organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-[(E)-(2-fluoro-5-nitro­phenyl)iminometh­yl]phenol

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, and ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al AzharUniversity, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 12 December 2012; accepted 13 December 2012; online 19 December 2012)

The mol­ecular conformation of the title compound, C13H8BrFN2O3, is essentially planar, with maximum deviations of 0.076 (1) and −0.080 (2) Å for the O atoms of the NO2 group. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond, forming an S(6) ring motif. In the crystal, pairs of mol­ecules are linked via two pairs of C—H⋯O hydrogen bonds, forming inversion dimers that enclose R22(7)R22(10)R22(7) ring motifs.

Related literature

For the synthesis and biological activity of azomethines, see: Przybylski et al. (2009[Przybylski, P., Huczynski, A., Pyta, K. & Bartl, B. (2009). Curr. Org. Chem. 13, 124-130.]); Kalaivani et al. (2012[Kalaivani, S., Priya, N. P. & Arunachalam, S. (2012). Int. J. Appl. Biol. Pharm. Technol. 3, 219-223.]); Blair et al. (2000[Blair, J. B., Kurrasch-Orbaugh, D., Marona-Lewicka, D., Cumbay, M. G., Watts, V. J., Barker, E. L. & Nichols, D. E. (2000). J. Med. Chem. 43, 4701-4710.]). For the synthesis of fluorinated azomethines, see: Mohamed et al. (2012[Mohamed, S. K., Abdelhamid, A. A., Akkurt, M., Fanwick, P. E. & Maharramov, A. M. (2012). Acta Cryst. E68, o1618.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8BrFN2O3

  • Mr = 339.11

  • Monoclinic, P 21 /n

  • a = 4.5082 (9) Å

  • b = 19.815 (4) Å

  • c = 13.853 (3) Å

  • β = 95.484 (5)°

  • V = 1231.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.36 mm−1

  • T = 100 K

  • 0.24 × 0.04 × 0.03 mm

Data collection
  • Rigaku AFC12 (Right) diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.500, Tmax = 0.906

  • 8107 measured reflections

  • 2811 independent reflections

  • 2633 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 1.05

  • 2811 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.86 2.601 (2) 146
C7—H7⋯O3i 0.95 2.45 3.399 (3) 173
C13—H13⋯O3i 0.95 2.48 3.430 (3) 173
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases have been shown to exhibit a broad range of biological activities, including antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties (Przybylski et al., 2009; Kalaivani et al., 2012). Among such compounds, the fluorinated Schiff's bases were considered to possess a distingushed biological activity due to the dramatic affect of fluorine atom on the metabolism and distribution of drug molecules in the body (Blair et al., 2000). Further to our on going study on synthesis of bioactive fluorinated compounds (Mohamed et al., 2012) we herein report the synthesis and crystal structure of a new fluorinated azomethine derivative.

In the title compound (I), (Fig. 1), the molecular conformation is essentially planar, with maxium deviations of 0.076 (1) and -0.080 (2) Å, respectively, for O2 and O3. The C1–C7–N1–C8 torsion angle is 179.92 (16)°. The bond lengths and angles in (I) are within the normal range (Allen et al., 1987).

Molecular conformation is stabilized by O—H···N hydrogen bond (Table 1), forming an S(6) ring motif. In the crystal, the pairs of molecules are linked by C—H···O interactions (Table 1, Fig. 2), generating R22(7)R22(10)R22(7) ring motifs (Bernstein et al., 1995) along the [001] direction.

Related literature top

For the synthesis and biological activity of azomethines, see: Przybylski et al. (2009); Kalaivani et al. (2012); Blair et al. (2000). For the synthesis of fluorinated azomethines, see: Mohamed et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 1 mmol (156 mg) 2-fluoro-5-nitroaniline and 1 mmol (201 mg) 5-bromo-2-hydroxybenzaldehyde in 50 ml e thanol was heated at 350 K and monitored by TLC till completion after 12 h. A mass solid product was deposited once the reaction mixture was allowed to cool at room temperature. The crude product was filtered dried under vacuum and washed by ethanol. Pure yellow rods (m.p. 465 K) suitable for X-ray diffraction were obtained in an excellent yield (92%) by crystallization of crude product from ethanol.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with O—H = 0.84 Å, C—H = 0.95 Å, and with Uiso(H) = 1.5Ueq(O) for hydroxyl and Uiso(H) = 1.2 Ueq(C) for the other H atoms.

Structure description top

Schiff bases have been shown to exhibit a broad range of biological activities, including antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties (Przybylski et al., 2009; Kalaivani et al., 2012). Among such compounds, the fluorinated Schiff's bases were considered to possess a distingushed biological activity due to the dramatic affect of fluorine atom on the metabolism and distribution of drug molecules in the body (Blair et al., 2000). Further to our on going study on synthesis of bioactive fluorinated compounds (Mohamed et al., 2012) we herein report the synthesis and crystal structure of a new fluorinated azomethine derivative.

In the title compound (I), (Fig. 1), the molecular conformation is essentially planar, with maxium deviations of 0.076 (1) and -0.080 (2) Å, respectively, for O2 and O3. The C1–C7–N1–C8 torsion angle is 179.92 (16)°. The bond lengths and angles in (I) are within the normal range (Allen et al., 1987).

Molecular conformation is stabilized by O—H···N hydrogen bond (Table 1), forming an S(6) ring motif. In the crystal, the pairs of molecules are linked by C—H···O interactions (Table 1, Fig. 2), generating R22(7)R22(10)R22(7) ring motifs (Bernstein et al., 1995) along the [001] direction.

For the synthesis and biological activity of azomethines, see: Przybylski et al. (2009); Kalaivani et al. (2012); Blair et al. (2000). For the synthesis of fluorinated azomethines, see: Mohamed et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) viewed along the a axis. The hydrogen atoms not involved in the hydrogen bonds have been omitted for clarity.
4-Bromo-2-[(E)-(2-fluoro-5-nitrophenyl)iminomethyl]phenol top
Crystal data top
C13H8BrFN2O3F(000) = 672
Mr = 339.11Dx = 1.829 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 4566 reflections
a = 4.5082 (9) Åθ = 2.5–31.2°
b = 19.815 (4) ŵ = 3.36 mm1
c = 13.853 (3) ÅT = 100 K
β = 95.484 (5)°Rod, yellow
V = 1231.8 (4) Å30.24 × 0.04 × 0.03 mm
Z = 4
Data collection top
Rigaku AFC12 (Right)
diffractometer
2811 independent reflections
Radiation source: Rotating Anode2633 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.023
profile data from ω–scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 55
Tmin = 0.500, Tmax = 0.906k = 2524
8107 measured reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0255P)2 + 1.1447P]
where P = (Fo2 + 2Fc2)/3
2811 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C13H8BrFN2O3V = 1231.8 (4) Å3
Mr = 339.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.5082 (9) ŵ = 3.36 mm1
b = 19.815 (4) ÅT = 100 K
c = 13.853 (3) Å0.24 × 0.04 × 0.03 mm
β = 95.484 (5)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
2811 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
2633 reflections with I > 2σ(I)
Tmin = 0.500, Tmax = 0.906Rint = 0.023
8107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.05Δρmax = 0.52 e Å3
2811 reflectionsΔρmin = 0.54 e Å3
182 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15532 (4)0.22619 (1)0.43736 (1)0.0188 (1)
F10.7510 (2)0.50903 (6)0.05672 (7)0.0202 (3)
O10.2171 (3)0.37891 (7)0.09274 (9)0.0171 (4)
O21.5039 (3)0.63282 (8)0.41030 (11)0.0290 (4)
O31.2227 (5)0.56614 (11)0.48212 (12)0.0614 (8)
N10.5847 (3)0.44689 (7)0.21201 (11)0.0140 (4)
N21.3057 (4)0.59101 (9)0.40914 (12)0.0227 (5)
C10.2662 (4)0.36222 (8)0.26646 (12)0.0123 (5)
C20.1398 (4)0.34652 (9)0.17204 (12)0.0135 (5)
C30.0742 (4)0.29535 (9)0.15895 (13)0.0157 (5)
C40.1635 (4)0.26099 (9)0.23746 (13)0.0159 (5)
C50.0389 (4)0.27669 (9)0.33084 (12)0.0140 (5)
C60.1728 (4)0.32683 (9)0.34603 (12)0.0145 (5)
C70.4936 (4)0.41399 (9)0.28338 (13)0.0138 (5)
C80.8050 (4)0.49730 (9)0.22592 (13)0.0136 (5)
C90.8877 (4)0.52873 (9)0.14215 (12)0.0150 (5)
C101.0992 (4)0.57931 (9)0.14290 (13)0.0165 (5)
C111.2365 (4)0.60049 (9)0.23159 (13)0.0157 (5)
C121.1566 (4)0.56969 (9)0.31484 (13)0.0156 (5)
C130.9451 (4)0.51880 (9)0.31435 (13)0.0154 (5)
H10.348300.407900.109300.0260*
H30.158300.284300.095400.0190*
H40.310100.226600.228100.0190*
H60.255000.337300.410000.0170*
H70.575300.423500.347700.0170*
H101.149200.599100.084100.0200*
H111.381900.635300.235100.0190*
H130.896900.499000.373300.0180*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0189 (1)0.0213 (1)0.0161 (1)0.0045 (1)0.0003 (1)0.0053 (1)
F10.0209 (6)0.0273 (6)0.0115 (5)0.0064 (5)0.0028 (4)0.0011 (4)
O10.0208 (7)0.0184 (6)0.0119 (6)0.0042 (5)0.0007 (5)0.0008 (5)
O20.0326 (8)0.0292 (8)0.0243 (7)0.0159 (7)0.0022 (6)0.0043 (6)
O30.0880 (16)0.0804 (15)0.0135 (8)0.0628 (13)0.0074 (9)0.0082 (8)
N10.0128 (7)0.0141 (7)0.0150 (7)0.0001 (6)0.0013 (6)0.0005 (5)
N20.0290 (9)0.0228 (8)0.0156 (8)0.0085 (7)0.0011 (7)0.0008 (6)
C10.0110 (8)0.0124 (8)0.0136 (8)0.0021 (6)0.0011 (6)0.0003 (6)
C20.0137 (8)0.0135 (8)0.0133 (8)0.0026 (6)0.0015 (6)0.0004 (6)
C30.0156 (9)0.0171 (8)0.0140 (8)0.0000 (7)0.0011 (6)0.0047 (7)
C40.0145 (8)0.0144 (8)0.0186 (9)0.0005 (7)0.0001 (7)0.0018 (7)
C50.0144 (8)0.0148 (8)0.0127 (8)0.0009 (7)0.0015 (6)0.0021 (6)
C60.0147 (8)0.0160 (8)0.0125 (8)0.0014 (7)0.0000 (6)0.0002 (6)
C70.0123 (8)0.0151 (8)0.0137 (8)0.0012 (7)0.0005 (6)0.0014 (6)
C80.0129 (8)0.0129 (8)0.0151 (8)0.0007 (6)0.0016 (7)0.0003 (6)
C90.0139 (8)0.0179 (8)0.0125 (8)0.0022 (7)0.0023 (6)0.0014 (6)
C100.0164 (9)0.0166 (8)0.0167 (9)0.0011 (7)0.0022 (7)0.0036 (7)
C110.0155 (8)0.0126 (8)0.0191 (9)0.0009 (7)0.0017 (7)0.0007 (7)
C120.0163 (9)0.0155 (8)0.0145 (8)0.0004 (7)0.0010 (7)0.0021 (6)
C130.0160 (9)0.0159 (8)0.0143 (8)0.0009 (7)0.0012 (7)0.0007 (6)
Geometric parameters (Å, º) top
Br1—C51.8980 (18)C5—C61.380 (3)
F1—C91.339 (2)C8—C131.390 (3)
O1—C21.347 (2)C8—C91.399 (2)
O2—N21.218 (2)C9—C101.383 (3)
O3—N21.215 (3)C10—C111.387 (3)
O1—H10.8400C11—C121.383 (3)
N1—C71.284 (2)C12—C131.387 (3)
N1—C81.409 (2)C3—H30.9500
N2—C121.473 (2)C4—H40.9500
C1—C61.405 (2)C6—H60.9500
C1—C71.453 (2)C7—H70.9500
C1—C21.411 (2)C10—H100.9500
C2—C31.399 (3)C11—H110.9500
C3—C41.376 (3)C13—H130.9500
C4—C51.395 (2)
C2—O1—H1109.00F1—C9—C10118.47 (15)
C7—N1—C8121.86 (16)C8—C9—C10123.70 (16)
O2—N2—C12118.63 (16)C9—C10—C11118.36 (16)
O3—N2—C12118.09 (18)C10—C11—C12118.40 (17)
O2—N2—O3123.29 (18)N2—C12—C11118.69 (16)
C2—C1—C7121.43 (15)C11—C12—C13123.40 (17)
C6—C1—C7119.05 (15)N2—C12—C13117.91 (16)
C2—C1—C6119.52 (16)C8—C13—C12118.76 (16)
O1—C2—C3117.94 (15)C2—C3—H3120.00
C1—C2—C3119.50 (16)C4—C3—H3120.00
O1—C2—C1122.56 (16)C3—C4—H4120.00
C2—C3—C4120.43 (16)C5—C4—H4120.00
C3—C4—C5120.02 (17)C1—C6—H6120.00
Br1—C5—C4119.11 (13)C5—C6—H6120.00
Br1—C5—C6119.98 (13)N1—C7—H7120.00
C4—C5—C6120.88 (16)C1—C7—H7120.00
C1—C6—C5119.65 (15)C9—C10—H10121.00
N1—C7—C1120.45 (16)C11—C10—H10121.00
N1—C8—C9116.27 (16)C10—C11—H11121.00
N1—C8—C13126.35 (16)C12—C11—H11121.00
C9—C8—C13117.38 (16)C8—C13—H13121.00
F1—C9—C8117.83 (16)C12—C13—H13121.00
C8—N1—C7—C1179.92 (16)C3—C4—C5—C60.4 (3)
C7—N1—C8—C9179.13 (17)C3—C4—C5—Br1177.66 (14)
C7—N1—C8—C131.3 (3)Br1—C5—C6—C1177.55 (13)
O3—N2—C12—C134.7 (3)C4—C5—C6—C10.5 (3)
O2—N2—C12—C113.3 (3)N1—C8—C9—C10179.72 (16)
O2—N2—C12—C13175.80 (17)C13—C8—C9—F1179.08 (16)
O3—N2—C12—C11176.20 (19)C13—C8—C9—C100.1 (3)
C7—C1—C2—C3178.71 (17)N1—C8—C9—F10.5 (2)
C7—C1—C6—C5178.80 (17)N1—C8—C13—C12179.49 (17)
C2—C1—C7—N10.1 (3)C9—C8—C13—C120.1 (3)
C2—C1—C6—C50.7 (3)F1—C9—C10—C11178.83 (16)
C6—C1—C2—C30.8 (3)C8—C9—C10—C110.4 (3)
C7—C1—C2—O11.2 (3)C9—C10—C11—C120.4 (3)
C6—C1—C7—N1179.58 (16)C10—C11—C12—N2178.83 (16)
C6—C1—C2—O1179.35 (16)C10—C11—C12—C130.3 (3)
O1—C2—C3—C4179.43 (16)N2—C12—C13—C8179.08 (16)
C1—C2—C3—C40.7 (3)C11—C12—C13—C80.0 (3)
C2—C3—C4—C50.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.862.601 (2)146
C7—H7···O3i0.952.453.399 (3)173
C13—H13···O3i0.952.483.430 (3)173
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H8BrFN2O3
Mr339.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)4.5082 (9), 19.815 (4), 13.853 (3)
β (°) 95.484 (5)
V3)1231.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.36
Crystal size (mm)0.24 × 0.04 × 0.03
Data collection
DiffractometerRigaku AFC12 (Right)
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2012)
Tmin, Tmax0.500, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
8107, 2811, 2633
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 1.05
No. of reflections2811
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.54

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.862.601 (2)146
C7—H7···O3i0.952.453.399 (3)173
C13—H13···O3i0.952.483.430 (3)173
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The EPSRC National Crystallography Service is gratefully acknowledged for the X-ray diffraction data. AAA and SKM thank the Ministry of Higher Education of Egypt for financial support of this collaporative project. The authors are also thankful to Manchester Metropolitan University and Erciyes University for supporting this study.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlair, J. B., Kurrasch-Orbaugh, D., Marona-Lewicka, D., Cumbay, M. G., Watts, V. J., Barker, E. L. & Nichols, D. E. (2000). J. Med. Chem. 43, 4701–4710.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKalaivani, S., Priya, N. P. & Arunachalam, S. (2012). Int. J. Appl. Biol. Pharm. Technol. 3, 219-223.  CAS Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Akkurt, M., Fanwick, P. E. & Maharramov, A. M. (2012). Acta Cryst. E68, o1618.  CSD CrossRef IUCr Journals Google Scholar
First citationPrzybylski, P., Huczynski, A., Pyta, K. & Bartl, B. (2009). Curr. Org. Chem. 13, 124–130.  CrossRef CAS Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds