organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(piperidin-1-yl)-9,10-anthraquin­one

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: trzybinski@chem.univ.gda.pl

(Received 5 December 2012; accepted 10 December 2012; online 19 December 2012)

In the centrosymmetric title compound, C24H26N2O2, the piperidine ring adopts a chair conformation and is inclined at a dihedral angle of 37.5 (1)°to the anthracene ring system. In the crystal, adjacent mol­ecules are linked through C—H⋯π and ππ [centroid–centroid distances = 3.806 (1) Å] inter­actions, forming a layer parallel to the bc plane.

Related literature

For general background to quinone compounds, see: Alves et al. (2004[Alves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549-561.]); El-Najjar et al. (2011[El-Najjar, N., Gali-Muhtasib, H. A., Ketola, R., Vuorela, P., Urtti, A. & Vuorela, H. (2011). Phytochem. Rev. 10, 353-370.]); Czupryniak et al. (2012[Czupryniak, J., Niedziałkowski, P., Karbarz, M., Ossowski, T. & Stojek, Z. (2012). Electroanalysis, 24, 975-982.]); Krohn (2008[Krohn, K. (2008). Editor. Anthracycline Chemistry and Biology II, Topics in Current Chemistry, Vol. 283. Berlin Heidelberg: Springer-Verlag.]); Wannalerse et al. (2008[Wannalerse, B., Tuntulani, T. & Tomapatanaget, B. (2008). Tetrahedron, 64, 10619-10624.]). For related structures, see: Niedziałkowski et al. (2010[Niedziałkowski, P., Trzybiński, D., Sikorski, A. & Ossowski, T. (2010). Acta Cryst. E66, o33-o34.], 2011[Niedziałkowski, P., Narloch, J., Trzybiński, D. & Ossowski, T. (2011). Acta Cryst. E67, o723.]); Wnuk et al. (2012[Wnuk, E., Niedziałkowski, P., Trzybiński, D. & Ossowski, T. (2012). Acta Cryst. E68, o2879.]); Yatsenko et al. (2000[Yatsenko, A. V., Paseshnichenko, K. A. & Popov, S. I. (2000). Z. Kristallogr. 215, 542-546.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26N2O2

  • Mr = 374.47

  • Monoclinic, P 21 /c

  • a = 10.9115 (4) Å

  • b = 7.0127 (2) Å

  • c = 12.5984 (5) Å

  • β = 97.819 (4)°

  • V = 955.05 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.45 × 0.22 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.909, Tmax = 1.000

  • 12625 measured reflections

  • 1699 independent reflections

  • 1274 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 1.04

  • 1699 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg2i 0.93 2.98 3.850 (2) 156
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinone and quinone-derived compounds are widely distributed in the environment. They occur in many plants as physiologically active substances participating in photosynthetic electron transport processes (El-Najjar et al., 2011). Anthraquinones, both natural and synthetic, are coloring compounds with many applications in industry, mainly as pigments, food colorants and textile dyes. Some of the anthraquinone derivatives have been used for medical purposes as anticancer drugs and antitumor or antiviral agents (Alves et al., 2004; Krohn, 2008). Finally, derivatives belonging to this group of compounds are applied in molecular and supramolecular chemistry as optical and electrochemical sensors (Czupryniak et al., 2012; Wannalerse et al., 2008). This wide variety of practical applications make anthraquinone derivatives an important object of research and natural target in organic synthesis.

The crystal structures of some 9,10-anthraquinone derivatives were described in our previous papers (Niedziałkowski et al., 2010; Niedziałkowski et al., 2011; Wnuk et al., 2012). The purpose of this work is to report the crystal structure of 1,5-di(piperidin-1-yl)-9,10-anthraquinone.

The title compound has only half of molecule in the asymmetric part of the unit cell (Fig. 1). In the crystal structure, each half of molecule is arranged around an inversion centre located in the middle of the quinone ring. In the molecule of the title compound, likewise in other 9,10-anthraquinone derivatives (Niedziałkowski et al., 2010; Niedziałkowski et al., 2011; Wnuk et al., 2012, Yatsenko et al., 2000), deviation of planarity of the anthraquinone skeleton is observed. In case of the title compound, such distortion is found to be 0.0834 (3) Å. The piperidine rings adopt a chair conformation, with ring-puckering parameters Q = 0.5680 (18) Å, Θ = 178.23 (18)° and φ = 207 (6)°. The mean planes of piperidine and anthracene ring systems are inclined at a dihedral angle of 37.5 (1)°. The neighboring anthracene moieties are parallel or inclined at an angle of 63.3 (1)° in the crystal lattice. In the crystal, the adjacent molecules are linked by C—H···π (Table 2, Fig. 2) and ππ [centroid-centroid distances = 3.806 (1) Å] (Table 3, Fig. 2) interactions, forming a layer parallel to the bc plane.

Related literature top

For general background to quinone compounds, see: Alves et al. (2004); El-Najjar et al. (2011); Czupryniak et al. (2012); Krohn (2008); Wannalerse et al. (2008). For related structures, see: Niedziałkowski et al. (2010, 2011); Wnuk et al. (2012); Yatsenko et al. (2000).

Experimental top

To a solution of 1 g 1,5-bis(tosyloxy)-9,10-anthraquinone (1.823 mmol) in 50 ml of toluene 0.392 g of piperidine was added (4.775 mmol). The mixture was heated to 80°C. After 24 h the reaction mixture was cooled to room temperature. The resulting mixture was filtered and the solvent was removed under reduced pressure. The residue was dissolved in dichloromethane (200 ml) and washed with water (3 x 200 ml). The organic layer was dried over anhydrous MgSO4 and concentrated under reduced pressure to obtain a red solid residue. This solid was purified by flash column chromatography (SiO2, eluent: dichloromethane) to afford the 0.657 g (yield: 96%) of the title compound. Dark-red crystals suitable for X-ray investigations were grown from dichloromethane/methanol solution (1:1, v/v) (m.p. 207–208°C).

Spectral data:

1H NMR (CDCl3, 400MHz): δ (ppm): 1.628–1.686 (p, 2H, –N–CH2–CH2CH2–CH2–CH2–, J1=5.6 Hz, J1=6.0 Hz, J2=5.8 Hz, J2=6 Hz, J3=11.8 Hz); 1.809–1.866 (p, 4H, –N–CH2CH2–CH2CH2–CH2–, J1=5.2 Hz, J1=5.6 Hz, J1=6.0 Hz, J2=5.4 Hz, J2=5.6 Hz, J2=5.8 Hz, J3=11.1 Hz); 3.137 3.164 (p, 4H, –N–CH2–CH2–CH2–CH2CH2–, J1=5.2 Hz, J1=5.6 Hz, J2=5.4 Hz); 7.258–7.280 (d, 2H, H-2 Ar, H-4 Ar, J1=8.8 Hz); 7.528–7.568 (t, 2H, H-3 Ar, H-7 Ar, J1=J2=8,0 Hz); 7.807–7.826 (d, 2H, H-6 Ar, H-8 Ar, Hz, J1=7.6 Hz);

IR (KBr): 3434, 2940, 2855, 2813, 1648, 1582, 1423, 1381, 1226, 895, 710 (cm–1);

MALDI-TOF MS: m/z 376.3 [M+H]+ (MW = 374.20).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.97 Å for the aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methylene H atoms.

Structure description top

Quinone and quinone-derived compounds are widely distributed in the environment. They occur in many plants as physiologically active substances participating in photosynthetic electron transport processes (El-Najjar et al., 2011). Anthraquinones, both natural and synthetic, are coloring compounds with many applications in industry, mainly as pigments, food colorants and textile dyes. Some of the anthraquinone derivatives have been used for medical purposes as anticancer drugs and antitumor or antiviral agents (Alves et al., 2004; Krohn, 2008). Finally, derivatives belonging to this group of compounds are applied in molecular and supramolecular chemistry as optical and electrochemical sensors (Czupryniak et al., 2012; Wannalerse et al., 2008). This wide variety of practical applications make anthraquinone derivatives an important object of research and natural target in organic synthesis.

The crystal structures of some 9,10-anthraquinone derivatives were described in our previous papers (Niedziałkowski et al., 2010; Niedziałkowski et al., 2011; Wnuk et al., 2012). The purpose of this work is to report the crystal structure of 1,5-di(piperidin-1-yl)-9,10-anthraquinone.

The title compound has only half of molecule in the asymmetric part of the unit cell (Fig. 1). In the crystal structure, each half of molecule is arranged around an inversion centre located in the middle of the quinone ring. In the molecule of the title compound, likewise in other 9,10-anthraquinone derivatives (Niedziałkowski et al., 2010; Niedziałkowski et al., 2011; Wnuk et al., 2012, Yatsenko et al., 2000), deviation of planarity of the anthraquinone skeleton is observed. In case of the title compound, such distortion is found to be 0.0834 (3) Å. The piperidine rings adopt a chair conformation, with ring-puckering parameters Q = 0.5680 (18) Å, Θ = 178.23 (18)° and φ = 207 (6)°. The mean planes of piperidine and anthracene ring systems are inclined at a dihedral angle of 37.5 (1)°. The neighboring anthracene moieties are parallel or inclined at an angle of 63.3 (1)° in the crystal lattice. In the crystal, the adjacent molecules are linked by C—H···π (Table 2, Fig. 2) and ππ [centroid-centroid distances = 3.806 (1) Å] (Table 3, Fig. 2) interactions, forming a layer parallel to the bc plane.

For general background to quinone compounds, see: Alves et al. (2004); El-Najjar et al. (2011); Czupryniak et al. (2012); Krohn (2008); Wannalerse et al. (2008). For related structures, see: Niedziałkowski et al. (2010, 2011); Wnuk et al. (2012); Yatsenko et al. (2000).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric part of the unit cell of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. Cg2 is the centroid of the C1–C6 ring.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The C—H···π and ππ interactions are represented by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x, y – 1/2, –z + 1/2; (ii) –x, –y, –z + 1.]
1,5-Bis(piperidin-1-yl)-9,10-anthraquinone top
Crystal data top
C24H26N2O2F(000) = 400
Mr = 374.47Dx = 1.302 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5096 reflections
a = 10.9115 (4) Åθ = 3.3–29.2°
b = 7.0127 (2) ŵ = 0.08 mm1
c = 12.5984 (5) ÅT = 295 K
β = 97.819 (4)°Plate, dark-red
V = 955.05 (6) Å30.45 × 0.22 × 0.05 mm
Z = 2
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
1699 independent reflections
Radiation source: Enhanced (Mo) X-ray Source1274 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.3°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 88
Tmin = 0.909, Tmax = 1.000l = 1515
12625 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.0697P]
where P = (Fo2 + 2Fc2)/3
1699 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C24H26N2O2V = 955.05 (6) Å3
Mr = 374.47Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.9115 (4) ŵ = 0.08 mm1
b = 7.0127 (2) ÅT = 295 K
c = 12.5984 (5) Å0.45 × 0.22 × 0.05 mm
β = 97.819 (4)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
1699 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1274 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 1.000Rint = 0.042
12625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
1699 reflectionsΔρmin = 0.14 e Å3
127 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09986 (14)0.19940 (19)0.37606 (11)0.0393 (4)
C20.01598 (16)0.0605 (2)0.33222 (14)0.0513 (4)
H20.04280.03380.28890.062*
C30.10447 (16)0.0595 (2)0.35124 (15)0.0559 (5)
H30.15860.03200.31840.067*
C40.14652 (15)0.1917 (2)0.41814 (13)0.0472 (4)
H40.22730.18520.43380.057*
C50.06790 (13)0.33481 (18)0.46218 (12)0.0383 (4)
C60.05433 (13)0.34603 (18)0.43854 (11)0.0368 (4)
C70.12218 (14)0.5249 (2)0.46817 (13)0.0430 (4)
O80.21900 (12)0.56569 (16)0.43513 (12)0.0720 (4)
N90.22226 (11)0.19390 (17)0.35623 (10)0.0436 (3)
C100.32009 (14)0.1930 (2)0.44808 (12)0.0499 (4)
H10A0.33080.06450.47630.060*
H10B0.29610.27420.50410.060*
C110.44077 (15)0.2628 (3)0.41651 (14)0.0588 (5)
H11A0.50470.25700.47800.071*
H11B0.43200.39460.39340.071*
C120.47827 (16)0.1425 (3)0.32700 (15)0.0609 (5)
H12A0.49740.01410.35270.073*
H12B0.55180.19580.30300.073*
C130.37392 (16)0.1369 (3)0.23460 (14)0.0578 (5)
H13A0.36280.26300.20320.069*
H13B0.39580.05070.18000.069*
C140.25403 (16)0.0721 (2)0.27005 (14)0.0537 (5)
H14A0.18840.07720.20990.064*
H14B0.26210.05880.29480.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0474 (9)0.0385 (8)0.0304 (8)0.0024 (6)0.0002 (7)0.0035 (6)
C20.0595 (11)0.0423 (9)0.0505 (11)0.0062 (8)0.0019 (9)0.0084 (7)
C30.0566 (11)0.0439 (9)0.0651 (12)0.0167 (8)0.0002 (9)0.0133 (8)
C40.0447 (9)0.0413 (8)0.0546 (10)0.0110 (7)0.0028 (8)0.0001 (7)
C50.0438 (9)0.0341 (7)0.0354 (8)0.0056 (6)0.0009 (7)0.0058 (6)
C60.0425 (9)0.0349 (7)0.0313 (8)0.0050 (6)0.0012 (7)0.0029 (6)
C70.0424 (9)0.0419 (8)0.0444 (10)0.0089 (7)0.0049 (8)0.0008 (7)
O80.0637 (8)0.0614 (8)0.0985 (11)0.0251 (6)0.0386 (8)0.0237 (7)
N90.0458 (8)0.0498 (7)0.0340 (7)0.0008 (6)0.0010 (6)0.0046 (6)
C100.0501 (10)0.0603 (10)0.0375 (10)0.0003 (7)0.0009 (8)0.0037 (8)
C110.0489 (11)0.0720 (11)0.0539 (11)0.0041 (8)0.0018 (9)0.0006 (9)
C120.0520 (11)0.0673 (11)0.0640 (13)0.0094 (8)0.0101 (9)0.0045 (9)
C130.0668 (12)0.0613 (10)0.0478 (11)0.0120 (9)0.0162 (9)0.0037 (9)
C140.0614 (11)0.0528 (9)0.0457 (11)0.0040 (8)0.0032 (9)0.0116 (8)
Geometric parameters (Å, º) top
C1—N91.3923 (19)N9—C101.4637 (19)
C1—C21.398 (2)C10—C111.508 (2)
C1—C61.425 (2)C10—H10A0.9700
C2—C31.368 (2)C10—H10B0.9700
C2—H20.9300C11—C121.509 (2)
C3—C41.373 (2)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.386 (2)C12—C131.514 (2)
C4—H40.9300C12—H12A0.9700
C5—C61.4078 (19)C12—H12B0.9700
C5—C7i1.493 (2)C13—C141.509 (2)
C6—C71.479 (2)C13—H13A0.9700
C7—O81.2209 (18)C13—H13B0.9700
C7—C5i1.493 (2)C14—H14A0.9700
N9—C141.4595 (19)C14—H14B0.9700
N9—C1—C2120.15 (13)N9—C10—H10B109.4
N9—C1—C6122.30 (13)C11—C10—H10B109.4
C2—C1—C6117.53 (14)H10A—C10—H10B108.0
C3—C2—C1121.86 (15)C10—C11—C12110.53 (15)
C3—C2—H2119.1C10—C11—H11A109.5
C1—C2—H2119.1C12—C11—H11A109.5
C2—C3—C4120.87 (14)C10—C11—H11B109.5
C2—C3—H3119.6C12—C11—H11B109.5
C4—C3—H3119.6H11A—C11—H11B108.1
C3—C4—C5119.62 (15)C11—C12—C13109.70 (14)
C3—C4—H4120.2C11—C12—H12A109.7
C5—C4—H4120.2C13—C12—H12A109.7
C4—C5—C6120.55 (14)C11—C12—H12B109.7
C4—C5—C7i116.03 (14)C13—C12—H12B109.7
C6—C5—C7i123.40 (12)H12A—C12—H12B108.2
C5—C6—C1119.22 (12)C14—C13—C12111.83 (15)
C5—C6—C7116.76 (13)C14—C13—H13A109.3
C1—C6—C7123.47 (13)C12—C13—H13A109.3
O8—C7—C6122.64 (14)C14—C13—H13B109.3
O8—C7—C5i118.49 (13)C12—C13—H13B109.3
C6—C7—C5i118.83 (13)H13A—C13—H13B107.9
C1—N9—C14118.71 (12)N9—C14—C13110.33 (13)
C1—N9—C10118.19 (12)N9—C14—H14A109.6
C14—N9—C10111.35 (12)C13—C14—H14A109.6
N9—C10—C11111.04 (13)N9—C14—H14B109.6
N9—C10—H10A109.4C13—C14—H14B109.6
C11—C10—H10A109.4H14A—C14—H14B108.1
N9—C1—C2—C3178.97 (15)C1—C6—C7—O85.0 (2)
C6—C1—C2—C32.4 (2)C5—C6—C7—C5i11.1 (2)
C1—C2—C3—C42.6 (3)C1—C6—C7—C5i177.48 (13)
C2—C3—C4—C53.7 (3)C2—C1—N9—C1414.6 (2)
C3—C4—C5—C60.2 (2)C6—C1—N9—C14163.92 (13)
C3—C4—C5—C7i178.57 (15)C2—C1—N9—C10125.26 (15)
C4—C5—C6—C15.3 (2)C6—C1—N9—C1056.21 (18)
C7i—C5—C6—C1176.55 (13)C1—N9—C10—C11157.87 (14)
C4—C5—C6—C7166.56 (14)C14—N9—C10—C1159.50 (17)
C7i—C5—C6—C711.6 (2)N9—C10—C11—C1257.34 (18)
N9—C1—C6—C5175.20 (13)C10—C11—C12—C1354.17 (19)
C2—C1—C6—C56.2 (2)C11—C12—C13—C1454.10 (19)
N9—C1—C6—C713.6 (2)C1—N9—C14—C13159.33 (13)
C2—C1—C6—C7164.99 (14)C10—N9—C14—C1358.25 (17)
C5—C6—C7—O8166.46 (16)C12—C13—C14—N956.03 (18)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2ii0.932.983.850 (2)156
Symmetry code: (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H26N2O2
Mr374.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.9115 (4), 7.0127 (2), 12.5984 (5)
β (°) 97.819 (4)
V3)955.05 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.22 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.909, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12625, 1699, 1274
Rint0.042
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.04
No. of reflections1699
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.932.983.850 (2)156
Symmetry code: (i) x, y1/2, z+1/2.
The ππ interaction geometry (Å,°). top
IJCgI···CgJDihedral angleCgI_PerpCgJ_PerpCgI_OffsetCgJ_Offset
22ii3.806 (1)03.702 (1)3.702 (1)0.884 (1)0.884 (1)
Symmetry code: (ii) –x, –y, –z + 1.

Notes: Cg2 is the centroid of the C1–C6 ring. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgJ_Perp is the perpendicular distance of CgJ from ring I. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. CgJ_Offset is the distance between CgJ and perpendicular projection of CgI on ring J.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 122 640 and by the University of Gdańsk within the project supporting young scientists and PhD students (grant No. 538-8210-1029-12).

References

First citationAlves, D. S., Perez-Fons, L., Estepa, A. & Micol, V. (2004). Biochem. Pharmacol. 68, 549–561.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCzupryniak, J., Niedziałkowski, P., Karbarz, M., Ossowski, T. & Stojek, Z. (2012). Electroanalysis, 24, 975–982.  Web of Science CrossRef CAS Google Scholar
First citationEl-Najjar, N., Gali-Muhtasib, H. A., Ketola, R., Vuorela, P., Urtti, A. & Vuorela, H. (2011). Phytochem. Rev. 10, 353–370.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrohn, K. (2008). Editor. Anthracycline Chemistry and Biology II, Topics in Current Chemistry, Vol. 283. Berlin Heidelberg: Springer-Verlag.  Google Scholar
First citationNiedziałkowski, P., Narloch, J., Trzybiński, D. & Ossowski, T. (2011). Acta Cryst. E67, o723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiedziałkowski, P., Trzybiński, D., Sikorski, A. & Ossowski, T. (2010). Acta Cryst. E66, o33–o34.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWannalerse, B., Tuntulani, T. & Tomapatanaget, B. (2008). Tetrahedron, 64, 10619–10624.  Web of Science CrossRef CAS Google Scholar
First citationWnuk, E., Niedziałkowski, P., Trzybiński, D. & Ossowski, T. (2012). Acta Cryst. E68, o2879.  CSD CrossRef IUCr Journals Google Scholar
First citationYatsenko, A. V., Paseshnichenko, K. A. & Popov, S. I. (2000). Z. Kristallogr. 215, 542–546.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds