organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-(4-chloro­phen­yl)-8-iodo-2-methyl-6-oxo-1,6-di­hydro-4H-pyrimido[2,1-b]quinazoline-3-carboxyl­ate

aCenter for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3-20133 Milan, Italy, and bDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
*Correspondence e-mail: nksusa@gmail.com, katharigattav@dut.ac.za

(Received 25 November 2012; accepted 13 December 2012; online 22 December 2012)

In the title compound, C20H15ClIN3O3, the dihedral angle between the quinazolinone ring system [r.m.s. deviation = 0.047 (2) Å] and the pendant benzene ring is 82.63 (11)°. The mol­ecular conformation is stabilized by intra­molecular C—H⋯O inter­actions. In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonds into chains along the a-axis direction. Another set of chains propagating along [101] is formed due to inter­molecular I⋯Cl short contacts of 3.427 (1) Å, thus giving layers parallel to (010). The layers are connected by C—H⋯π and ππ inter­actions, the shortest distance between the centroids of aromatic rings being 3.8143 (16) Å.

Related literature

For crystal structures of dihydro­pyrimidines, see: Nayak et al. (2010[Nayak, S. K., Venugopala, K. N., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205-1216.], 2011a[Nayak, S. K., Venugopala, K. N., Chopra, D. & Guru Row, T. N. (2011a). CrystEngComm, 13, 591-605.],b[Nayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011b). Cryst. Growth Des. 11, 1578-1596.],c[Nayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G., Maguire, G. E. M. & Row, T. N. G. (2011c). Acta Cryst. E67, o3069-o3070.]); Venugopala et al. (2012[Venugopala, K. N., Nayak, S. K. & Odhav, B. (2012). Acta Cryst. E68, o2977-o2978.]). For applications of dihydro­pyrimidines, see: Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]). For halogen-involving inter­actions, see: Nayak et al. (2011b[Nayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011b). Cryst. Growth Des. 11, 1578-1596.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15ClIN3O3

  • Mr = 507.70

  • Triclinic, [P \overline 1]

  • a = 7.3443 (15) Å

  • b = 10.847 (2) Å

  • c = 12.475 (3) Å

  • α = 106.66 (3)°

  • β = 103.53 (2)°

  • γ = 92.79 (3)°

  • V = 918.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 173 K

  • 0.25 × 0.14 × 0.12 mm

Data collection
  • Bruker APEXII Kappa DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.646, Tmax = 0.803

  • 7109 measured reflections

  • 3602 independent reflections

  • 3147 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.09

  • 3602 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 2.04 2.903 (3) 167
C5—H5A⋯O1 0.98 2.22 2.807 (4) 117
C8—H8⋯O2 0.95 2.49 3.167 (4) 128
C1—H1BCg1ii 0.98 2.67 3.647 (4) 175
Symmetry codes: (i) x-1, y, z; (ii) -x-1, -y-1, -z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

In continuation of our work on the pharmacological properties and single-crystal X-ray studies (Nayak et al., 2010, 2011a,b,c; Venugopala et al., 2012) on dihydropyrimidine derivatives, we synthesized the title compound as a potential anti-malarial agent. Here we are reporting the single-crystal structure of the title compound.

The conformation of the title molecule is stabilized by intramolecular C—H···O interactions, and the dihedral angle between the planes of the 4-chlorophenyl and iodophenyl groups is 80.3 (2)° (Fig. 1). The crystal structure is stabilized by N—H···O infinite hydrogen bond chains parallel to [0 1 0]. Halogen-involving short contacts I···Cl [3.427 (2) Å, θ1= 166.1 (2)°; θ2= 90.5 (2)°, symmetry code: x + 1, y, z + 1, Type II (Nayak et al., 2011b)] form infinite chains orthogonal to hydrogen bond chains which lead to two-dimensional molecular assembly (Fig. 2). Further, the C—H···π [2.67 Å,Cg1 = Centroid of six membered ring C7—C12; Table 1] and ππ [Cg2···Cg2 = 3.814 (2) Å, symmetry code: –X,1-Y,-Z; Cg2 = Centroid of six membered ring N2/C13/N3/C14/C19/C20] interactions enhance the stability of three-dimensional molecular assembly.

Related literature top

For crystal structures of dihydropyrimidines, see: Nayak et al. (2010, 2011a,b,c); Venugopala et al. (2012). For applications of dihydropyrimidines, see: Kappe (2000). For halogen-involving interactions, see: Nayak et al. (2011b).

Experimental top

A mixture of methyl-2-chloro-4-(4-chlorophenyl)-6-methyl-1,4- dihydropyrimidine-5-carboxylate (1 mmol), 2-amino-5-iodobenzoic acid (1 mmol) and methanamine (1 mmol) in 2-propanol (5 ml) was refluxed for 12 h. The reaction completion was monitored by TLC. The reaction medium was cooled to room temperature, the product was filtered, washed with cold 2-propanol and dried to obtain the crude product. The product was purified by recrystallization using ethanol in 66% yield as a brown solid (m. p. 467 (2) K). Crystals suitable for single-crystal X-ray study were obtained from methanol and tetrahydrofuran (1:1) solvent using slow evaporation at room temperature.

Refinement top

All H atoms were positioned geometrically with N—H = 0.88 Å, C—H = 0.95–1.00 Å and refined using a riding model with Uiso(H) = 1.2 Ueq(C/N) except for the methyl group where Uiso(H) = 1.5 Ueq(C).

Structure description top

In continuation of our work on the pharmacological properties and single-crystal X-ray studies (Nayak et al., 2010, 2011a,b,c; Venugopala et al., 2012) on dihydropyrimidine derivatives, we synthesized the title compound as a potential anti-malarial agent. Here we are reporting the single-crystal structure of the title compound.

The conformation of the title molecule is stabilized by intramolecular C—H···O interactions, and the dihedral angle between the planes of the 4-chlorophenyl and iodophenyl groups is 80.3 (2)° (Fig. 1). The crystal structure is stabilized by N—H···O infinite hydrogen bond chains parallel to [0 1 0]. Halogen-involving short contacts I···Cl [3.427 (2) Å, θ1= 166.1 (2)°; θ2= 90.5 (2)°, symmetry code: x + 1, y, z + 1, Type II (Nayak et al., 2011b)] form infinite chains orthogonal to hydrogen bond chains which lead to two-dimensional molecular assembly (Fig. 2). Further, the C—H···π [2.67 Å,Cg1 = Centroid of six membered ring C7—C12; Table 1] and ππ [Cg2···Cg2 = 3.814 (2) Å, symmetry code: –X,1-Y,-Z; Cg2 = Centroid of six membered ring N2/C13/N3/C14/C19/C20] interactions enhance the stability of three-dimensional molecular assembly.

For crystal structures of dihydropyrimidines, see: Nayak et al. (2010, 2011a,b,c); Venugopala et al. (2012). For applications of dihydropyrimidines, see: Kappe (2000). For halogen-involving interactions, see: Nayak et al. (2011b).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme and displacement ellipsoids for non-H atoms drawn at the 50% probability level. The intramolecular C—H···O interactions are shown by dashed lines.
[Figure 2] Fig. 2. Intermolecular N—H···O hydrogen bonds and short contacts I···Cl forming layers parallel to (010).
Methyl 4-(4-chlorophenyl)-8-iodo-2-methyl-6-oxo-1,6-dihydro-4H- pyrimido[2,1-b]quinazoline-3-carboxylate top
Crystal data top
C20H15ClIN3O3Z = 2
Mr = 507.70F(000) = 500
Triclinic, P1Dx = 1.836 Mg m3
Hall symbol: -P 1Melting point: 467(2) K
a = 7.3443 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.847 (2) ÅCell parameters from 560 reflections
c = 12.475 (3) Åθ = 2.9–26.0°
α = 106.66 (3)°µ = 1.92 mm1
β = 103.53 (2)°T = 173 K
γ = 92.79 (3)°Plate, yellow
V = 918.5 (4) Å30.25 × 0.14 × 0.12 mm
Data collection top
Bruker APEXII Kappa DUO CCD
diffractometer
3602 independent reflections
Radiation source: fine-focus sealed tube3147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
0.5° φ scans and ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.646, Tmax = 0.803k = 1313
7109 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.4298P]
where P = (Fo2 + 2Fc2)/3
3602 reflections(Δ/σ)max = 0.003
255 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C20H15ClIN3O3γ = 92.79 (3)°
Mr = 507.70V = 918.5 (4) Å3
Triclinic, P1Z = 2
a = 7.3443 (15) ÅMo Kα radiation
b = 10.847 (2) ŵ = 1.92 mm1
c = 12.475 (3) ÅT = 173 K
α = 106.66 (3)°0.25 × 0.14 × 0.12 mm
β = 103.53 (2)°
Data collection top
Bruker APEXII Kappa DUO CCD
diffractometer
3602 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3147 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.803Rint = 0.017
7109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.09Δρmax = 0.89 e Å3
3602 reflectionsΔρmin = 0.52 e Å3
255 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.42667 (2)0.047532 (17)1.168961 (15)0.02807 (8)
Cl10.75652 (11)0.07966 (7)0.33638 (6)0.03791 (19)
O10.6050 (3)0.62853 (18)0.61509 (16)0.0272 (4)
O20.9047 (3)0.59136 (19)0.62752 (17)0.0287 (4)
O31.2104 (2)0.34709 (18)0.86038 (16)0.0250 (4)
N10.5905 (3)0.4115 (2)0.84598 (19)0.0238 (5)
H10.48420.39150.86170.029*
N20.9040 (3)0.3772 (2)0.85309 (17)0.0184 (4)
N30.7400 (3)0.3144 (2)0.97648 (19)0.0235 (5)
C10.6278 (4)0.7087 (3)0.5443 (3)0.0312 (7)
H1A0.73080.77890.58740.047*
H1B0.51040.74570.52320.047*
H1C0.65770.65620.47380.047*
C20.7579 (4)0.5753 (2)0.6529 (2)0.0205 (6)
C30.7317 (3)0.4945 (2)0.7260 (2)0.0185 (5)
C40.5854 (4)0.4883 (2)0.7733 (2)0.0208 (5)
C50.4109 (4)0.5552 (3)0.7604 (3)0.0270 (6)
H5A0.43790.63580.74320.041*
H5B0.37120.57510.83260.041*
H5C0.30970.49830.69690.041*
C60.8863 (3)0.4093 (2)0.7435 (2)0.0182 (5)
H61.00840.45880.74910.022*
C70.8535 (3)0.2847 (2)0.6416 (2)0.0180 (5)
C80.9062 (4)0.2870 (3)0.5422 (2)0.0230 (6)
H80.96570.36530.53920.028*
C90.8728 (4)0.1763 (3)0.4471 (2)0.0268 (6)
H90.90640.17900.37870.032*
C100.7903 (4)0.0623 (3)0.4531 (2)0.0261 (6)
C110.7360 (4)0.0575 (3)0.5507 (2)0.0270 (6)
H110.67810.02130.55360.032*
C120.7672 (4)0.1693 (3)0.6445 (2)0.0231 (6)
H120.72900.16690.71160.028*
C130.7476 (4)0.3651 (2)0.8947 (2)0.0192 (5)
C140.8986 (4)0.2618 (2)1.0197 (2)0.0212 (6)
C150.8893 (4)0.1949 (3)1.0998 (2)0.0262 (6)
H150.77880.19131.12650.031*
C161.0389 (4)0.1347 (3)1.1397 (2)0.0264 (6)
H161.03000.08751.19210.032*
C171.2046 (4)0.1424 (3)1.1035 (2)0.0233 (6)
C181.2198 (4)0.2091 (3)1.0265 (2)0.0227 (6)
H181.33250.21431.00220.027*
C191.0655 (4)0.2691 (2)0.9845 (2)0.0194 (5)
C201.0732 (4)0.3341 (2)0.8977 (2)0.0194 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02738 (11)0.03098 (12)0.02945 (11)0.00738 (8)0.00520 (8)0.01593 (8)
Cl10.0363 (4)0.0311 (4)0.0339 (4)0.0142 (3)0.0019 (3)0.0018 (3)
O10.0242 (10)0.0311 (11)0.0342 (11)0.0093 (8)0.0084 (9)0.0202 (9)
O20.0265 (11)0.0315 (11)0.0400 (12)0.0078 (8)0.0166 (9)0.0220 (9)
O30.0167 (9)0.0348 (11)0.0314 (10)0.0061 (8)0.0103 (8)0.0185 (9)
N10.0154 (11)0.0320 (13)0.0320 (13)0.0073 (9)0.0111 (10)0.0173 (10)
N20.0153 (11)0.0229 (12)0.0202 (11)0.0031 (9)0.0065 (9)0.0097 (9)
N30.0213 (12)0.0289 (13)0.0247 (12)0.0064 (10)0.0095 (10)0.0115 (10)
C10.0335 (16)0.0341 (17)0.0321 (16)0.0071 (13)0.0055 (13)0.0215 (13)
C20.0221 (14)0.0174 (13)0.0205 (13)0.0040 (11)0.0037 (11)0.0044 (11)
C30.0159 (13)0.0186 (13)0.0205 (13)0.0023 (10)0.0037 (10)0.0060 (11)
C40.0209 (14)0.0191 (13)0.0231 (13)0.0042 (11)0.0047 (11)0.0080 (11)
C50.0230 (14)0.0303 (15)0.0363 (16)0.0118 (12)0.0140 (13)0.0168 (13)
C60.0167 (12)0.0228 (14)0.0194 (13)0.0034 (10)0.0069 (10)0.0113 (11)
C70.0121 (12)0.0223 (14)0.0220 (13)0.0069 (10)0.0039 (10)0.0103 (11)
C80.0208 (14)0.0261 (15)0.0264 (14)0.0047 (11)0.0102 (11)0.0113 (12)
C90.0237 (14)0.0353 (17)0.0237 (14)0.0103 (13)0.0078 (12)0.0100 (12)
C100.0210 (14)0.0263 (15)0.0251 (14)0.0107 (12)0.0004 (12)0.0027 (12)
C110.0242 (15)0.0211 (15)0.0360 (16)0.0041 (12)0.0032 (12)0.0128 (13)
C120.0227 (14)0.0247 (15)0.0254 (14)0.0046 (11)0.0077 (12)0.0113 (12)
C130.0176 (13)0.0205 (13)0.0199 (13)0.0040 (10)0.0070 (11)0.0046 (11)
C140.0221 (14)0.0218 (14)0.0198 (13)0.0045 (11)0.0056 (11)0.0058 (11)
C150.0260 (15)0.0340 (16)0.0237 (14)0.0041 (12)0.0122 (12)0.0119 (12)
C160.0308 (15)0.0312 (16)0.0217 (14)0.0047 (12)0.0079 (12)0.0141 (12)
C170.0256 (14)0.0240 (14)0.0202 (13)0.0057 (11)0.0042 (11)0.0075 (11)
C180.0223 (14)0.0247 (14)0.0220 (14)0.0044 (11)0.0066 (11)0.0079 (11)
C190.0183 (13)0.0212 (13)0.0192 (13)0.0014 (11)0.0052 (10)0.0070 (11)
C200.0187 (13)0.0193 (13)0.0190 (13)0.0023 (10)0.0029 (11)0.0058 (11)
Geometric parameters (Å, º) top
I1—C172.099 (3)C5—H5C0.9800
Cl1—C101.750 (3)C6—C71.530 (4)
O1—C21.338 (3)C6—H61.0000
O1—C11.436 (3)C7—C121.389 (4)
O2—C21.211 (3)C7—C81.390 (3)
O3—C201.223 (3)C8—C91.389 (4)
N1—C131.363 (3)C8—H80.9500
N1—C41.392 (3)C9—C101.379 (4)
N1—H10.8800C9—H90.9500
N2—C131.382 (3)C10—C111.380 (4)
N2—C201.398 (3)C11—C121.388 (4)
N2—C61.483 (3)C11—H110.9500
N3—C131.301 (3)C12—H120.9500
N3—C141.386 (3)C14—C191.401 (4)
C1—H1A0.9800C14—C151.404 (4)
C1—H1B0.9800C15—C161.372 (4)
C1—H1C0.9800C15—H150.9500
C2—C31.469 (3)C16—C171.401 (4)
C3—C41.349 (3)C16—H160.9500
C3—C61.515 (3)C17—C181.379 (4)
C4—C51.502 (4)C18—C191.405 (4)
C5—H5A0.9800C18—H180.9500
C5—H5B0.9800C19—C201.461 (3)
C2—O1—C1115.4 (2)C9—C8—H8119.6
C13—N1—C4125.0 (2)C7—C8—H8119.6
C13—N1—H1117.5C10—C9—C8119.3 (3)
C4—N1—H1117.5C10—C9—H9120.4
C13—N2—C20121.4 (2)C8—C9—H9120.4
C13—N2—C6120.6 (2)C9—C10—C11121.1 (3)
C20—N2—C6116.72 (19)C9—C10—Cl1119.8 (2)
C13—N3—C14116.7 (2)C11—C10—Cl1119.1 (2)
O1—C1—H1A109.5C10—C11—C12119.1 (3)
O1—C1—H1B109.5C10—C11—H11120.4
H1A—C1—H1B109.5C12—C11—H11120.4
O1—C1—H1C109.5C11—C12—C7120.9 (2)
H1A—C1—H1C109.5C11—C12—H12119.5
H1B—C1—H1C109.5C7—C12—H12119.5
O2—C2—O1122.5 (2)N3—C13—N1118.2 (2)
O2—C2—C3123.1 (2)N3—C13—N2125.2 (2)
O1—C2—C3114.4 (2)N1—C13—N2116.6 (2)
C4—C3—C2126.5 (2)N3—C14—C19122.9 (2)
C4—C3—C6119.8 (2)N3—C14—C15118.4 (2)
C2—C3—C6113.7 (2)C19—C14—C15118.7 (2)
C3—C4—N1118.3 (2)C16—C15—C14120.4 (2)
C3—C4—C5129.1 (2)C16—C15—H15119.8
N1—C4—C5112.6 (2)C14—C15—H15119.8
C4—C5—H5A109.5C15—C16—C17120.3 (2)
C4—C5—H5B109.5C15—C16—H16119.8
H5A—C5—H5B109.5C17—C16—H16119.8
C4—C5—H5C109.5C18—C17—C16120.8 (2)
H5A—C5—H5C109.5C18—C17—I1121.37 (19)
H5B—C5—H5C109.5C16—C17—I1117.80 (19)
N2—C6—C3111.06 (19)C17—C18—C19118.7 (2)
N2—C6—C7110.0 (2)C17—C18—H18120.6
C3—C6—C7111.7 (2)C19—C18—H18120.6
N2—C6—H6108.0C14—C19—C18121.0 (2)
C3—C6—H6108.0C14—C19—C20118.9 (2)
C7—C6—H6108.0C18—C19—C20120.0 (2)
C12—C7—C8118.8 (2)O3—C20—N2120.3 (2)
C12—C7—C6121.6 (2)O3—C20—C19125.0 (2)
C8—C7—C6119.6 (2)N2—C20—C19114.7 (2)
C9—C8—C7120.7 (3)
C1—O1—C2—O21.3 (4)C6—C7—C12—C11179.1 (2)
C1—O1—C2—C3179.5 (2)C14—N3—C13—N1176.6 (2)
O2—C2—C3—C4168.5 (3)C14—N3—C13—N24.1 (4)
O1—C2—C3—C412.4 (4)C4—N1—C13—N3168.0 (2)
O2—C2—C3—C613.4 (4)C4—N1—C13—N211.4 (4)
O1—C2—C3—C6165.8 (2)C20—N2—C13—N30.0 (4)
C2—C3—C4—N1176.2 (2)C6—N2—C13—N3166.5 (2)
C6—C3—C4—N15.7 (4)C20—N2—C13—N1179.3 (2)
C2—C3—C4—C53.0 (5)C6—N2—C13—N114.2 (3)
C6—C3—C4—C5175.0 (3)C13—N3—C14—C194.3 (4)
C13—N1—C4—C315.7 (4)C13—N3—C14—C15173.8 (2)
C13—N1—C4—C5163.7 (2)N3—C14—C15—C16176.1 (3)
C13—N2—C6—C331.8 (3)C19—C14—C15—C162.0 (4)
C20—N2—C6—C3161.1 (2)C14—C15—C16—C171.8 (4)
C13—N2—C6—C792.5 (3)C15—C16—C17—C180.7 (4)
C20—N2—C6—C774.6 (3)C15—C16—C17—I1179.9 (2)
C4—C3—C6—N227.2 (3)C16—C17—C18—C190.1 (4)
C2—C3—C6—N2154.5 (2)I1—C17—C18—C19179.16 (19)
C4—C3—C6—C796.0 (3)N3—C14—C19—C18176.9 (2)
C2—C3—C6—C782.2 (3)C15—C14—C19—C181.1 (4)
N2—C6—C7—C1227.4 (3)N3—C14—C19—C200.5 (4)
C3—C6—C7—C1296.5 (3)C15—C14—C19—C20177.5 (2)
N2—C6—C7—C8154.5 (2)C17—C18—C19—C140.1 (4)
C3—C6—C7—C881.7 (3)C17—C18—C19—C20176.4 (2)
C12—C7—C8—C90.2 (4)C13—N2—C20—O3179.2 (2)
C6—C7—C8—C9178.0 (2)C6—N2—C20—O313.8 (3)
C7—C8—C9—C101.5 (4)C13—N2—C20—C193.8 (3)
C8—C9—C10—C111.7 (4)C6—N2—C20—C19163.2 (2)
C8—C9—C10—Cl1177.3 (2)C14—C19—C20—O3179.8 (3)
C9—C10—C11—C120.6 (4)C18—C19—C20—O33.8 (4)
Cl1—C10—C11—C12178.3 (2)C14—C19—C20—N23.4 (3)
C10—C11—C12—C70.7 (4)C18—C19—C20—N2173.0 (2)
C8—C7—C12—C110.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.882.042.903 (3)167
C5—H5A···O10.982.222.807 (4)117
C8—H8···O20.952.493.167 (4)128
C1—H1B···Cg1ii0.982.673.647 (4)175
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z1.

Experimental details

Crystal data
Chemical formulaC20H15ClIN3O3
Mr507.70
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.3443 (15), 10.847 (2), 12.475 (3)
α, β, γ (°)106.66 (3), 103.53 (2), 92.79 (3)
V3)918.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.92
Crystal size (mm)0.25 × 0.14 × 0.12
Data collection
DiffractometerBruker APEXII Kappa DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.646, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
7109, 3602, 3147
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.09
No. of reflections3602
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.52

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.882.042.903 (3)167
C5—H5A···O10.982.222.807 (4)117
C8—H8···O20.952.493.167 (4)128
C1—H1B···Cg1ii0.982.673.647 (4)175
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z1.
 

Acknowledgements

The authors thank Durban University of Technology for facilities. KNV thanks the NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011b). Cryst. Growth Des. 11, 1578–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D. & Guru Row, T. N. (2011a). CrystEngComm, 13, 591–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205–1216.  Google Scholar
First citationNayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G., Maguire, G. E. M. & Row, T. N. G. (2011c). Acta Cryst. E67, o3069–o3070.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenugopala, K. N., Nayak, S. K. & Odhav, B. (2012). Acta Cryst. E68, o2977–o2978.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds