geometrical positions according to the hybridization of the atoms they are bound to. One common isotropic U value was used and refined for all hydrogen atoms.

Structure description top

The coordination environment of the PrIII atom ion in the title compound can be described as a distorted trigonal tri-capped prism. 6 O atoms are forming the trigonal prismatic environment around the PrIII atom and the three N atoms of the coordinated MeCN solvent molecules are forming the cappings over the rectangular sides of the prism. The metal-O distances in the title compound are with an average of 2.458 (13) Å about 0.05 Å longer than in the corresponding Eu complex (Tang et al., 2011) and 0.04 Å shorter than in its U analogue (Natrajan et al., 2005) reflecting the effects of the lanthanide contraction and also the change from a lanthanide to an actinide ion. The metal-N distances with 2.588 (17) Å for the Eu complex are about 0.05 Å shorter than for the here presented Pr compound with 2.640 (17) Å, whereas the latter are found to be in very good agreement with those in the U complex with 2.651 (14) Å. The ion size increase while changing the metal ion in the complex from Pr to U seems to influence more the shorter metal-O distances than the longer metal-N distances for the solvent molecules forming the cappings of the trigonal prism.

For the isostructural EuIII and UIII compounds, see: Tang et al. (2011) and Natrajan et al. (2005), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPMA (Zsolnai, 1996) and ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound; ellipsoids at the 50% probability level (symmetry codes: a = x + 1, y, z; b = x - 1, y, z).
catena-Poly[[tris(acetonitrile-κN)praseodymium(III)]tris(µ- trifluoromethanesulfonato-κ2O:O')] top
Crystal data top
[Pr(CF3O3S)3(C2H3N)3]Z = 2
Mr = 711.28F(000) = 688
Triclinic, P1Dx = 2.064 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8044 (6) ÅCell parameters from 9222 reflections
b = 10.5062 (10) Åθ = 2.2–28.1°
c = 18.9887 (19) ŵ = 2.52 mm1
α = 97.307 (1)°T = 103 K
β = 94.163 (1)°Needle, colourless
γ = 91.695 (1)°0.24 × 0.02 × 0.01 mm
V = 1144.7 (2) Å3
Data collection top
Bruker APEXII Quazar
diffractometer
5251 independent reflections
Radiation source: fine-focus sealed tube4674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 66 pixels mm-1θmax = 28.2°, θmin = 1.1°
combined ω and φ scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1313
Tmin = 0.578, Tmax = 0.978l = 2524
20544 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0169P)2 + 4.422P]
where P = (Fo2 + 2Fc2)/3
5251 reflections(Δ/σ)max = 0.001
311 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[Pr(CF3O3S)3(C2H3N)3]γ = 91.695 (1)°
Mr = 711.28V = 1144.7 (2) Å3
Triclinic, P1Z = 2
a = 5.8044 (6) ÅMo Kα radiation
b = 10.5062 (10) ŵ = 2.52 mm1
c = 18.9887 (19) ÅT = 103 K
α = 97.307 (1)°0.24 × 0.02 × 0.01 mm
β = 94.163 (1)°
Data collection top
Bruker APEXII Quazar
diffractometer
5251 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4674 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.978Rint = 0.039
20544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.16Δρmax = 1.04 e Å3
5251 reflectionsΔρmin = 1.15 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr11.07535 (4)0.07978 (2)0.262548 (13)0.01276 (7)
S10.56250 (16)0.18346 (10)0.15067 (6)0.0158 (2)
S20.61165 (16)0.18294 (10)0.39162 (6)0.0158 (2)
S30.55261 (16)0.16488 (10)0.24609 (6)0.0147 (2)
F10.6947 (6)0.3922 (3)0.10237 (19)0.0467 (9)
F20.3309 (6)0.3778 (3)0.11712 (19)0.0450 (9)
F30.5755 (5)0.4245 (3)0.20746 (15)0.0299 (6)
F40.7997 (5)0.3949 (3)0.46088 (18)0.0440 (8)
F50.4258 (5)0.3828 (3)0.45649 (18)0.0422 (8)
F60.5975 (5)0.4226 (3)0.36502 (17)0.0344 (7)
F70.7193 (5)0.3223 (3)0.14700 (16)0.0320 (7)
F80.3474 (5)0.3357 (3)0.14802 (16)0.0338 (7)
F90.5120 (4)0.1770 (3)0.10682 (14)0.0258 (6)
O10.3838 (5)0.1578 (3)0.19688 (18)0.0240 (7)
O20.7937 (5)0.1773 (3)0.18415 (17)0.0216 (7)
O30.5278 (6)0.1225 (3)0.07935 (17)0.0276 (7)
O40.3864 (5)0.1540 (3)0.35450 (17)0.0223 (7)
O50.7984 (5)0.1725 (3)0.34527 (17)0.0230 (7)
O60.6489 (5)0.1277 (3)0.45609 (17)0.0270 (7)
O70.7431 (5)0.0746 (3)0.24309 (17)0.0208 (7)
O80.3323 (5)0.1040 (3)0.25044 (16)0.0186 (6)
O90.5924 (5)0.2595 (3)0.29293 (17)0.0233 (7)
N11.0406 (6)0.0433 (4)0.1330 (2)0.0225 (8)
N21.1033 (6)0.3339 (4)0.2835 (2)0.0216 (8)
N31.0456 (6)0.0546 (4)0.3708 (2)0.0214 (8)
C10.5396 (8)0.3551 (4)0.1440 (3)0.0238 (10)
C20.6081 (8)0.3553 (5)0.4193 (3)0.0270 (11)
C30.5309 (7)0.2545 (4)0.1566 (2)0.0207 (9)
C41.0185 (7)0.1019 (5)0.0786 (3)0.0219 (10)
C50.9892 (9)0.1778 (6)0.0081 (3)0.0377 (13)
H5A0.97880.26930.01340.083 (9)*
H5B1.12190.16070.01890.083 (9)*
H5C0.84720.15400.01740.083 (9)*
C61.0979 (7)0.4424 (5)0.2948 (3)0.0261 (11)
C71.0879 (10)0.5816 (5)0.3096 (5)0.057 (2)
H7A0.94710.60980.28540.083 (9)*
H7B1.22360.62190.29230.083 (9)*
H7C1.08640.60670.36110.083 (9)*
C80.9551 (7)0.1080 (4)0.4105 (2)0.0212 (9)
C90.8291 (8)0.1738 (5)0.4598 (3)0.0283 (11)
H9A0.70950.11840.47900.083 (9)*
H9B0.93650.19330.49890.083 (9)*
H9C0.75670.25380.43460.083 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.00653 (9)0.01308 (12)0.01839 (12)0.00110 (7)0.00174 (7)0.00089 (8)
S10.0118 (4)0.0162 (5)0.0198 (5)0.0006 (4)0.0023 (4)0.0039 (4)
S20.0104 (4)0.0182 (5)0.0177 (5)0.0012 (4)0.0018 (4)0.0015 (4)
S30.0101 (4)0.0124 (5)0.0215 (5)0.0011 (3)0.0013 (4)0.0017 (4)
F10.069 (2)0.0256 (17)0.051 (2)0.0047 (15)0.0294 (18)0.0160 (16)
F20.0451 (19)0.0280 (17)0.059 (2)0.0138 (14)0.0205 (16)0.0072 (16)
F30.0326 (15)0.0204 (15)0.0351 (17)0.0005 (11)0.0012 (12)0.0014 (12)
F40.0312 (16)0.0360 (18)0.055 (2)0.0067 (13)0.0136 (14)0.0178 (16)
F50.0357 (16)0.0319 (18)0.056 (2)0.0040 (13)0.0219 (15)0.0165 (15)
F60.0276 (15)0.0199 (15)0.056 (2)0.0004 (11)0.0017 (13)0.0051 (14)
F70.0307 (15)0.0266 (16)0.0381 (17)0.0115 (12)0.0087 (12)0.0034 (13)
F80.0293 (15)0.0263 (16)0.0419 (18)0.0140 (12)0.0013 (12)0.0068 (13)
F90.0236 (13)0.0315 (16)0.0222 (14)0.0012 (11)0.0006 (10)0.0031 (12)
O10.0164 (14)0.0217 (17)0.0349 (19)0.0018 (12)0.0103 (13)0.0036 (14)
O20.0137 (14)0.0215 (17)0.0292 (18)0.0002 (12)0.0021 (12)0.0045 (14)
O30.0307 (17)0.0279 (19)0.0228 (18)0.0002 (14)0.0009 (13)0.0010 (14)
O40.0141 (14)0.0206 (17)0.0297 (18)0.0033 (12)0.0037 (12)0.0019 (14)
O50.0198 (15)0.0198 (17)0.0299 (18)0.0023 (12)0.0111 (13)0.0002 (14)
O60.0243 (16)0.034 (2)0.0228 (18)0.0030 (14)0.0035 (13)0.0051 (15)
O70.0120 (13)0.0223 (17)0.0275 (18)0.0090 (11)0.0001 (12)0.0034 (14)
O80.0146 (14)0.0171 (16)0.0242 (17)0.0023 (11)0.0031 (11)0.0010 (13)
O90.0208 (15)0.0204 (17)0.0304 (19)0.0004 (12)0.0013 (13)0.0110 (14)
N10.0139 (17)0.029 (2)0.024 (2)0.0009 (15)0.0015 (14)0.0008 (18)
N20.0129 (16)0.020 (2)0.032 (2)0.0025 (14)0.0031 (14)0.0038 (17)
N30.0165 (17)0.022 (2)0.026 (2)0.0023 (14)0.0029 (15)0.0017 (17)
C10.025 (2)0.018 (2)0.029 (3)0.0009 (17)0.0011 (18)0.008 (2)
C20.018 (2)0.025 (3)0.034 (3)0.0017 (18)0.0005 (18)0.010 (2)
C30.0157 (19)0.017 (2)0.027 (3)0.0003 (16)0.0022 (17)0.0055 (19)
C40.0127 (19)0.029 (3)0.024 (3)0.0004 (17)0.0024 (16)0.005 (2)
C50.038 (3)0.051 (4)0.021 (3)0.000 (2)0.002 (2)0.006 (2)
C60.0120 (19)0.023 (3)0.044 (3)0.0016 (16)0.0060 (18)0.004 (2)
C70.032 (3)0.016 (3)0.123 (7)0.001 (2)0.022 (3)0.002 (3)
C80.017 (2)0.022 (2)0.025 (2)0.0014 (17)0.0001 (17)0.002 (2)
C90.022 (2)0.041 (3)0.023 (2)0.005 (2)0.0025 (18)0.010 (2)
Geometric parameters (Å, º) top
Pr1—O1i2.435 (3)F4—C21.340 (5)
Pr1—O22.464 (3)F5—C21.333 (5)
Pr1—O4i2.455 (3)F6—C21.320 (6)
Pr1—O52.464 (3)F7—C31.333 (5)
Pr1—O72.459 (3)F8—C31.332 (5)
Pr1—O8i2.473 (3)F9—C31.324 (5)
Pr1—N12.621 (4)O1—Pr1ii2.435 (3)
Pr1—N22.648 (4)O4—Pr1ii2.455 (3)
Pr1—N32.651 (4)O8—Pr1ii2.473 (3)
S1—O31.420 (3)N1—C41.130 (6)
S1—O11.447 (3)N2—C61.134 (6)
S1—O21.450 (3)N3—C81.142 (6)
S1—C11.832 (5)C4—C51.464 (7)
S2—O61.426 (3)C5—H5A0.9800
S2—O51.443 (3)C5—H5B0.9800
S2—O41.445 (3)C5—H5C0.9800
S2—C21.822 (5)C6—C71.457 (7)
S3—O91.429 (3)C7—H7A0.9800
S3—O71.444 (3)C7—H7B0.9800
S3—O81.449 (3)C7—H7C0.9800
S3—C31.829 (5)C8—C91.457 (6)
F1—C11.322 (5)C9—H9A0.9800
F2—C11.320 (5)C9—H9B0.9800
F3—C11.326 (5)C9—H9C0.9800
O1i—Pr1—O4i75.59 (11)O9—S3—C3105.0 (2)
O1i—Pr1—O7139.23 (11)O7—S3—C3102.39 (19)
O4i—Pr1—O7139.22 (11)O8—S3—C3103.59 (19)
O1i—Pr1—O288.88 (10)S1—O1—Pr1ii170.4 (2)
O4i—Pr1—O2137.29 (10)S1—O2—Pr1151.05 (19)
O7—Pr1—O275.57 (10)S2—O4—Pr1ii162.7 (2)
O1i—Pr1—O5137.30 (11)S2—O5—Pr1161.1 (2)
O4i—Pr1—O588.00 (10)S3—O7—Pr1169.2 (2)
O7—Pr1—O576.01 (10)S3—O8—Pr1ii155.19 (18)
O2—Pr1—O576.90 (11)C4—N1—Pr1175.9 (4)
O1i—Pr1—O8i77.31 (10)C6—N2—Pr1174.3 (3)
O4i—Pr1—O8i79.12 (10)C8—N3—Pr1156.4 (3)
O7—Pr1—O8i88.37 (10)F2—C1—F1109.2 (4)
O2—Pr1—O8i136.43 (10)F2—C1—F3108.1 (4)
O5—Pr1—O8i138.43 (10)F1—C1—F3108.5 (4)
O1i—Pr1—N171.04 (11)F2—C1—S1110.0 (3)
O4i—Pr1—N1137.12 (11)F1—C1—S1109.9 (3)
O7—Pr1—N168.20 (11)F3—C1—S1111.1 (3)
O2—Pr1—N168.43 (11)F6—C2—F5107.8 (4)
O5—Pr1—N1134.88 (11)F6—C2—F4107.8 (4)
O8i—Pr1—N168.00 (11)F5—C2—F4108.2 (4)
O1i—Pr1—N270.21 (11)F6—C2—S2112.9 (3)
O4i—Pr1—N270.03 (11)F5—C2—S2110.0 (3)
O7—Pr1—N2132.10 (10)F4—C2—S2110.0 (3)
O2—Pr1—N267.28 (11)F9—C3—F8108.5 (4)
O5—Pr1—N267.15 (11)F9—C3—F7108.1 (4)
O8i—Pr1—N2139.51 (10)F8—C3—F7108.3 (4)
N1—Pr1—N2120.35 (12)F9—C3—S3111.7 (3)
O1i—Pr1—N3136.38 (11)F8—C3—S3110.3 (3)
O4i—Pr1—N371.01 (11)F7—C3—S3109.8 (3)
O7—Pr1—N368.24 (11)N1—C4—C5179.8 (6)
O2—Pr1—N3134.74 (10)C4—C5—H5A109.5
O5—Pr1—N368.85 (11)C4—C5—H5B109.5
O8i—Pr1—N369.59 (11)H5A—C5—H5B109.5
N1—Pr1—N3118.54 (12)C4—C5—H5C109.5
N2—Pr1—N3120.91 (12)H5A—C5—H5C109.5
O3—S1—O1115.7 (2)H5B—C5—H5C109.5
O3—S1—O2115.4 (2)N2—C6—C7179.2 (5)
O1—S1—O2112.91 (19)C6—C7—H7A109.5
O3—S1—C1104.8 (2)C6—C7—H7B109.5
O1—S1—C1103.3 (2)H7A—C7—H7B109.5
O2—S1—C1102.54 (19)C6—C7—H7C109.5
O6—S2—O5115.65 (19)H7A—C7—H7C109.5
O6—S2—O4114.9 (2)H7B—C7—H7C109.5
O5—S2—O4113.45 (19)N3—C8—C9177.2 (5)
O6—S2—C2105.1 (2)C8—C9—H9A109.5
O5—S2—C2102.6 (2)C8—C9—H9B109.5
O4—S2—C2102.99 (19)H9A—C9—H9B109.5
O9—S3—O7115.75 (18)C8—C9—H9C109.5
O9—S3—O8115.15 (19)H9A—C9—H9C109.5
O7—S3—O8112.91 (18)H9B—C9—H9C109.5
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pr(CF3O3S)3(C2H3N)3]
Mr711.28
Crystal system, space groupTriclinic, P1
Temperature (K)103
a, b, c (Å)5.8044 (6), 10.5062 (10), 18.9887 (19)
α, β, γ (°)97.307 (1), 94.163 (1), 91.695 (1)
V3)1144.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.52
Crystal size (mm)0.24 × 0.02 × 0.01
Data collection
DiffractometerBruker APEXII Quazar
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.578, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
20544, 5251, 4674
Rint0.039
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.076, 1.16
No. of reflections5251
No. of parameters311
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 1.15

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XPMA (Zsolnai, 1996) and ORTEP-3 (Farrugia, 2012), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pr1—O1i2.435 (3)Pr1—O8i2.473 (3)
Pr1—O22.464 (3)Pr1—N12.621 (4)
Pr1—O4i2.455 (3)Pr1—N22.648 (4)
Pr1—O52.464 (3)Pr1—N32.651 (4)
Pr1—O72.459 (3)
Symmetry code: (i) x+1, y, z.
 

Footnotes

Also affiliated to: IKFT, KIT-Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNatrajan, L., Mazzanti, M., Bezombes, J.-P. & Pecaut, J. (2005). Inorg. Chem. 44, 6115–6121.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, S. (2011). Cryst. Growth Des. 11, 1437–1440.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZsolnai, L. (1996). XPMA. University of Heidelberg, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds