organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,2,4,6-Penta­methyl­anilinium hexa­fluoro­phosphate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zhangshelley86@Hotmail.com

(Received 30 November 2012; accepted 1 December 2012; online 8 December 2012)

In the crystal structure of the title salt, C11H18N+·PF6, the cation and anion are connected via an N—H⋯F hydrogen bond; weak C—H⋯F hydrogen bonding also occurs between the cations and anions.

Related literature

For the background to the title salt, see: Haertling et al. (1999[Haertling, G. H. (1999). J. Am. Ceram. Soc. A82, 797-810.]); Homes et al. (2001[Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673-676.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18N+·PF6

  • Mr = 309.23

  • Monoclinic, P 21 /c

  • a = 11.466 (2) Å

  • b = 8.2439 (16) Å

  • c = 15.559 (3) Å

  • β = 97.82 (3)°

  • V = 1457.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.20 × 0.19 × 0.18 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • 14679 measured reflections

  • 3340 independent reflections

  • 1942 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.186

  • S = 1.03

  • 3340 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯F1 0.91 2.27 2.979 (3) 134
C11—H11A⋯F4i 0.96 2.47 3.399 (4) 162
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

At present, much attention in ferroelectric material field is focused on developing ferroelectric pure organic or inorganic compounds (Haertling et al. 1999; Homes et al. 2001). In order to find more dielectric ferroelectric materials, we investigate the physical properties of the title compound (Fig. 1). The dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 3.7 to 5.2), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (453 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 3.7 to 5.2). Herein, we report the synthesis and crystal structure of the title compound.

Molecules of the title compound have normal geometric parameters. The bond lengths and angles are within their normal ranges. In the crystal, the cation and anion are connected via N—H···F and weak C—H···F hydrogen bonds (Table 1).

Related literature top

For the background to the title salt, see: Haertling et al. (1999); Homes et al. (2001).

Experimental top

A mix of N,N,2,4,6-pentamethylbenzenamine (1.36 g, 0.01 mol) and hexafluorophosphoric acid (1.90 g, 0.01 mol) in methanol (20 ml) was stirred until clear. After several days, the title compound was formed and recrystallized from methanol solution to afford colourless prismatic crystals suitable for X-ray analysis.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 and N—H = 0.91 Å and Uiso(H) = 1.2eq(C,N).

Structure description top

At present, much attention in ferroelectric material field is focused on developing ferroelectric pure organic or inorganic compounds (Haertling et al. 1999; Homes et al. 2001). In order to find more dielectric ferroelectric materials, we investigate the physical properties of the title compound (Fig. 1). The dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 3.7 to 5.2), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (453 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 3.7 to 5.2). Herein, we report the synthesis and crystal structure of the title compound.

Molecules of the title compound have normal geometric parameters. The bond lengths and angles are within their normal ranges. In the crystal, the cation and anion are connected via N—H···F and weak C—H···F hydrogen bonds (Table 1).

For the background to the title salt, see: Haertling et al. (1999); Homes et al. (2001).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along theb axis showing the hydrogen bondings network.
N,N,2,4,6-Pentamethylanilinium hexafluorophosphate top
Crystal data top
C11H18N+·PF6F(000) = 640
Mr = 309.23Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3340 reflections
a = 11.466 (2) Åθ = 2.7–27.5°
b = 8.2439 (16) ŵ = 0.24 mm1
c = 15.559 (3) ÅT = 293 K
β = 97.82 (3)°Prism, colorless
V = 1457.0 (5) Å30.20 × 0.19 × 0.18 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1942 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 13.6612 pixels mm-1h = 1414
CCD_Profile_fitting scansk = 1010
14679 measured reflectionsl = 2020
3340 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0788P)2 + 0.4571P]
where P = (Fo2 + 2Fc2)/3
3340 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H18N+·PF6V = 1457.0 (5) Å3
Mr = 309.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.466 (2) ŵ = 0.24 mm1
b = 8.2439 (16) ÅT = 293 K
c = 15.559 (3) Å0.20 × 0.19 × 0.18 mm
β = 97.82 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1942 reflections with I > 2σ(I)
14679 measured reflectionsRint = 0.074
3340 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
3340 reflectionsΔρmin = 0.27 e Å3
177 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.32971 (7)0.80605 (11)0.35021 (6)0.0588 (3)
N10.68536 (19)0.8547 (3)0.37739 (14)0.0466 (6)
H10.62130.82010.40090.056*
F10.43410 (18)0.9123 (3)0.39786 (18)0.1138 (9)
F20.2284 (2)0.6948 (3)0.30436 (15)0.0956 (8)
F30.3564 (2)0.8663 (3)0.25858 (15)0.1075 (8)
F40.3043 (2)0.7382 (4)0.44062 (14)0.1104 (9)
F50.4216 (2)0.6632 (3)0.34402 (15)0.0948 (7)
F60.2418 (2)0.9486 (3)0.3564 (2)0.1270 (11)
C10.7884 (2)0.7941 (3)0.43803 (17)0.0432 (6)
C20.7626 (2)0.7091 (3)0.51013 (18)0.0482 (7)
C30.8564 (3)0.6512 (4)0.56766 (19)0.0559 (8)
H30.84090.59220.61580.067*
C40.9722 (3)0.6782 (4)0.5560 (2)0.0560 (8)
C50.9930 (3)0.7638 (4)0.4838 (2)0.0568 (8)
H51.07060.78320.47570.068*
C60.9034 (2)0.8228 (3)0.42212 (18)0.0487 (7)
C71.0726 (3)0.6148 (4)0.6206 (2)0.0763 (11)
H7A1.13920.59190.59120.114*
H7B1.04840.51720.64680.114*
H7C1.09400.69490.66470.114*
C80.6383 (3)0.6771 (5)0.5279 (2)0.0735 (10)
H8A0.64030.61490.58020.110*
H8B0.59640.61770.48030.110*
H8C0.59910.77840.53440.110*
C90.9394 (3)0.9078 (5)0.3437 (2)0.0707 (10)
H9A0.94020.83120.29730.106*
H9B1.01660.95340.35840.106*
H9C0.88420.99280.32560.106*
C100.6719 (3)0.7799 (5)0.2888 (2)0.0751 (10)
H10A0.73270.82000.25760.113*
H10B0.59630.80790.25800.113*
H10C0.67830.66420.29400.113*
C110.6748 (3)1.0353 (4)0.3754 (2)0.0693 (9)
H11A0.67971.07580.43360.104*
H11B0.60051.06560.34340.104*
H11C0.73751.08060.34800.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0438 (5)0.0666 (6)0.0658 (6)0.0018 (4)0.0060 (4)0.0077 (4)
N10.0410 (12)0.0534 (14)0.0461 (13)0.0011 (10)0.0077 (10)0.0047 (10)
F10.0631 (13)0.121 (2)0.154 (2)0.0277 (14)0.0021 (14)0.0462 (17)
F20.0882 (15)0.1006 (17)0.0926 (16)0.0308 (13)0.0073 (12)0.0137 (12)
F30.126 (2)0.1015 (18)0.0994 (18)0.0058 (15)0.0303 (15)0.0358 (14)
F40.1209 (19)0.148 (2)0.0674 (15)0.0243 (18)0.0314 (13)0.0149 (14)
F50.0918 (15)0.0934 (16)0.1004 (17)0.0358 (13)0.0172 (13)0.0080 (12)
F60.0688 (14)0.0922 (18)0.222 (3)0.0201 (13)0.0262 (16)0.0326 (19)
C10.0427 (14)0.0416 (15)0.0451 (15)0.0000 (12)0.0057 (11)0.0008 (12)
C20.0487 (15)0.0503 (17)0.0466 (16)0.0005 (13)0.0096 (12)0.0003 (13)
C30.064 (2)0.0586 (19)0.0435 (16)0.0016 (15)0.0034 (14)0.0015 (13)
C40.0576 (18)0.0516 (18)0.0548 (18)0.0065 (14)0.0069 (14)0.0121 (14)
C50.0431 (15)0.0622 (19)0.065 (2)0.0031 (14)0.0062 (14)0.0076 (16)
C60.0448 (15)0.0517 (17)0.0504 (17)0.0029 (13)0.0092 (12)0.0023 (13)
C70.076 (2)0.074 (2)0.070 (2)0.0143 (19)0.0217 (18)0.0071 (18)
C80.059 (2)0.096 (3)0.068 (2)0.0054 (18)0.0193 (16)0.0252 (19)
C90.0540 (18)0.086 (2)0.076 (2)0.0051 (18)0.0245 (16)0.0151 (19)
C100.067 (2)0.105 (3)0.051 (2)0.005 (2)0.0001 (15)0.0204 (18)
C110.069 (2)0.060 (2)0.079 (2)0.0075 (17)0.0088 (17)0.0133 (17)
Geometric parameters (Å, º) top
P1—F61.560 (2)C5—C61.394 (4)
P1—F21.573 (2)C5—H50.9300
P1—F31.579 (2)C6—C91.512 (4)
P1—F41.577 (3)C7—H7A0.9600
P1—F11.584 (2)C7—H7B0.9600
P1—F51.591 (2)C7—H7C0.9600
N1—C111.494 (4)C8—H8A0.9600
N1—C11.494 (3)C8—H8B0.9600
N1—C101.499 (4)C8—H8C0.9600
N1—H10.9100C9—H9A0.9600
C1—C21.388 (4)C9—H9B0.9600
C1—C61.394 (4)C9—H9C0.9600
C2—C31.387 (4)C10—H10A0.9600
C2—C81.512 (4)C10—H10B0.9600
C3—C41.382 (4)C10—H10C0.9600
C3—H30.9300C11—H11A0.9600
C4—C51.374 (4)C11—H11B0.9600
C4—C71.515 (4)C11—H11C0.9600
F6—P1—F291.36 (14)C6—C5—H5118.4
F6—P1—F391.42 (16)C1—C6—C5116.4 (3)
F2—P1—F389.77 (14)C1—C6—C9126.2 (3)
F6—P1—F490.74 (17)C5—C6—C9117.4 (3)
F2—P1—F489.02 (14)C4—C7—H7A109.5
F3—P1—F4177.55 (15)C4—C7—H7B109.5
F6—P1—F190.47 (14)H7A—C7—H7B109.5
F2—P1—F1177.89 (15)C4—C7—H7C109.5
F3—P1—F191.24 (15)H7A—C7—H7C109.5
F4—P1—F189.91 (15)H7B—C7—H7C109.5
F6—P1—F5178.83 (14)C2—C8—H8A109.5
F2—P1—F589.71 (14)C2—C8—H8B109.5
F3—P1—F588.11 (13)H8A—C8—H8B109.5
F4—P1—F589.76 (15)C2—C8—H8C109.5
F1—P1—F588.47 (13)H8A—C8—H8C109.5
C11—N1—C1113.6 (2)H8B—C8—H8C109.5
C11—N1—C10113.1 (3)C6—C9—H9A109.5
C1—N1—C10114.6 (2)C6—C9—H9B109.5
C11—N1—H1104.7H9A—C9—H9B109.5
C1—N1—H1104.7C6—C9—H9C109.5
C10—N1—H1104.7H9A—C9—H9C109.5
C2—C1—C6122.7 (2)H9B—C9—H9C109.5
C2—C1—N1116.2 (2)N1—C10—H10A109.5
C6—C1—N1121.1 (2)N1—C10—H10B109.5
C1—C2—C3117.6 (3)H10A—C10—H10B109.5
C1—C2—C8123.0 (3)N1—C10—H10C109.5
C3—C2—C8119.3 (3)H10A—C10—H10C109.5
C4—C3—C2122.3 (3)H10B—C10—H10C109.5
C4—C3—H3118.9N1—C11—H11A109.5
C2—C3—H3118.9N1—C11—H11B109.5
C5—C4—C3117.8 (3)H11A—C11—H11B109.5
C5—C4—C7121.3 (3)N1—C11—H11C109.5
C3—C4—C7120.9 (3)H11A—C11—H11C109.5
C4—C5—C6123.2 (3)H11B—C11—H11C109.5
C4—C5—H5118.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F10.912.272.979 (3)134
C11—H11A···F4i0.962.473.399 (4)162
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC11H18N+·PF6
Mr309.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.466 (2), 8.2439 (16), 15.559 (3)
β (°) 97.82 (3)
V3)1457.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.19 × 0.18
Data collection
DiffractometerRigaku Mercury2
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14679, 3340, 1942
Rint0.074
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.186, 1.03
No. of reflections3340
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F10.912.272.979 (3)134
C11—H11A···F4i0.962.473.399 (4)162
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The author is grateful to the starter fund of Nanjing College of Chemical Technology for financial support.

References

First citationHaertling, G. H. (1999). J. Am. Ceram. Soc. A82, 797–810.  CrossRef Google Scholar
First citationHomes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673–676.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds