metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of cis-bis­­(ethyl­ene­di­amine-κ2N,N′)bis­­(nitrito-κN)cobalt(III) (ethyl­enedi­amine-κ2N,N′)tetra­kis­(nitrito-κN)cobaltate(III) monohydrate

aLaboratório de Materiais Inorgânicos, Universidade Federal de Santa Maria, 97105–900 Santa Maria, RS, Brazil
*Correspondence e-mail: rburrow@ewald.base.ufsm.br

(Received 19 November 2012; accepted 10 December 2012; online 15 December 2012)

The structure of the title compound, [Co(NO2)2(NH2CH2CH2NH2)2][Co(NO2)4(NH2CH2CH2NH2)]·H2O, was redetermined with a modern CCD-equipped diffractometer. In comparison with the original determination based on photographic data [Kushi et al. (1976[Kushi, Y., Kuramoto, M., Yamamoto, S. & Yoneda, H. (1976). Inorg. Nucl. Chem. Lett. 12, 629-633.]). Inorg. Nucl. Chem. Lett. 12, 629–633], the current study allows the location of reliable postions for the H atoms and thus leads to better understanding of the inter­ionic and inter­molecular inter­actions. The crystal structure consists of an octa­hedrally coordinated cationic CoIII complex ion, an octa­hedrally coordinated anionic CoIII complex ion and a lattice water mol­ecule. The complex cation, complex anion and lattice water mol­ecule are connected by an intricate network of O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional structure.

Related literature

For background to CoIII complexes, see: Angelici (1969[Angelici, R. J. (1969). Synthesis and Technique in Inorganic Chemistry, Philadelphia: W. B. Saunders.]); Bernal (1985[Bernal, I. (1985). Inorg. Chim. Acta, 96, 99-110.]); Bernal & Kauffman (1987[Bernal, I. & Kauffman, G. B. (1987). J. Chem. Educ. 64, 604-610.]); Murmann (1955[Murmann, R. K. (1955). J. Am. Chem. Soc. 77, 5190-5190.]). For a previous report of the crystal structure of the title compound, see: Kushi et al. (1976[Kushi, Y., Kuramoto, M., Yamamoto, S. & Yoneda, H. (1976). Inorg. Nucl. Chem. Lett. 12, 629-633.]). For synthetic details, see: Bailor & Rollinson (1946[Bailor, J. C. & Rollinson, L. L. (1946). Inorg. Synth. 2, 222-225.]); Sharrock (1980[Sharrock, P. (1980). J. Chem. Educ. 57, 778-778.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NO2)2(C2H8N2)2][Co(NO2)4(C2H8N2)]·H2O

  • Mr = 592.25

  • Monoclinic, P 21 /n

  • a = 14.7580 (5) Å

  • b = 6.7060 (2) Å

  • c = 20.6845 (7) Å

  • β = 96.969 (2)°

  • V = 2031.96 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 100 K

  • 0.40 × 0.15 × 0.05 mm

Data collection
  • Bruker X8 Kappa APEXII diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.925

  • 63576 measured reflections

  • 6280 independent reflections

  • 4801 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.07

  • 6280 reflections

  • 340 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯O11i 0.83 (3) 2.26 (3) 3.048 (2) 158 (2)
N11—H11B⋯O23ii 0.79 (3) 2.23 (3) 2.991 (2) 163 (2)
N11—H11B⋯O13iii 0.79 (3) 2.57 (2) 2.966 (2) 113 (2)
N12—H12A⋯O24iv 0.86 (3) 2.22 (3) 3.060 (2) 164 (2)
N12—H12B⋯O12v 0.80 (3) 2.38 (3) 3.030 (2) 139 (2)
N13—H13A⋯O22vi 0.84 (3) 2.42 (3) 3.186 (2) 152 (2)
N13—H13B⋯O13iii 0.87 (3) 2.47 (3) 3.206 (2) 143 (2)
N14—H14A⋯O27ii 0.94 (3) 2.12 (3) 3.038 (2) 164 (2)
N14—H14B⋯O24iv 0.85 (2) 2.42 (2) 3.060 (2) 132 (2)
N21—H21A⋯O28vii 0.82 (3) 2.56 (3) 3.185 (2) 134 (2)
N22—H22A⋯O27viii 0.83 (2) 2.18 (3) 2.981 (2) 164 (2)
N22—H22B⋯O1 0.89 (2) 2.16 (3) 2.967 (2) 151 (2)
O1—H1A⋯O26iv 0.84 (3) 2.19 (3) 2.953 (2) 152 (3)
O1—H1A⋯O24iv 0.84 (3) 2.53 (3) 3.081 (2) 124 (2)
O1—H1B⋯O25viii 0.82 (3) 2.07 (3) 2.866 (2) 162 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x+1, y, z; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) x, y+1, z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Cobalt(III) complexes are classical examples in undergraduate inorganic experimental laboratories due to their ease of preparation and great stability (Angelici, 1969). The ethylenediamine complex cis-[bis(ethylenediamine-kN,N')dinitrito-κ-N-cobalt(III)] chloride is of particular interest due to its spontaneous resolution upon crystallization (Murmann, 1955; Bernal, 1985; Bernal & Kauffman, 1987). In an attempt to synthesize this compound, crystals of the title compound cis-[Co(NH2CH2CH2NH2)2(NO2)2] [Co(NH2CH2CH2NH2)(NO2)4].H2O, (I), were obtained instead.

Although the crystal structure of the compound (I) has been determined previously from visually estimated photographic data (Kushi et al., 1976), it is of rather low quality (R = 0.13) compared to today's standard, and more importantly the extensive hydrogen bonding was not noted, in part due to the inability to locate the H atoms of the water molecule. In addition, the atomic coordinates have not been deposited with the Cambridge Structure Database (CSD; Allen, 2002) and hence are not available in the public domain. We report here the redetermination of the crystal structure at 100 K with data measured up to 30 ° in θ.

The crystal structure of (I) is centrossymmetric with a racemic mixture of the Δ and Λ isomers of the complex cation, the complex anion and a lattice water molecule. In the complex cation, the two ethylenediamine ligands chelate to the CoIII ion, and the nitrito ligands bond via their N atoms to form an approximate octahedral coordination geometry. The complex anion is similar, with one ethylenediamine ligand and four nitrito ligands bonded to the central metal cation. The Co—N distances to the ethylenediamine ligands are similar in the two ion complexes, varying between 1.9141 (17) Å and 1.9811 (17) Å. This range is within the distribution for similar complexes with octahedrally coordinated Co(III) found in the CSD (Allen, 2002; version 5.33 as of November, 2011 with Feb., 2011, Mar., 2012 & May, 2012 updates], viz 1.97 (2) Å for 756 distances. There is a slight trans influence in the the cation complex where the Co—N distance is marginally longer (by ca 0.02 Å) for the N atoms trans to the nitrito ligands. The Co—N distances for the nitrito ligands show a larger variation with shorter distances in the complex cation, 1.9141 (17) & 1.9177 (16) Å, than those in the complex anion. The latter shows a stronger trans influence with the Co—N distances trans to the N atoms of the nitrito ligands longer (1.9413 (17) & 1.9502 (16) Å) than the Co—N distance trans to the ethylenediamine ligand (1.9215 (17) & 1.9240 (17) Å).

The packing diagram (Fig. 2), shows alternating columns of complex cations and anions in the crystallographic a direction. The lattice water molecule is located between the complex cation and anion. There is an intricate three-dimensional network of hydrogen bonding interactions between the NH2 groups and O atoms of nitrito ligands of neighboring ions and also of the lattice water molecule, which forms hydrogen bonds to four complex anions (Fig. 3; Table 1).

Related literature top

For background to CoIII complexes, see: Angelici (1969); Bernal (1985); Bernal & Kauffman (1987); Murmann (1955). For a previous report of the crystal structure of the title compound, see: Kushi et al. (1976). For synthetic details, see: Bailor & Rollinson (1946); Sharrock (1980). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was synthesized via the chloride, prepared following the procedure of Bailor & Rollinson (1946) with the hydrogen peroxide oxidation modification of Sharrock (1980), followed by subsitution of of the chloride ligand by nitrito ligand (Bernal, 1985). Yellow crystals suitable for single-crystal X ray diffraction were formed by slow evaporation of the reaction mixture as room temperature.

Refinement top

The H atoms on N atoms and in the lattice water molecule were found in a difference Fourier map and their positions allowed to refine freely while isotropic displacement factors were set to 1.2 times those of the N atoms or to 1.5 of that the O atom. The H atoms on the ethylene C atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H bond lengths of 0.99 Å and isotropic displacement parameters equal to 1.2 times Ueq of the parent atom.

Structure description top

Cobalt(III) complexes are classical examples in undergraduate inorganic experimental laboratories due to their ease of preparation and great stability (Angelici, 1969). The ethylenediamine complex cis-[bis(ethylenediamine-kN,N')dinitrito-κ-N-cobalt(III)] chloride is of particular interest due to its spontaneous resolution upon crystallization (Murmann, 1955; Bernal, 1985; Bernal & Kauffman, 1987). In an attempt to synthesize this compound, crystals of the title compound cis-[Co(NH2CH2CH2NH2)2(NO2)2] [Co(NH2CH2CH2NH2)(NO2)4].H2O, (I), were obtained instead.

Although the crystal structure of the compound (I) has been determined previously from visually estimated photographic data (Kushi et al., 1976), it is of rather low quality (R = 0.13) compared to today's standard, and more importantly the extensive hydrogen bonding was not noted, in part due to the inability to locate the H atoms of the water molecule. In addition, the atomic coordinates have not been deposited with the Cambridge Structure Database (CSD; Allen, 2002) and hence are not available in the public domain. We report here the redetermination of the crystal structure at 100 K with data measured up to 30 ° in θ.

The crystal structure of (I) is centrossymmetric with a racemic mixture of the Δ and Λ isomers of the complex cation, the complex anion and a lattice water molecule. In the complex cation, the two ethylenediamine ligands chelate to the CoIII ion, and the nitrito ligands bond via their N atoms to form an approximate octahedral coordination geometry. The complex anion is similar, with one ethylenediamine ligand and four nitrito ligands bonded to the central metal cation. The Co—N distances to the ethylenediamine ligands are similar in the two ion complexes, varying between 1.9141 (17) Å and 1.9811 (17) Å. This range is within the distribution for similar complexes with octahedrally coordinated Co(III) found in the CSD (Allen, 2002; version 5.33 as of November, 2011 with Feb., 2011, Mar., 2012 & May, 2012 updates], viz 1.97 (2) Å for 756 distances. There is a slight trans influence in the the cation complex where the Co—N distance is marginally longer (by ca 0.02 Å) for the N atoms trans to the nitrito ligands. The Co—N distances for the nitrito ligands show a larger variation with shorter distances in the complex cation, 1.9141 (17) & 1.9177 (16) Å, than those in the complex anion. The latter shows a stronger trans influence with the Co—N distances trans to the N atoms of the nitrito ligands longer (1.9413 (17) & 1.9502 (16) Å) than the Co—N distance trans to the ethylenediamine ligand (1.9215 (17) & 1.9240 (17) Å).

The packing diagram (Fig. 2), shows alternating columns of complex cations and anions in the crystallographic a direction. The lattice water molecule is located between the complex cation and anion. There is an intricate three-dimensional network of hydrogen bonding interactions between the NH2 groups and O atoms of nitrito ligands of neighboring ions and also of the lattice water molecule, which forms hydrogen bonds to four complex anions (Fig. 3; Table 1).

For background to CoIII complexes, see: Angelici (1969); Bernal (1985); Bernal & Kauffman (1987); Murmann (1955). For a previous report of the crystal structure of the title compound, see: Kushi et al. (1976). For synthetic details, see: Bailor & Rollinson (1946); Sharrock (1980). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability ellipsoids, showing the atomic numbering scheme.
[Figure 2] Fig. 2. The packing diagram of (I) projected along the b axis.
[Figure 3] Fig. 3. The hydrogen bonding interactions in the crystal structure of (I) shown as dashed red lines. [Symmetry codes: (i) -x + 3/2, y - 1/2, -z + 1/2; (ii) -x + 1, -y, -z; (iii) x, y - 1, z; (iv) -x + 1, -y + 1, -z; (v) -x + 3/2, y + 1/2, -z + 1/2; (vi) x + 1, y, z; (vii) -x + 1/2, 320 y + 1/2, -z + 1/2; (viii) x, y + 1, z; (ix) x - 1, y, z; (x) -x + 1/2, y - 1/2, -z + 1/2.]
cis-Bis(ethylenediamine-κ2N,N')bis(nitrito- κN)cobalt(III) (ethylenediamine-κ2N,N')tetrakis(nitrito- κN)cobaltate(III) monohydrate top
Crystal data top
[Co(NO2)2(C2H8N2)2][Co(NO2)4(C2H8N2)]·H2OF(000) = 1216
Mr = 592.25Dx = 1.936 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.7580 (5) ÅCell parameters from 7429 reflections
b = 6.7060 (2) Åθ = 2.8–30.0°
c = 20.6845 (7) ŵ = 1.73 mm1
β = 96.969 (2)°T = 100 K
V = 2031.96 (11) Å3Plate, light yellow
Z = 40.40 × 0.15 × 0.05 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
6280 independent reflections
Radiation source: sealed ceramic X ray tube, Siemens KFF4801 reflections with I > 2σ(I)
Graphite crystal monochromatorRint = 0.073
Detector resolution: 8.3333 pixels mm-1θmax = 30.7°, θmin = 2.8°
0.5 ° ω & φ scansh = 2121
Absorption correction: numerical
(SADABS; Bruker, 2012)
k = 99
Tmin = 0.692, Tmax = 0.925l = 2929
63576 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.7699P]
where P = (Fo2 + 2Fc2)/3
6280 reflections(Δ/σ)max < 0.001
340 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Co(NO2)2(C2H8N2)2][Co(NO2)4(C2H8N2)]·H2OV = 2031.96 (11) Å3
Mr = 592.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.7580 (5) ŵ = 1.73 mm1
b = 6.7060 (2) ÅT = 100 K
c = 20.6845 (7) Å0.40 × 0.15 × 0.05 mm
β = 96.969 (2)°
Data collection top
Bruker X8 Kappa APEXII
diffractometer
6280 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2012)
4801 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.925Rint = 0.073
63576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.72 e Å3
6280 reflectionsΔρmin = 0.84 e Å3
340 parameters
Special details top

Experimental. The data collection was performed under a cold nitritogen flow at 100 K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.843849 (18)0.27327 (4)0.14261 (12)0.00806 (7)
N110.77135 (12)0.0306 (3)0.11765 (9)0.0119 (3)
H11A0.7676 (16)0.041 (4)0.1502 (12)0.018*
H11B0.7919 (17)0.035 (4)0.0915 (12)0.018*
N120.72646 (12)0.4084 (3)0.13789 (9)0.0118 (3)
H12A0.7131 (16)0.487 (4)0.1049 (12)0.018*
H12B0.7233 (17)0.484 (4)0.1675 (13)0.018*
C110.67584 (13)0.0895 (3)0.09310 (10)0.0151 (4)
H11C0.63380.02430.0960.018*
H11D0.67180.13260.04710.018*
C120.65116 (14)0.2597 (3)0.13567 (10)0.0147 (4)
H12C0.59260.32070.11720.018*
H12D0.64480.21090.18010.018*
N130.95848 (12)0.1259 (3)0.14299 (8)0.0112 (3)
H13A0.9998 (17)0.194 (4)0.1646 (12)0.017*
H13B0.9546 (16)0.009 (4)0.1610 (12)0.017*
N140.85766 (12)0.3359 (3)0.05090 (8)0.0112 (3)
H14A0.8164 (18)0.268 (3)0.0203 (12)0.017*
H14B0.8437 (16)0.459 (4)0.0468 (12)0.017*
C130.98149 (14)0.1016 (3)0.07545 (9)0.0121 (4)
H13C0.94840.01390.05420.015*
H13D1.04790.0790.07590.015*
C140.95313 (14)0.2919 (3)0.03914 (10)0.0135 (4)
H14C0.9940.40290.05520.016*
H14D0.95650.27460.0080.016*
N150.83969 (11)0.2115 (2)0.23255 (8)0.0114 (3)
O110.79655 (11)0.3185 (2)0.26709 (7)0.0223 (3)
O120.88006 (10)0.0626 (2)0.25612 (7)0.0182 (3)
N160.91005 (11)0.5117 (2)0.16892 (8)0.0121 (3)
O130.88884 (11)0.6728 (2)0.14137 (7)0.0195 (3)
O140.97386 (10)0.5019 (2)0.21304 (7)0.0198 (3)
Co20.300637 (18)0.21539 (4)0.116445 (12)0.00813 (7)
N210.34669 (12)0.1925 (2)0.20883 (8)0.0100 (3)
H21A0.3033 (18)0.207 (4)0.2293 (12)0.015*
H21B0.3695 (16)0.076 (4)0.2176 (11)0.015*
N220.35638 (12)0.4797 (2)0.12156 (8)0.0112 (3)
H22A0.3196 (17)0.563 (4)0.1050 (12)0.017*
H22B0.4061 (17)0.477 (4)0.1013 (11)0.017*
C210.41547 (14)0.3501 (3)0.22704 (10)0.0127 (4)
H21C0.47550.31030.21450.015*
H21D0.42220.37350.27460.015*
C220.38153 (14)0.5361 (3)0.19102 (9)0.0134 (4)
H22C0.32770.590.20940.016*
H22D0.42990.63930.19480.016*
N230.18840 (11)0.3367 (2)0.13875 (8)0.0116 (3)
O210.14792 (10)0.4608 (2)0.10178 (7)0.0159 (3)
O220.15768 (11)0.2921 (2)0.19042 (7)0.0191 (3)
N240.25641 (12)0.2582 (2)0.02614 (8)0.0117 (3)
O230.18335 (10)0.1818 (2)0.00146 (7)0.0176 (3)
O240.29753 (10)0.3733 (2)0.00703 (7)0.0167 (3)
N250.41370 (11)0.0952 (2)0.09661 (8)0.0114 (3)
O250.44644 (10)0.0461 (2)0.13136 (7)0.0180 (3)
O260.45432 (10)0.1533 (2)0.05169 (7)0.0186 (3)
N260.25080 (11)0.0494 (2)0.11586 (8)0.0130 (3)
O270.25612 (10)0.1596 (2)0.06758 (7)0.0172 (3)
O280.22021 (11)0.1164 (2)0.16421 (7)0.0201 (3)
O10.52233 (12)0.6237 (2)0.06827 (8)0.0216 (3)
H1A0.5386 (19)0.649 (4)0.0315 (14)0.032*
H1B0.511 (2)0.731 (4)0.0847 (15)0.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00877 (13)0.00827 (12)0.00724 (13)0.00044 (9)0.00131 (9)0.00040 (9)
N110.0140 (9)0.0097 (8)0.0128 (8)0.0006 (6)0.0045 (7)0.0011 (6)
N120.0121 (8)0.0131 (8)0.0104 (8)0.0025 (6)0.0013 (6)0.0011 (6)
C110.0100 (9)0.0163 (10)0.0190 (10)0.0008 (7)0.0008 (8)0.0046 (8)
C120.0114 (10)0.0156 (10)0.0177 (10)0.0004 (7)0.0042 (8)0.0025 (7)
N130.0100 (8)0.0123 (8)0.0108 (8)0.0016 (6)0.0007 (6)0.0006 (6)
N140.0121 (8)0.0118 (8)0.0099 (8)0.0007 (6)0.0023 (6)0.0013 (6)
C130.0107 (9)0.0137 (9)0.0122 (9)0.0001 (7)0.0026 (7)0.0021 (7)
C140.0140 (10)0.0143 (9)0.0130 (9)0.0004 (7)0.0045 (8)0.0000 (7)
N150.0098 (8)0.0138 (8)0.0106 (8)0.0001 (6)0.0015 (6)0.0001 (6)
O110.0270 (9)0.0296 (9)0.0117 (7)0.0126 (7)0.0076 (6)0.0005 (6)
O120.0220 (8)0.0173 (7)0.0152 (7)0.0047 (6)0.0021 (6)0.0068 (6)
N160.0129 (8)0.0124 (8)0.0111 (8)0.0001 (6)0.0018 (6)0.0023 (6)
O130.0266 (9)0.0096 (7)0.0215 (8)0.0006 (6)0.0003 (6)0.0032 (6)
O140.0183 (8)0.0192 (8)0.0195 (8)0.0024 (6)0.0076 (6)0.0027 (6)
Co20.00897 (13)0.00782 (12)0.00761 (13)0.00003 (9)0.00110 (9)0.00019 (9)
N210.0111 (8)0.0100 (8)0.0091 (8)0.0008 (6)0.0016 (6)0.0010 (6)
N220.0118 (8)0.0093 (8)0.0128 (8)0.0016 (6)0.0025 (7)0.0010 (6)
C210.0128 (10)0.0122 (9)0.0123 (9)0.0020 (7)0.0013 (7)0.0000 (7)
C220.0166 (10)0.0117 (9)0.0118 (9)0.0011 (7)0.0010 (8)0.0034 (7)
N230.0089 (8)0.0116 (8)0.0141 (8)0.0014 (6)0.0012 (6)0.0014 (6)
O210.0160 (7)0.0135 (7)0.0179 (7)0.0043 (6)0.0001 (6)0.0022 (6)
O220.0174 (8)0.0271 (8)0.0143 (7)0.0045 (6)0.0077 (6)0.0043 (6)
N240.0137 (8)0.0123 (8)0.0094 (8)0.0022 (6)0.0020 (6)0.0006 (6)
O230.0141 (7)0.0230 (8)0.0146 (7)0.0013 (6)0.0019 (6)0.0029 (6)
O240.0182 (8)0.0199 (7)0.0124 (7)0.0016 (6)0.0038 (6)0.0058 (6)
N250.0127 (8)0.0097 (7)0.0115 (8)0.0014 (6)0.0003 (6)0.0019 (6)
O250.0209 (8)0.0145 (7)0.0192 (8)0.0079 (6)0.0045 (6)0.0053 (6)
O260.0168 (8)0.0231 (8)0.0172 (8)0.0036 (6)0.0076 (6)0.0047 (6)
N260.0109 (8)0.0123 (8)0.0152 (8)0.0003 (6)0.0014 (6)0.0004 (6)
O270.0211 (8)0.0130 (7)0.0168 (7)0.0019 (6)0.0007 (6)0.0057 (6)
O280.0257 (8)0.0172 (8)0.0185 (8)0.0058 (6)0.0066 (6)0.0031 (6)
O10.0287 (9)0.0147 (8)0.0240 (9)0.0005 (7)0.0139 (7)0.0016 (6)
Geometric parameters (Å, º) top
Co1—N151.9141 (17)N16—O141.231 (2)
Co1—N161.9177 (16)N16—O131.244 (2)
Co1—N121.9471 (17)Co2—N261.9215 (17)
Co1—N131.9586 (17)Co2—N241.9240 (17)
Co1—N141.9775 (17)Co2—N251.9413 (17)
Co1—N111.9811 (17)Co2—N231.9502 (16)
N11—C111.492 (3)Co2—N221.9512 (17)
N11—H11A0.83 (3)Co2—N211.9551 (17)
N11—H11B0.79 (3)N21—C211.482 (3)
N12—C121.490 (3)N21—H21A0.82 (3)
N12—H12A0.86 (3)N21—H21B0.86 (2)
N12—H12B0.80 (3)N22—C221.489 (2)
C11—C121.513 (3)N22—H22A0.83 (2)
C11—H11C0.99N22—H22B0.89 (2)
C11—H11D0.99C21—C221.507 (3)
C12—H12C0.99C21—H21C0.99
C12—H12D0.99C21—H21D0.99
N13—C131.486 (2)C22—H22C0.99
N13—H13A0.84 (3)C22—H22D0.99
N13—H13B0.87 (3)N23—O211.234 (2)
N14—C141.488 (3)N23—O221.247 (2)
N14—H14A0.94 (3)N24—O241.239 (2)
N14—H14B0.85 (2)N24—O231.246 (2)
C13—C141.514 (3)N25—O261.229 (2)
C13—H13C0.99N25—O251.250 (2)
C13—H13D0.99N26—O281.231 (2)
C14—H14C0.99N26—O271.252 (2)
C14—H14D0.99O1—H1A0.84 (3)
N15—O121.233 (2)O1—H1B0.82 (3)
N15—O111.241 (2)
N15—Co1—N1688.84 (7)C13—C14—H14D110.3
N15—Co1—N1290.93 (7)H14C—C14—H14D108.5
N16—Co1—N1292.62 (7)O12—N15—O11119.85 (17)
N15—Co1—N1390.95 (7)O12—N15—Co1119.25 (13)
N16—Co1—N1390.55 (7)O11—N15—Co1120.90 (13)
N12—Co1—N13176.35 (7)O14—N16—O13120.87 (17)
N15—Co1—N14175.95 (7)O14—N16—Co1118.93 (13)
N16—Co1—N1489.24 (7)O13—N16—Co1120.20 (13)
N12—Co1—N1492.73 (7)N26—Co2—N2492.70 (7)
N13—Co1—N1485.50 (7)N26—Co2—N2587.31 (7)
N15—Co1—N1189.76 (7)N24—Co2—N2593.20 (7)
N16—Co1—N11177.57 (7)N26—Co2—N2392.95 (7)
N12—Co1—N1185.42 (7)N24—Co2—N2388.26 (7)
N13—Co1—N1191.46 (7)N25—Co2—N23178.50 (7)
N14—Co1—N1192.28 (7)N26—Co2—N22176.56 (7)
C11—N11—Co1109.24 (12)N24—Co2—N2290.48 (7)
C11—N11—H11A105.9 (17)N25—Co2—N2291.21 (7)
Co1—N11—H11A110.3 (17)N23—Co2—N2288.45 (7)
C11—N11—H11B109.9 (18)N26—Co2—N2191.20 (7)
Co1—N11—H11B113.5 (18)N24—Co2—N21175.92 (7)
H11A—N11—H11B108 (2)N25—Co2—N2188.17 (7)
C12—N12—Co1110.22 (13)N23—Co2—N2190.34 (7)
C12—N12—H12A106.5 (16)N22—Co2—N2185.65 (7)
Co1—N12—H12A116.0 (17)C21—N21—Co2109.77 (12)
C12—N12—H12B109.5 (18)C21—N21—H21A109.7 (17)
Co1—N12—H12B113.0 (18)Co2—N21—H21A107.2 (18)
H12A—N12—H12B101 (2)C21—N21—H21B110.9 (15)
N11—C11—C12106.59 (16)Co2—N21—H21B110.9 (15)
N11—C11—H11C110.4H21A—N21—H21B108 (2)
C12—C11—H11C110.4C22—N22—Co2109.71 (12)
N11—C11—H11D110.4C22—N22—H22A107.6 (17)
C12—C11—H11D110.4Co2—N22—H22A110.1 (17)
H11C—C11—H11D108.6C22—N22—H22B109.7 (15)
N12—C12—C11106.97 (17)Co2—N22—H22B108.8 (16)
N12—C12—H12C110.3H22A—N22—H22B111 (2)
C11—C12—H12C110.3N21—C21—C22106.76 (15)
N12—C12—H12D110.3N21—C21—H21C110.4
C11—C12—H12D110.3C22—C21—H21C110.4
H12C—C12—H12D108.6N21—C21—H21D110.4
C13—N13—Co1110.33 (12)C22—C21—H21D110.4
C13—N13—H13A108.9 (17)H21C—C21—H21D108.6
Co1—N13—H13A107.4 (17)N22—C22—C21107.21 (15)
C13—N13—H13B109.6 (16)N22—C22—H22C110.3
Co1—N13—H13B110.8 (16)C21—C22—H22C110.3
H13A—N13—H13B110 (2)N22—C22—H22D110.3
C14—N14—Co1108.93 (12)C21—C22—H22D110.3
C14—N14—H14A110.0 (16)H22C—C22—H22D108.5
Co1—N14—H14A114.1 (15)O21—N23—O22119.58 (16)
C14—N14—H14B113.5 (17)O21—N23—Co2119.71 (13)
Co1—N14—H14B104.5 (16)O22—N23—Co2120.69 (13)
H14A—N14—H14B106 (2)O24—N24—O23119.14 (16)
N13—C13—C14107.04 (15)O24—N24—Co2119.94 (13)
N13—C13—H13C110.3O23—N24—Co2120.75 (13)
C14—C13—H13C110.3O26—N25—O25119.03 (16)
N13—C13—H13D110.3O26—N25—Co2122.59 (13)
C14—C13—H13D110.3O25—N25—Co2118.38 (13)
H13C—C13—H13D108.6O28—N26—O27119.82 (17)
N14—C14—C13107.25 (16)O28—N26—Co2120.66 (13)
N14—C14—H14C110.3O27—N26—Co2119.29 (14)
C13—C14—H14C110.3H1A—O1—H1B107 (3)
N14—C14—H14D110.3
N15—Co1—N11—C11105.28 (14)N22—Co2—N21—C2114.82 (13)
N12—Co1—N11—C1114.33 (14)N24—Co2—N22—C22165.62 (13)
N13—Co1—N11—C11163.77 (14)N25—Co2—N22—C22101.17 (13)
N14—Co1—N11—C1178.22 (14)N23—Co2—N22—C2277.37 (13)
N15—Co1—N12—C1275.67 (14)N21—Co2—N22—C2213.09 (13)
N16—Co1—N12—C12164.55 (14)Co2—N21—C21—C2238.90 (18)
N14—Co1—N12—C12106.08 (14)Co2—N22—C22—C2137.65 (18)
N11—Co1—N12—C1214.01 (14)N26—Co2—N23—O21120.29 (15)
Co1—N11—C11—C1238.82 (19)N24—Co2—N23—O2127.67 (15)
Co1—N12—C12—C1138.91 (19)N22—Co2—N23—O2162.86 (15)
N15—Co1—N13—C13169.58 (13)N21—Co2—N23—O21148.49 (15)
N16—Co1—N13—C13101.57 (13)N26—Co2—N23—O2260.64 (16)
N14—Co1—N13—C1312.38 (13)N24—Co2—N23—O22153.25 (16)
N11—Co1—N13—C1379.80 (13)N22—Co2—N23—O22116.22 (16)
N16—Co1—N14—C1475.08 (13)N21—Co2—N23—O2230.58 (16)
N12—Co1—N14—C14167.66 (13)N26—Co2—N24—O24151.60 (15)
N13—Co1—N14—C1415.54 (13)N25—Co2—N24—O2464.15 (15)
N11—Co1—N14—C14106.82 (13)N23—Co2—N24—O24115.53 (15)
Co1—N13—C13—C1437.01 (18)N22—Co2—N24—O2427.10 (15)
Co1—N14—C14—C1339.52 (18)N26—Co2—N24—O2333.20 (15)
N16—Co1—N15—O12114.95 (15)N25—Co2—N24—O23120.65 (15)
N12—Co1—N15—O12152.45 (15)N23—Co2—N24—O2359.66 (15)
N13—Co1—N15—O1224.42 (15)N22—Co2—N24—O23148.10 (15)
N11—Co1—N15—O1267.03 (15)N26—Co2—N25—O26129.51 (16)
N16—Co1—N15—O1165.51 (16)N24—Co2—N25—O2636.95 (16)
N12—Co1—N15—O1127.09 (16)N22—Co2—N25—O2653.60 (16)
N13—Co1—N15—O11156.04 (16)N21—Co2—N25—O26139.21 (16)
N11—Co1—N15—O11112.51 (16)N26—Co2—N25—O2550.98 (14)
N15—Co1—N16—O1445.77 (15)N24—Co2—N25—O25143.54 (14)
N12—Co1—N16—O14136.64 (15)N22—Co2—N25—O25125.91 (14)
N13—Co1—N16—O1445.17 (15)N21—Co2—N25—O2540.30 (14)
N14—Co1—N16—O14130.66 (15)N24—Co2—N26—O28145.07 (15)
N15—Co1—N16—O13134.66 (15)N25—Co2—N26—O28121.85 (15)
N12—Co1—N16—O1343.78 (16)N23—Co2—N26—O2856.67 (15)
N13—Co1—N16—O13134.40 (15)N21—Co2—N26—O2833.73 (16)
N14—Co1—N16—O1348.91 (15)N24—Co2—N26—O2740.49 (15)
N26—Co2—N21—C21163.81 (13)N25—Co2—N26—O2752.59 (15)
N25—Co2—N21—C2176.54 (13)N23—Co2—N26—O27128.89 (15)
N23—Co2—N21—C21103.24 (13)N21—Co2—N26—O27140.70 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O11i0.83 (3)2.26 (3)3.048 (2)158 (2)
N11—H11B···O23ii0.79 (3)2.23 (3)2.991 (2)163 (2)
N11—H11B···O13iii0.79 (3)2.57 (2)2.966 (2)113 (2)
N12—H12A···O24iv0.86 (3)2.22 (3)3.060 (2)164 (2)
N12—H12B···O12v0.80 (3)2.38 (3)3.030 (2)139 (2)
N13—H13A···O22vi0.84 (3)2.42 (3)3.186 (2)152 (2)
N13—H13B···O13iii0.87 (3)2.47 (3)3.206 (2)143 (2)
N14—H14A···O27ii0.94 (3)2.12 (3)3.038 (2)164 (2)
N14—H14B···O24iv0.85 (2)2.42 (2)3.060 (2)132 (2)
N21—H21A···O28vii0.82 (3)2.56 (3)3.185 (2)134 (2)
N22—H22A···O27viii0.83 (2)2.18 (3)2.981 (2)164 (2)
N22—H22B···O10.89 (2)2.16 (3)2.967 (2)151 (2)
O1—H1A···O26iv0.84 (3)2.19 (3)2.953 (2)152 (3)
O1—H1A···O24iv0.84 (3)2.53 (3)3.081 (2)124 (2)
O1—H1B···O25viii0.82 (3)2.07 (3)2.866 (2)162 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(NO2)2(C2H8N2)2][Co(NO2)4(C2H8N2)]·H2O
Mr592.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)14.7580 (5), 6.7060 (2), 20.6845 (7)
β (°) 96.969 (2)
V3)2031.96 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.40 × 0.15 × 0.05
Data collection
DiffractometerBruker X8 Kappa APEXII
Absorption correctionNumerical
(SADABS; Bruker, 2012)
Tmin, Tmax0.692, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
63576, 6280, 4801
Rint0.073
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.07
No. of reflections6280
No. of parameters340
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.84

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O11i0.83 (3)2.26 (3)3.048 (2)158 (2)
N11—H11B···O23ii0.79 (3)2.23 (3)2.991 (2)163 (2)
N11—H11B···O13iii0.79 (3)2.57 (2)2.966 (2)113 (2)
N12—H12A···O24iv0.86 (3)2.22 (3)3.060 (2)164 (2)
N12—H12B···O12v0.80 (3)2.38 (3)3.030 (2)139 (2)
N13—H13A···O22vi0.84 (3)2.42 (3)3.186 (2)152 (2)
N13—H13B···O13iii0.87 (3)2.47 (3)3.206 (2)143 (2)
N14—H14A···O27ii0.94 (3)2.12 (3)3.038 (2)164 (2)
N14—H14B···O24iv0.85 (2)2.42 (2)3.060 (2)132 (2)
N21—H21A···O28vii0.82 (3)2.56 (3)3.185 (2)134 (2)
N22—H22A···O27viii0.83 (2)2.18 (3)2.981 (2)164 (2)
N22—H22B···O10.89 (2)2.16 (3)2.967 (2)151 (2)
O1—H1A···O26iv0.84 (3)2.19 (3)2.953 (2)152 (3)
O1—H1A···O24iv0.84 (3)2.53 (3)3.081 (2)124 (2)
O1—H1B···O25viii0.82 (3)2.07 (3)2.866 (2)162 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x, y+1, z.
 

Acknowledgements

Financial support from the Conselho Nacional de Desen­vol­v­imento Científico (CNPq, Brazil; grants 485245/2007–8 and 479747/2009–1), the Fundação de Amparo à Pesquisa (FAPERGS, Rio Grande do Sul; grant 10/1645–9) is gratefully acknowledged, as are fellowships from CNPq (JRMV & RAB; grant 308731/2009–3) and the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES, Brazil; JRMV). The diffractometer was funded by a CT-INFRA grant from the Financiadora de Estrutos e Projetos (FINEP, Brazil).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAngelici, R. J. (1969). Synthesis and Technique in Inorganic Chemistry, Philadelphia: W. B. Saunders.  Google Scholar
First citationBailor, J. C. & Rollinson, L. L. (1946). Inorg. Synth. 2, 222–225.  Google Scholar
First citationBernal, I. (1985). Inorg. Chim. Acta, 96, 99–110.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernal, I. & Kauffman, G. B. (1987). J. Chem. Educ. 64, 604–610.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKushi, Y., Kuramoto, M., Yamamoto, S. & Yoneda, H. (1976). Inorg. Nucl. Chem. Lett. 12, 629–633.  CSD CrossRef CAS Web of Science Google Scholar
First citationMurmann, R. K. (1955). J. Am. Chem. Soc. 77, 5190–5190.  CrossRef CAS Web of Science Google Scholar
First citationSharrock, P. (1980). J. Chem. Educ. 57, 778–778.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds