organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{(E)-[5-(2-Nitro­phen­yl)furan-2-yl]methyl­­idene}-2,2-di­phenyl­hydrazine

aFacultad de Química, Universidad Nacional Autónoma de México, 04510, México DF, Mexico, and bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla 72570, Puebla, Pue., Mexico
*Correspondence e-mail: mfa@unam.mx

(Received 6 December 2012; accepted 9 December 2012; online 15 December 2012)

In the title compound, C23H17N3O3, the terminal benzene rings are oriented at dihedral angles of 3.67 (7), 76.02 (7) and 16.37 (7)° with respect to the central furan ring. In the crystal, mol­ecules are connected via weak C—H⋯O hydrogen bonds, resulting in a three-dimensional supra­molecular array.

Related literature

For applications of hydrazones, see: Robinson (1963[Robinson, B. (1963). Chem. Rev. 63, 373-382.]); Sztanke et al. (2007[Sztanke, K., Pasterhak, K., Rzymowska, J., Sztanke, M. & Kandefer-Szerszen, M. (2007). Eur. J. Med. Chem. 43, 404-419.]); Al-Macrosaur et al. (2007[Al-Macrosaur, L. Q., Dayam, R., Taheri, L., Witvrouw, M., Debyser, Z. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6472-6475.]); Kucukguzel et al. (2003[Kucukguzel, S. G., Mazi, A., Sahin, F., Ozturk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005-1013.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1035.]); Smalley et al. (2006[Smalley, T. L. Jr, Peat, A. J., Boucheron, J. A., Dickerson, S., Garrido, D., Preugschat, F., Schweiker, S. L., Thomson, S. A. & Wang, T. Y. (2006). Bioorg. Med. Chem. Lett. 16, 2091-2094.]); Gemma et al. (2006[Gemma, S., Kukreja, G., Fattorusso, C., Persico, M., Romano, M. P., Altarelli, M., Savini, L., Campiani, G., Fattorusso, E., Basilico, N., Taramelli, D., Yardley, V. & Butini, S. (2006). Bioorg. Med. Chem. Lett. 6, 5384-5388.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17N3O3

  • Mr = 383.4

  • Monoclinic, C 2/c

  • a = 11.2439 (2) Å

  • b = 17.3325 (4) Å

  • c = 19.7575 (4) Å

  • β = 105.778 (2)°

  • V = 3705.36 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.76 mm−1

  • T = 130 K

  • 0.58 × 0.23 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.759, Tmax = 0.892

  • 12881 measured reflections

  • 3395 independent reflections

  • 3070 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.03

  • 3395 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.95 2.48 3.1294 (16) 126
C11—H11⋯O3ii 0.95 2.57 3.4336 (18) 151
C12—H12⋯O3iii 0.95 2.48 3.3786 (18) 158
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Hydrazones are nitrogenated derivatives of carbonyl groups. Their general structure contains a double carbon-nitrogen bond formed by the elimination of a water molecule when it reacts with a hydrazine having a carbonyl compound. Many hydrazones, including diphenylhydrazones, have several industrial purposes such as hole carriers in thin film organic photoconductors applied to electrographic processes in printers and photocopiers, plasticizers, polymer stabilizers, antioxidants and polymer initiators (Robinson, 1963). Moreover, hydrazides and hydrazones are present in many of the bioactive heterocyclic compounds because of their diverse biological and clinical applications, making them of great interest for researchers who have synthesized a variety of hydrazide-hydrazones derivatives and have screened them for their various biological activities anticancerigenous (Sztanke et al., 2007), anti-HIV (Al-Macrosaur et al., 2007), antimycobacterial (Kucukguzel et al., 2003), anti-inflammatory, antidiabetic, antimicrobial, and antimalarial activities (Roma et al., 2000; Smalley et al., 2006; Gemma et al., 2006).

In the title compound C23H17N3O3, the asymmetric unit consist of one molecule of [5-(2-nitrophenyl)furan-2-ylmethylene]-2,2-diphenylhydrazine (Fig. 1) showing an E configuration on C=N group with diphenylhydrazine group opposite to nitrophenylfuran group. The terminal benzene rings are oriented with respect to the central furan ring at 3.67 (7), 76.02 (7) and 16.37 (7)°, respectively. The angle between planes formed by phenyl rings C1 to C6 (r.m.s. = 0.0054) and C7 to C12 (r.m.s. = 0.0045) is 74.46 (4) °. The furan-2-ylmethylene fragment shows slight planary deviation with r.m.s. of 0.0153 and plane equation 6.262 (3) x + 14.321 (4) y - 4.589 (11) z = 4.215 (5), while in the o-nitrophenyl group, the angle (53.76 (8)°) between planes NO2 and phenyl ring and the r.m.s. of 0.3714 evidence a deviation of planary.

The conformation of nitro group with respect to phenyl ring is favoured by the intermolecular interactions C—H···O of type hydrogen bond (table 1). The intermolecular contacts C8—H8···O2 and C9—H9···O2 toits neighbours related by the symmetry operation x + 1, y, z showing a R21(5) motif (Etter et al., 1990) and formed a chain in the direction of the crystallographic a axis, while the C11—H11···O1 and C12—H12···O1 with symmetry operations -x + 1/2, y - 1/2, -z + 1/2 and x + 1/2, y - 1/2, z respectively show a motif of the type D mainly. All intermolecular interactions are observed growing along the a, b and c axes, resulting in a three-dimensional supramolecular array.

Related literature top

For applications of hydrazones, see: Robinson (1963); Sztanke et al. (2007); Al-Macrosaur et al. (2007); Kucukguzel et al. (2003); Roma et al. (2000); Smalley et al. (2006); Gemma et al. (2006). For hydrogen-bond motifs, see: Etter et al. (1990).

Experimental top

Diphenylhydrazine (1.38 mmol, 254 mg) was dissolved in ethanol, a chemical equivalent (300 mg) of aldehyde which was previously dissolved in the same solvent and it was added drop by drop stirring constantly.The action mixture was kept at room temperature and was monitored by TLC, and then vacuum filtered. The hydrazones were recrystallized by a continuous and controlled process until wine crystals with adequate size and purity were developed in order to obtain X-ray studies. m.p. = 393-395 K, Yield 90.6%.

1H NMR (400 MHz, (CD3)2CO: (δ/ p.p.m., J/Hz): 7.77 (dd, H-3, J =7.94 H3 –H4 J =1.20 coupling W H3 –H5); 7.64 (dd, H-6, J =8.10 H6 –H5 and J =1.16 coupling W H6 –H4); 7.54 (td, H-5, coupling H-4 H-6 J =7.74 and coupling W H-3, J =1.20); 7.42 (t, H-3); 7.36 (td, H-4 coupling H-3 H-5, J = 7.74, coupling W H-6, J = 1.36); 7.20 (m, 4H,H-2, H2,H-4); 6.99 (s, H-i); 6.69 (d, H-4 coupling H-3, J =3.60); 6.58 (d, H-3 coupling H-4, J = 3.60). 13C NMR (100 MHz, (CD3)2CO): (δ/ p.p.m.):153.0 (C2), 147.56 (C5), 147.17 (C2), 142.92 (C1), 131.77 (C5), 129.84 (C3), 128.50 (C3), 127.97 (C4), 124.87 (C2), 124.79 (iminic-C), 123.81 (C1), 123.69 (C6), 122.40 (C4), 111.91 (C4) y 110.10 (C3).

Refinement top

H atoms bonded to C atoms were placed in geometrical idealized positions and were refined as riding on their parent atoms, with C—H = 0.95 Å with Uiso(H) = 1.2 Ueq(C).

Structure description top

Hydrazones are nitrogenated derivatives of carbonyl groups. Their general structure contains a double carbon-nitrogen bond formed by the elimination of a water molecule when it reacts with a hydrazine having a carbonyl compound. Many hydrazones, including diphenylhydrazones, have several industrial purposes such as hole carriers in thin film organic photoconductors applied to electrographic processes in printers and photocopiers, plasticizers, polymer stabilizers, antioxidants and polymer initiators (Robinson, 1963). Moreover, hydrazides and hydrazones are present in many of the bioactive heterocyclic compounds because of their diverse biological and clinical applications, making them of great interest for researchers who have synthesized a variety of hydrazide-hydrazones derivatives and have screened them for their various biological activities anticancerigenous (Sztanke et al., 2007), anti-HIV (Al-Macrosaur et al., 2007), antimycobacterial (Kucukguzel et al., 2003), anti-inflammatory, antidiabetic, antimicrobial, and antimalarial activities (Roma et al., 2000; Smalley et al., 2006; Gemma et al., 2006).

In the title compound C23H17N3O3, the asymmetric unit consist of one molecule of [5-(2-nitrophenyl)furan-2-ylmethylene]-2,2-diphenylhydrazine (Fig. 1) showing an E configuration on C=N group with diphenylhydrazine group opposite to nitrophenylfuran group. The terminal benzene rings are oriented with respect to the central furan ring at 3.67 (7), 76.02 (7) and 16.37 (7)°, respectively. The angle between planes formed by phenyl rings C1 to C6 (r.m.s. = 0.0054) and C7 to C12 (r.m.s. = 0.0045) is 74.46 (4) °. The furan-2-ylmethylene fragment shows slight planary deviation with r.m.s. of 0.0153 and plane equation 6.262 (3) x + 14.321 (4) y - 4.589 (11) z = 4.215 (5), while in the o-nitrophenyl group, the angle (53.76 (8)°) between planes NO2 and phenyl ring and the r.m.s. of 0.3714 evidence a deviation of planary.

The conformation of nitro group with respect to phenyl ring is favoured by the intermolecular interactions C—H···O of type hydrogen bond (table 1). The intermolecular contacts C8—H8···O2 and C9—H9···O2 toits neighbours related by the symmetry operation x + 1, y, z showing a R21(5) motif (Etter et al., 1990) and formed a chain in the direction of the crystallographic a axis, while the C11—H11···O1 and C12—H12···O1 with symmetry operations -x + 1/2, y - 1/2, -z + 1/2 and x + 1/2, y - 1/2, z respectively show a motif of the type D mainly. All intermolecular interactions are observed growing along the a, b and c axes, resulting in a three-dimensional supramolecular array.

For applications of hydrazones, see: Robinson (1963); Sztanke et al. (2007); Al-Macrosaur et al. (2007); Kucukguzel et al. (2003); Roma et al. (2000); Smalley et al. (2006); Gemma et al. (2006). For hydrogen-bond motifs, see: Etter et al. (1990).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 50% probability displacement ellipsoids.
1-{(E)-[5-(2-Nitrophenyl)furan-2-yl]methylidene}-2,2-diphenylhydrazine top
Crystal data top
C23H17N3O3F(000) = 1600
Mr = 383.4Dx = 1.375 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 11.2439 (2) ÅCell parameters from 7112 reflections
b = 17.3325 (4) Åθ = 4.7–68.0°
c = 19.7575 (4) ŵ = 0.76 mm1
β = 105.778 (2)°T = 130 K
V = 3705.36 (13) Å3Prism, dark red
Z = 80.58 × 0.23 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
3395 independent reflections
Graphite monochromator3070 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.025
ω scansθmax = 68.1°, θmin = 4.7°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1312
Tmin = 0.759, Tmax = 0.892k = 2020
12881 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0507P)2 + 2.4695P]
where P = (Fo2 + 2Fc2)/3
3395 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H17N3O3V = 3705.36 (13) Å3
Mr = 383.4Z = 8
Monoclinic, C2/cCu Kα radiation
a = 11.2439 (2) ŵ = 0.76 mm1
b = 17.3325 (4) ÅT = 130 K
c = 19.7575 (4) Å0.58 × 0.23 × 0.16 mm
β = 105.778 (2)°
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini)
diffractometer
3395 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2009)
3070 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.892Rint = 0.025
12881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
3395 reflectionsΔρmin = 0.23 e Å3
262 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.78362 (12)0.11751 (7)0.50986 (6)0.0257 (3)
C20.74740 (13)0.14665 (8)0.56708 (7)0.0325 (3)
H20.6720.17430.55970.039*
C30.82184 (16)0.13506 (9)0.63460 (8)0.0413 (4)
H30.7960.1540.67340.05*
C40.93315 (15)0.09646 (9)0.64657 (7)0.0409 (4)
H40.98410.08960.69310.049*
C50.96930 (14)0.06805 (9)0.59025 (7)0.0357 (3)
H51.04580.04160.59810.043*
C60.89522 (12)0.07768 (8)0.52221 (7)0.0300 (3)
H60.92060.05710.48380.036*
C70.74945 (11)0.10332 (7)0.38131 (6)0.0241 (3)
C80.84143 (12)0.14515 (7)0.36340 (7)0.0275 (3)
H80.87630.18920.39010.033*
C90.88229 (13)0.12232 (9)0.30637 (7)0.0349 (3)
H90.9460.15050.29430.042*
C100.83115 (14)0.05903 (9)0.26718 (7)0.0374 (3)
H100.85990.04350.22830.045*
C110.73814 (15)0.01799 (9)0.28417 (8)0.0401 (4)
H110.70210.02520.25660.048*
C120.69702 (13)0.03992 (8)0.34186 (7)0.0339 (3)
H120.63350.01150.3540.041*
C130.53250 (12)0.18208 (8)0.37108 (7)0.0289 (3)
H130.55510.16290.33120.035*
C140.42085 (12)0.22646 (7)0.36118 (7)0.0277 (3)
C150.33253 (12)0.24501 (8)0.30155 (7)0.0320 (3)
H150.33080.23040.25490.038*
C160.24368 (12)0.29027 (8)0.32204 (7)0.0318 (3)
H160.17080.3120.29190.038*
C170.28245 (11)0.29681 (7)0.39320 (7)0.0259 (3)
C180.24109 (11)0.33793 (7)0.44712 (7)0.0251 (3)
C190.32397 (12)0.35087 (8)0.51312 (7)0.0307 (3)
H190.40490.32990.52280.037*
C200.29179 (13)0.39311 (8)0.56460 (7)0.0352 (3)
H200.35030.40010.6090.042*
C210.17507 (14)0.42559 (8)0.55249 (8)0.0352 (3)
H210.15380.45530.58790.042*
C220.09046 (12)0.41394 (7)0.48811 (8)0.0311 (3)
H220.01010.43580.47870.037*
C230.12323 (11)0.37034 (7)0.43747 (7)0.0260 (3)
O20.00013 (9)0.29075 (6)0.35265 (6)0.0402 (3)
O30.03133 (10)0.41347 (7)0.34252 (6)0.0497 (3)
N10.70834 (10)0.12687 (7)0.44078 (6)0.0295 (3)
N20.60193 (10)0.16807 (6)0.43303 (6)0.0281 (2)
N30.02437 (10)0.35707 (7)0.37240 (6)0.0304 (3)
O10.39230 (7)0.25773 (5)0.41814 (4)0.0260 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0271 (7)0.0272 (6)0.0240 (6)0.0049 (5)0.0089 (5)0.0014 (5)
C20.0336 (7)0.0356 (7)0.0318 (7)0.0052 (6)0.0147 (6)0.0051 (6)
C30.0538 (10)0.0468 (9)0.0273 (7)0.0110 (7)0.0177 (7)0.0089 (6)
C40.0469 (9)0.0488 (9)0.0232 (7)0.0084 (7)0.0032 (6)0.0009 (6)
C50.0357 (8)0.0394 (8)0.0291 (7)0.0008 (6)0.0040 (6)0.0050 (6)
C60.0309 (7)0.0349 (7)0.0248 (6)0.0013 (5)0.0089 (5)0.0012 (5)
C70.0206 (6)0.0300 (6)0.0213 (6)0.0034 (5)0.0052 (5)0.0028 (5)
C80.0253 (6)0.0293 (7)0.0284 (6)0.0004 (5)0.0082 (5)0.0003 (5)
C90.0347 (7)0.0426 (8)0.0327 (7)0.0062 (6)0.0179 (6)0.0075 (6)
C100.0460 (8)0.0447 (8)0.0228 (7)0.0175 (7)0.0118 (6)0.0037 (6)
C110.0470 (9)0.0340 (8)0.0320 (7)0.0055 (6)0.0018 (6)0.0087 (6)
C120.0299 (7)0.0325 (7)0.0372 (7)0.0033 (6)0.0054 (6)0.0010 (6)
C130.0266 (7)0.0331 (7)0.0302 (7)0.0003 (5)0.0130 (5)0.0030 (5)
C140.0256 (6)0.0303 (7)0.0293 (6)0.0001 (5)0.0112 (5)0.0019 (5)
C150.0308 (7)0.0386 (7)0.0272 (7)0.0013 (6)0.0086 (5)0.0004 (5)
C160.0259 (7)0.0382 (7)0.0293 (7)0.0038 (5)0.0042 (5)0.0038 (5)
C170.0193 (6)0.0269 (6)0.0301 (7)0.0020 (5)0.0044 (5)0.0047 (5)
C180.0219 (6)0.0236 (6)0.0294 (6)0.0014 (5)0.0065 (5)0.0040 (5)
C190.0239 (6)0.0352 (7)0.0317 (7)0.0000 (5)0.0055 (5)0.0012 (5)
C200.0339 (7)0.0386 (8)0.0314 (7)0.0058 (6)0.0062 (6)0.0040 (6)
C210.0384 (8)0.0309 (7)0.0400 (8)0.0036 (6)0.0171 (6)0.0056 (6)
C220.0269 (7)0.0256 (6)0.0429 (8)0.0005 (5)0.0130 (6)0.0022 (6)
C230.0218 (6)0.0226 (6)0.0328 (7)0.0024 (5)0.0060 (5)0.0044 (5)
O20.0311 (5)0.0397 (6)0.0470 (6)0.0091 (4)0.0057 (4)0.0080 (5)
O30.0318 (6)0.0470 (6)0.0595 (7)0.0004 (5)0.0060 (5)0.0201 (5)
N10.0242 (5)0.0414 (6)0.0251 (6)0.0067 (5)0.0103 (4)0.0022 (5)
N20.0222 (5)0.0328 (6)0.0320 (6)0.0025 (4)0.0121 (4)0.0039 (4)
N30.0195 (5)0.0346 (6)0.0367 (6)0.0019 (4)0.0068 (5)0.0060 (5)
O10.0208 (4)0.0298 (5)0.0271 (5)0.0031 (3)0.0060 (3)0.0029 (3)
Geometric parameters (Å, º) top
C1—C61.3943 (19)C14—C151.3569 (19)
C1—C21.3961 (18)C14—O11.3638 (15)
C1—N11.4062 (16)C14—O11.3638 (15)
C2—C31.383 (2)C15—C161.4133 (19)
C2—H20.95C15—H150.95
C3—C41.382 (2)C16—C171.3587 (19)
C3—H30.95C16—H160.95
C4—C51.375 (2)C17—O11.3770 (14)
C4—H40.95C17—O11.3770 (14)
C5—C61.3856 (19)C17—C181.4590 (18)
C5—H50.95C18—C191.3994 (18)
C6—H60.95C18—C231.4039 (18)
C7—C121.3830 (19)C19—C201.379 (2)
C7—C81.3855 (18)C19—H190.95
C7—N11.4340 (16)C20—C211.388 (2)
C8—C91.3852 (18)C20—H200.95
C8—H80.95C21—C221.380 (2)
C9—C101.375 (2)C21—H210.95
C9—H90.95C22—C231.3814 (19)
C10—C111.380 (2)C22—H220.95
C10—H100.95C23—N31.4711 (17)
C11—C121.394 (2)O2—O20
C11—H110.95O2—N31.2212 (15)
C12—H120.95O3—N31.2228 (15)
C13—N21.2833 (17)N1—N21.3657 (15)
C13—C141.4396 (18)N3—O21.2212 (15)
C13—H130.95O1—O10.000 (3)
C6—C1—C2118.96 (12)C14—C15—C16106.87 (12)
C6—C1—N1120.17 (11)C14—C15—H15126.6
C2—C1—N1120.86 (12)C16—C15—H15126.6
C3—C2—C1119.68 (14)C17—C16—C15106.84 (12)
C3—C2—H2120.2C17—C16—H16126.6
C1—C2—H2120.2C15—C16—H16126.6
C4—C3—C2121.18 (13)C16—C17—O1109.49 (11)
C4—C3—H3119.4C16—C17—O1109.49 (11)
C2—C3—H3119.4O1—C17—O10.00 (9)
C5—C4—C3119.22 (13)C16—C17—C18136.05 (12)
C5—C4—H4120.4O1—C17—C18114.32 (10)
C3—C4—H4120.4O1—C17—C18114.32 (10)
C4—C5—C6120.65 (14)C19—C18—C23115.29 (12)
C4—C5—H5119.7C19—C18—C17119.67 (11)
C6—C5—H5119.7C23—C18—C17124.95 (11)
C5—C6—C1120.29 (12)C20—C19—C18122.04 (13)
C5—C6—H6119.9C20—C19—H19119
C1—C6—H6119.9C18—C19—H19119
C12—C7—C8120.34 (12)C19—C20—C21120.91 (13)
C12—C7—N1120.33 (12)C19—C20—H20119.5
C8—C7—N1119.32 (11)C21—C20—H20119.5
C9—C8—C7119.61 (12)C22—C21—C20118.82 (13)
C9—C8—H8120.2C22—C21—H21120.6
C7—C8—H8120.2C20—C21—H21120.6
C10—C9—C8120.36 (13)C21—C22—C23119.64 (12)
C10—C9—H9119.8C21—C22—H22120.2
C8—C9—H9119.8C23—C22—H22120.2
C9—C10—C11120.18 (13)C22—C23—C18123.26 (12)
C9—C10—H10119.9C22—C23—N3115.56 (11)
C11—C10—H10119.9C18—C23—N3121.14 (11)
C10—C11—C12120.01 (13)O2—O2—N30 (10)
C10—C11—H11120N2—N1—C1116.55 (10)
C12—C11—H11120N2—N1—C7121.65 (10)
C7—C12—C11119.48 (13)C1—N1—C7121.28 (10)
C7—C12—H12120.3C13—N2—N1119.54 (11)
C11—C12—H12120.3O2—N3—O20.00 (15)
N2—C13—C14120.83 (12)O2—N3—O3123.84 (12)
N2—C13—H13119.6O2—N3—O3123.84 (12)
C14—C13—H13119.6O2—N3—C23118.53 (11)
C15—C14—O1109.97 (11)O2—N3—C23118.53 (11)
C15—C14—O1109.97 (11)O3—N3—C23117.59 (11)
O1—C14—O10.00 (6)O1—O1—C140 (10)
C15—C14—C13130.53 (12)O1—O1—C170 (10)
O1—C14—C13119.50 (11)C14—O1—C17106.83 (9)
O1—C14—C13119.50 (11)
C6—C1—C2—C30.5 (2)C20—C21—C22—C230.2 (2)
N1—C1—C2—C3178.48 (12)C21—C22—C23—C181.6 (2)
C1—C2—C3—C41.4 (2)C21—C22—C23—N3176.22 (12)
C2—C3—C4—C51.1 (2)C19—C18—C23—C221.75 (18)
C3—C4—C5—C60.2 (2)C17—C18—C23—C22174.89 (12)
C4—C5—C6—C11.0 (2)C19—C18—C23—N3175.97 (11)
C2—C1—C6—C50.7 (2)C17—C18—C23—N37.40 (19)
N1—C1—C6—C5179.69 (12)C6—C1—N1—N2178.57 (11)
C12—C7—C8—C91.14 (19)C2—C1—N1—N22.45 (18)
N1—C7—C8—C9179.46 (12)C6—C1—N1—C76.65 (18)
C7—C8—C9—C100.7 (2)C2—C1—N1—C7174.37 (12)
C8—C9—C10—C110.4 (2)C12—C7—N1—N279.10 (16)
C9—C10—C11—C121.0 (2)C8—C7—N1—N2100.30 (14)
C8—C7—C12—C110.5 (2)C12—C7—N1—C1109.40 (14)
N1—C7—C12—C11179.92 (12)C8—C7—N1—C171.20 (16)
C10—C11—C12—C70.5 (2)C14—C13—N2—N1178.95 (11)
N2—C13—C14—C15176.81 (14)C1—N1—N2—C13176.38 (12)
N2—C13—C14—O13.82 (19)C7—N1—N2—C134.49 (18)
N2—C13—C14—O13.82 (19)O2—O2—N3—O30.00 (9)
O1—C14—C15—C160.05 (15)O2—O2—N3—C230.00 (10)
O1—C14—C15—C160.05 (15)C22—C23—N3—O2125.38 (13)
C13—C14—C15—C16179.46 (13)C18—C23—N3—O252.50 (16)
C14—C15—C16—C170.12 (16)C22—C23—N3—O2125.38 (13)
C15—C16—C17—O10.24 (15)C18—C23—N3—O252.50 (16)
C15—C16—C17—O10.24 (15)C22—C23—N3—O352.21 (16)
C15—C16—C17—C18175.53 (14)C18—C23—N3—O3129.90 (13)
C16—C17—C18—C19159.87 (15)C15—C14—O1—O10.00 (10)
O1—C17—C18—C1915.26 (17)C13—C14—O1—O10.00 (11)
O1—C17—C18—C1915.26 (17)C15—C14—O1—C170.20 (14)
C16—C17—C18—C2316.6 (2)O1—C14—O1—C170E1 (4)
O1—C17—C18—C23168.24 (11)C13—C14—O1—C17179.68 (11)
O1—C17—C18—C23168.24 (11)C16—C17—O1—O10.00 (8)
C23—C18—C19—C200.53 (19)C18—C17—O1—O10.00 (9)
C17—C18—C19—C20176.29 (12)C16—C17—O1—C140.27 (14)
C18—C19—C20—C210.8 (2)O1—C17—O1—C140E1 (4)
C19—C20—C21—C221.0 (2)C18—C17—O1—C14176.69 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.952.483.1294 (16)126
C9—H9···O2i0.952.693.2324 (18)117
C11—H11···O3ii0.952.573.4336 (18)151
C12—H12···O3iii0.952.483.3786 (18)158
C16—H16···O20.952.562.9635 (17)106
C19—H19···O10.952.392.7389 (16)102
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC23H17N3O3
Mr383.4
Crystal system, space groupMonoclinic, C2/c
Temperature (K)130
a, b, c (Å)11.2439 (2), 17.3325 (4), 19.7575 (4)
β (°) 105.778 (2)
V3)3705.36 (13)
Z8
Radiation typeCu Kα
µ (mm1)0.76
Crystal size (mm)0.58 × 0.23 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur (Atlas, Gemini)
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.759, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
12881, 3395, 3070
Rint0.025
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.03
No. of reflections3395
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.952.483.1294 (16)125.9
C11—H11···O3ii0.952.573.4336 (18)151.3
C12—H12···O3iii0.952.483.3786 (18)157.9
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z.
 

Acknowledgements

We are grateful for financial support (project No. CAVB-NATG-12, VIEP-BUAP). MFA is indebted to Dr A. L. Maldonado-Hermenegildo for useful comments.

References

First citationAl-Macrosaur, L. Q., Dayam, R., Taheri, L., Witvrouw, M., Debyser, Z. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6472–6475.  Web of Science PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGemma, S., Kukreja, G., Fattorusso, C., Persico, M., Romano, M. P., Altarelli, M., Savini, L., Campiani, G., Fattorusso, E., Basilico, N., Taramelli, D., Yardley, V. & Butini, S. (2006). Bioorg. Med. Chem. Lett. 6, 5384–5388.  Web of Science CrossRef Google Scholar
First citationKucukguzel, S. G., Mazi, A., Sahin, F., Ozturk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRobinson, B. (1963). Chem. Rev. 63, 373–382.  CrossRef Web of Science Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1035.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmalley, T. L. Jr, Peat, A. J., Boucheron, J. A., Dickerson, S., Garrido, D., Preugschat, F., Schweiker, S. L., Thomson, S. A. & Wang, T. Y. (2006). Bioorg. Med. Chem. Lett. 16, 2091–2094.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSztanke, K., Pasterhak, K., Rzymowska, J., Sztanke, M. & Kandefer-Szerszen, M. (2007). Eur. J. Med. Chem. 43, 404–419.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds