metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-bis­­(di­phenyl­phosphan­yl)methane-κ2P:P′](μ-1-ethyl­thio­urea-κ2S:S)bis­­[iodidocopper(I)] aceto­nitrile sesquisolvate

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: chaveng.p@psu.ac.th

(Received 4 December 2012; accepted 15 December 2012; online 22 December 2012)

In the dinuclear title compound, [Cu2I2(C3H8N2S)(C25H22P2)2]·1.5CH3CN, each CuI atom exhibits a distorted tetra­hedral coordination with two P atoms from two bis­(diphenyl­phosphan­yl)methane (dppm) ligands, one metal-bridging S atom from the 1-ethyl­thio­urea (ettu) ligand and one iodide ion. The dppm ligand and the bridging S atom of the ettu ligand force the two copper atoms into close proximity, leading to the formation of a close intra­molecular Cu⋯Cu contact [3.3747 (17) Å]. The conformation of the dimeric complex is such that the two dppm ligands are located on one side of the dinuclear metal complex, while the two iodine atoms are pointed towards the other side of the complex, a conformation that is stabilized by two intra­molecular N—H⋯I hydrogen bonds between the ettu NH2 and NHEt moieties and the I atoms. Another pair of symmetry-equivalent N—H⋯I hydrogen bonds is established between neighboring mol­ecules across an inversion center, linking mol­ecules into dimers. The dimers are connected with each other and with the inter­stitial acetonitrile solvent mol­ecules via a range of weaker C—H⋯I and C—H⋯S inter­actions and through weak C—H⋯π inter­actions, leading to the formation of a three-dimensional network. One of the acetonitrile solvent mol­ecules is disordered in a 1:1 ratio across a crystallographic inversion center.

Related literature

For potential applications of related complexes, see: Isab et al. (2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251-1256.]); Safin et al. (2010[Safin, D. A., Babashkina, M. G., Bolte, M. & Klein, A. (2010). Inorg. Chim. Acta, 363, 1897-1901.]). For examples of dppm as a chelating ligand, see: Yang et al. (2000[Yang, R.-N., Sun, Y.-A., Hou, Y.-M., Hu, X.-Y. & Jin, D.-M. (2000). Inorg. Chim. Acta, 304, 1-6.]); Liaw et al. (2005[Liaw, B.-J., Lobana, T. S., Lin, Y.-W., Wang, J.-C. & Liu, C. W. (2005). Inorg. Chem. 44, 9921-9929.]); Jin et al. (2009[Jin, Q., Chen, L., Yang, L. & Li, P. (2009). Inorg. Chim. Acta, 362, 1743-1748.]). For relevant examples of discrete complexes, see: Colacio et al. (1997[Colacio, E., Cuesta, R. & Moreno, J. M. (1997). Inorg. Chem. 36, 1084-1087.]); Yam et al. (2001[Yam, V. W.-W., Lam, C.-H., Fung, W. K.-M. & Cheung, K.-K. (2001). Inorg. Chem. 40, 3435-3442.]); Zhou et al. (2001[Zhou, W.-B., Dong, Z.-C., Song, J.-L., Zeng, H.-Y., Cao, R., Guo, G.-C., Huang, J.-S. & Li, J. (2001). J. Cluster Sci. 13, 119-136.]); Nimthong et al. (2008[Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.]); Pakawatchai et al. (2012[Pakawatchai, C., Wattanakanjana, Y., Choto, P. & Nimthong, R. (2012). Acta Cryst. E68, m773-m774.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2I2(C3H8N2S)(C25H22P2)2]·1.5C2H3N

  • Mr = 1315.37

  • Monoclinic, P 21 /c

  • a = 13.7751 (6) Å

  • b = 24.5147 (11) Å

  • c = 18.0172 (8) Å

  • β = 111.720 (1)°

  • V = 5652.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 100 K

  • 0.28 × 0.17 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.670, Tmax = 0.821

  • 53066 measured reflections

  • 10863 independent reflections

  • 9108 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.101

  • S = 1.05

  • 10863 reflections

  • 643 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C41–C46 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I2i 0.87 (2) 2.85 (3) 3.645 (4) 152 (4)
N1—H1B⋯I2 0.84 (2) 2.96 (2) 3.796 (4) 171 (5)
N2—H2⋯I1 0.88 (2) 2.70 (2) 3.563 (4) 168 (4)
C63—H63⋯S1ii 0.95 2.95 3.751 (5) 143
C7—H7A⋯I1iii 0.98 3.02 3.961 (7) 161
C14—H14⋯Cg1iv 0.95 3.37 (1) 4.08 130
Symmetry codes: (i) -x, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal(I) complexes with mixed phosphine and sulfur donor ligands have attracted much attention in recent years because of various applications based on e.g. their luminescent properties (Safin et al., 2010) or antimicrobial activities (Isab et al., 2010). CuI ions functioning as Lewis acids tend to form covalent bonds with soft ligands and can make close Cu···Cu contacts, features that can promote uncommon bonding, reactivity and catalytic properties of multinuclear copper complexes. Bis(diphenylphosphanyl)methane (dppm), for example, has been reported on multiple occasions to be a diphosphine ligands that is able to lock two metal atoms together in close proximity (Yang et al., 2000; Liaw et al., 2005; Jin et al., 2009). Copper complexes of thiourea ligands such as 1-ethylthiourea (ettu), on the other hand have been of increasing interest due to the variety of their structures and their similarity to metallothioneines, i.e. they contain coordinated Cu—S moieties which play an important role in animals and plants. Herein, the crystal structure of a dinuclear copper(I) iodode complex containing both dppm and ettu is described.

The molecular structure of the dinuclear title compound is shown in Fig. 1. Each CuI ion displays a distorted tetrahedral coordination geometry with internal angles in the range 97.00 (4)–119.56 (4)°. The dppm ligand and the bridging S atom of the ettu ligand force the two copper atoms into close proximity, leading to the formation of a close intramolecular Cu···Cu contact [3.3747 (17) Å]. The Cu—P distances vary from 2.2563 (10) to 2.2786 (11) Å, which are quite similar to those observed in related copper(I) complexes containing the dppm ligand (Yam et al., 2001; Zhou et al., 2001). The Cu—S bond lengths (Cu1—S1 = 2.3450 (11), Cu2—S1 = 2.3493 (11) Å) are shorter than that found in for example [Cu2(µ-HL1)2(µ-dppm)(η1-dppm)2] (H2L1 = 8-mercaptotheophylline), which are 2.392 (5)–2.410 (6) Å (Colacio et al., 1997). The terminal Cu—I bond distances (Cu1—I1 = 2.6694 (6) and Cu2—I2 = 2.6690 (5) Å), are in their typical ranges [see e.g. Nimthong et al., 2008; Pakawatchai et al., 2012]. The conformation of the dinuclear complex is such that the two dppm ligands are located on one side of the metal complex, while the two iodine atoms are pointed towards the other side of the complex. This conformation is stabilized by two intramolecular N—H···I hydrogen bonds between the ettu NH2 and NHEt moieties and the iodine atoms with N···H distances of 3.796 (4) (for N1···I2) and 3.563 (4) Å (for N2···I1), respectively (Table 1). In the crystal, the N and I atoms are also involved in intramolecular N—H···I hydrogen bonds to form dimers across an inversion center (symmetry code: -x, -y, -z + 1) (Table 1, Fig. 2). The dimers are in turn connected with each other and with the interstitial acetonitrile solvate molecules via a range of weaker C—H···I and C—H···S interactions (Table 1) and through a weak C(sp2)—H···π interaction [C14—H14···Cg1iv, with H14···Cg1iv = 3.38 (3) Å, C14···Cg1iv = 4.09 (3) Å and C14—H14···Cg1iv = 129.4 (4)°, Cg1 = C41—C42—C43—C44—C45—C46 ring, symmetry code: (iv) -x+1/2, y-1/2, -z+1] leading to the formation of a three-dimensional network, Fig. 3 and Table 1. One of the solvent acetonitrile molecules is disordered in a 1:1 ratio across a crystallographic inversion center.

Related literature top

For potential applications of related complexes, see: Isab et al. (2010); Safin et al. (2010). For examples of dppm as a chelating ligand, see: Yang et al. (2000); Liaw et al. (2005); Jin et al. (2009). For relevant examples of discrete complexes, see: Colacio et al. (1997); Yam et al. (2001); Zhou et al. (2001); Nimthong et al. (2008); Pakawatchai et al. (2012).

Experimental top

1-Ethylthiourea, ettu, (0.03 g, 0.29 mmol) was dissolved in 30 cm3 of acetonitrile at 348 K and then CuI (0.05 g, 0.26 mmol) was added. The mixture was stirred for 4 h and then bis(diphenylphosphanyl)methane, dppm, (0.1 g, 0.26 mmol) was added and the new reaction mixture was heated under reflux for 12 h where upon the precipitate gradually disappeared. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline complex, which was deposited upon standing for several days, was filtered off and dried in vacuo (0.12 g, yield 67%). Mp = 531–533 K. Analysis found: C 47.77, H 4.02, N 3.68, S 2.26%; calculated for C112H113Cu4IN7P8S2: C 51.09, H 4.29, N 3.72, S 2.43%.

Refinement top

The H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 with Uiso(H) = 1.2 Ueq(C) for H atoms on C(sp2) and 0.98–0.99 Å with Uiso(H) = 1.5 Ueq(C) for H atoms on C(sp3). All H atoms bonded to N atoms were located in a difference Fourier map and refined isotropically, with N—H distances restrained to 0.87 (2) Å with Uiso(H) = 1.2Ueq(N). One of the acetonitrile molecules is disordered in a 1:1 ratio across a crystallographic inversion center and was refined anisotropically.

Structure description top

Metal(I) complexes with mixed phosphine and sulfur donor ligands have attracted much attention in recent years because of various applications based on e.g. their luminescent properties (Safin et al., 2010) or antimicrobial activities (Isab et al., 2010). CuI ions functioning as Lewis acids tend to form covalent bonds with soft ligands and can make close Cu···Cu contacts, features that can promote uncommon bonding, reactivity and catalytic properties of multinuclear copper complexes. Bis(diphenylphosphanyl)methane (dppm), for example, has been reported on multiple occasions to be a diphosphine ligands that is able to lock two metal atoms together in close proximity (Yang et al., 2000; Liaw et al., 2005; Jin et al., 2009). Copper complexes of thiourea ligands such as 1-ethylthiourea (ettu), on the other hand have been of increasing interest due to the variety of their structures and their similarity to metallothioneines, i.e. they contain coordinated Cu—S moieties which play an important role in animals and plants. Herein, the crystal structure of a dinuclear copper(I) iodode complex containing both dppm and ettu is described.

The molecular structure of the dinuclear title compound is shown in Fig. 1. Each CuI ion displays a distorted tetrahedral coordination geometry with internal angles in the range 97.00 (4)–119.56 (4)°. The dppm ligand and the bridging S atom of the ettu ligand force the two copper atoms into close proximity, leading to the formation of a close intramolecular Cu···Cu contact [3.3747 (17) Å]. The Cu—P distances vary from 2.2563 (10) to 2.2786 (11) Å, which are quite similar to those observed in related copper(I) complexes containing the dppm ligand (Yam et al., 2001; Zhou et al., 2001). The Cu—S bond lengths (Cu1—S1 = 2.3450 (11), Cu2—S1 = 2.3493 (11) Å) are shorter than that found in for example [Cu2(µ-HL1)2(µ-dppm)(η1-dppm)2] (H2L1 = 8-mercaptotheophylline), which are 2.392 (5)–2.410 (6) Å (Colacio et al., 1997). The terminal Cu—I bond distances (Cu1—I1 = 2.6694 (6) and Cu2—I2 = 2.6690 (5) Å), are in their typical ranges [see e.g. Nimthong et al., 2008; Pakawatchai et al., 2012]. The conformation of the dinuclear complex is such that the two dppm ligands are located on one side of the metal complex, while the two iodine atoms are pointed towards the other side of the complex. This conformation is stabilized by two intramolecular N—H···I hydrogen bonds between the ettu NH2 and NHEt moieties and the iodine atoms with N···H distances of 3.796 (4) (for N1···I2) and 3.563 (4) Å (for N2···I1), respectively (Table 1). In the crystal, the N and I atoms are also involved in intramolecular N—H···I hydrogen bonds to form dimers across an inversion center (symmetry code: -x, -y, -z + 1) (Table 1, Fig. 2). The dimers are in turn connected with each other and with the interstitial acetonitrile solvate molecules via a range of weaker C—H···I and C—H···S interactions (Table 1) and through a weak C(sp2)—H···π interaction [C14—H14···Cg1iv, with H14···Cg1iv = 3.38 (3) Å, C14···Cg1iv = 4.09 (3) Å and C14—H14···Cg1iv = 129.4 (4)°, Cg1 = C41—C42—C43—C44—C45—C46 ring, symmetry code: (iv) -x+1/2, y-1/2, -z+1] leading to the formation of a three-dimensional network, Fig. 3 and Table 1. One of the solvent acetonitrile molecules is disordered in a 1:1 ratio across a crystallographic inversion center.

For potential applications of related complexes, see: Isab et al. (2010); Safin et al. (2010). For examples of dppm as a chelating ligand, see: Yang et al. (2000); Liaw et al. (2005); Jin et al. (2009). For relevant examples of discrete complexes, see: Colacio et al. (1997); Yam et al. (2001); Zhou et al. (2001); Nimthong et al. (2008); Pakawatchai et al. (2012).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level. All hydrogen atoms and solvent molecules are omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure showing intra-intermolecular N—H···I hydrogen bonds shown as red dashed lines.
[Figure 3] Fig. 3. The packing structure of the title complex viewed down the c direction.
Bis[µ-bis(diphenylphosphanyl)methane-κ2P:P'](µ-1- ethylthiourea-κ2S:S)bis[iodidocopper(I)] acetonitrile sesquisolvate top
Crystal data top
[Cu2I2(C3H8N2S)(C25H22P2)2]·1.5C2H3NF(000) = 2628
Mr = 1315.37Dx = 1.546 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9510 reflections
a = 13.7751 (6) Åθ = 2.3–28.3°
b = 24.5147 (11) ŵ = 2.03 mm1
c = 18.0172 (8) ÅT = 100 K
β = 111.720 (1)°Hexagon, colorless
V = 5652.3 (4) Å30.28 × 0.17 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
10863 independent reflections
Radiation source: fine-focus sealed tube9108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
phi and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1818
Tmin = 0.670, Tmax = 0.821k = 3232
53066 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
10863 reflections(Δ/σ)max = 0.001
643 parametersΔρmax = 0.84 e Å3
3 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu2I2(C3H8N2S)(C25H22P2)2]·1.5C2H3NV = 5652.3 (4) Å3
Mr = 1315.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7751 (6) ŵ = 2.03 mm1
b = 24.5147 (11) ÅT = 100 K
c = 18.0172 (8) Å0.28 × 0.17 × 0.10 mm
β = 111.720 (1)°
Data collection top
Bruker SMART CCD
diffractometer
10863 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
9108 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.821Rint = 0.054
53066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0463 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.84 e Å3
10863 reflectionsΔρmin = 0.55 e Å3
643 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0596 (3)0.11641 (17)0.4430 (2)0.0175 (8)
C20.1075 (4)0.1437 (2)0.3356 (3)0.0345 (12)
H2A0.14470.17910.32430.041*
H2B0.14440.11960.36060.041*
C30.1131 (5)0.1191 (3)0.2594 (4)0.0556 (17)
H3A0.07820.14310.23340.067*
H3B0.18640.11440.22430.067*
H3C0.07820.08350.26970.067*
C40.1919 (3)0.19363 (16)0.7423 (2)0.0156 (8)
H4A0.26450.20630.77040.019*
H4B0.15330.19980.77830.019*
C50.4659 (3)0.18775 (15)0.6705 (2)0.0145 (8)
H5A0.46820.19680.72460.017*
H5B0.53760.19220.67100.017*
C60.7716 (5)0.3044 (3)0.3672 (5)0.0482 (16)
C70.8360 (5)0.3346 (3)0.4376 (4)0.0517 (16)
H7A0.90980.33040.44490.078*
H7B0.82480.32040.48460.078*
H7C0.81700.37330.43060.078*
C80.0220 (10)0.0485 (5)0.9548 (7)0.042 (3)0.50
C90.1316 (8)0.0558 (4)0.9733 (7)0.032 (2)0.50
H9A0.17100.03831.02450.048*0.50
H9B0.14770.09490.97690.048*0.50
H9C0.15090.03940.93120.048*0.50
N40.0633 (9)0.0414 (6)0.9455 (8)0.085 (5)0.50
C110.4225 (3)0.30180 (16)0.6545 (2)0.0158 (8)
C120.5229 (4)0.31089 (18)0.7102 (3)0.0224 (9)
H120.57270.28210.72430.027*
C130.5504 (4)0.3625 (2)0.7455 (3)0.0307 (11)
H130.61850.36850.78400.037*
C140.4789 (5)0.40422 (19)0.7242 (3)0.0321 (12)
H140.49870.43960.74600.039*
C150.3780 (4)0.39475 (18)0.6712 (3)0.0300 (11)
H150.32770.42320.65850.036*
C160.3505 (4)0.34411 (18)0.6368 (3)0.0237 (9)
H160.28110.33800.60030.028*
C210.4350 (3)0.24310 (16)0.5205 (2)0.0156 (8)
C220.5175 (4)0.27774 (17)0.5271 (3)0.0219 (9)
H220.54780.29970.57340.026*
C230.5555 (4)0.28020 (18)0.4661 (3)0.0243 (10)
H230.61000.30510.47010.029*
C240.5159 (4)0.24728 (19)0.3998 (3)0.0228 (9)
H240.54430.24850.35910.027*
C250.4335 (4)0.21213 (19)0.3930 (3)0.0236 (10)
H250.40510.18930.34750.028*
C260.3930 (4)0.21056 (17)0.4533 (3)0.0197 (9)
H260.33620.18700.44830.024*
C310.4709 (3)0.09683 (16)0.5689 (2)0.0172 (8)
C320.5688 (4)0.11185 (18)0.5680 (3)0.0220 (9)
H320.61620.13200.61130.026*
C330.5963 (4)0.09741 (19)0.5043 (3)0.0256 (10)
H330.66290.10730.50410.031*
C340.5263 (4)0.06833 (18)0.4403 (3)0.0240 (10)
H340.54500.05850.39640.029*
C350.4305 (4)0.05394 (18)0.4409 (3)0.0221 (9)
H350.38240.03480.39670.027*
C360.4028 (3)0.06715 (17)0.5057 (3)0.0179 (8)
H360.33720.05580.50650.022*
C410.5279 (3)0.08573 (16)0.7403 (2)0.0156 (8)
C420.6097 (4)0.05246 (17)0.7397 (3)0.0200 (9)
H420.61530.04330.69020.024*
C430.6820 (4)0.03278 (19)0.8094 (3)0.0253 (10)
H430.73780.01060.80800.030*
C440.6741 (4)0.04503 (19)0.8823 (3)0.0259 (10)
H440.72470.03170.93060.031*
C450.5915 (4)0.07692 (19)0.8837 (3)0.0264 (10)
H450.58420.08460.93300.032*
C460.5206 (4)0.09737 (18)0.8140 (3)0.0213 (9)
H460.46540.11990.81580.026*
C510.0082 (3)0.22244 (16)0.6224 (3)0.0168 (8)
C520.0682 (4)0.20973 (19)0.5442 (3)0.0243 (10)
H520.03610.20660.50600.029*
C530.1756 (4)0.2015 (2)0.5208 (3)0.0332 (11)
H530.21590.19170.46710.040*
C540.2232 (4)0.20746 (19)0.5747 (3)0.0300 (11)
H540.29670.20290.55800.036*
C550.1650 (4)0.2200 (2)0.6533 (4)0.0392 (14)
H550.19840.22400.69060.047*
C560.0563 (4)0.2270 (2)0.6783 (3)0.0348 (12)
H560.01580.23470.73260.042*
C610.1374 (3)0.30465 (16)0.6903 (3)0.0171 (8)
C620.1786 (3)0.31816 (17)0.7703 (3)0.0183 (8)
H620.20640.29040.80930.022*
C630.1796 (4)0.37259 (18)0.7944 (3)0.0245 (10)
H630.20930.38160.84960.029*
C640.1379 (4)0.41329 (18)0.7387 (3)0.0262 (10)
H640.13850.45010.75530.031*
C650.0951 (5)0.39985 (19)0.6582 (3)0.0330 (12)
H650.06550.42750.61950.040*
C660.0955 (4)0.34600 (19)0.6340 (3)0.0288 (11)
H660.06710.33720.57870.035*
C710.2684 (3)0.09250 (16)0.8223 (2)0.0159 (8)
C720.3174 (3)0.12398 (17)0.8905 (2)0.0189 (9)
H720.31170.16260.88770.023*
C730.3747 (4)0.09874 (19)0.9631 (3)0.0233 (9)
H730.40770.12061.00920.028*
C740.3843 (4)0.04333 (19)0.9690 (3)0.0246 (10)
H740.42310.02661.01880.030*
C750.3364 (4)0.01183 (18)0.9014 (3)0.0300 (11)
H750.34360.02670.90490.036*
C760.2784 (4)0.03575 (17)0.8289 (3)0.0226 (9)
H760.24500.01350.78340.027*
C810.0611 (3)0.09752 (16)0.7085 (3)0.0163 (8)
C820.0038 (4)0.07981 (18)0.6340 (3)0.0230 (9)
H820.02120.07870.59150.028*
C830.1055 (4)0.0635 (2)0.6206 (3)0.0265 (10)
H830.14970.05130.56910.032*
C840.1423 (4)0.06518 (19)0.6821 (3)0.0286 (11)
H840.21200.05440.67300.034*
C850.0776 (4)0.0824 (2)0.7568 (3)0.0378 (14)
H850.10290.08360.79910.045*
C860.0249 (4)0.0982 (2)0.7706 (3)0.0339 (13)
H860.06970.10940.82250.041*
N10.0293 (3)0.06564 (16)0.4455 (2)0.0234 (8)
N20.0010 (3)0.15260 (15)0.3924 (2)0.0218 (8)
N30.7233 (5)0.2815 (3)0.3116 (4)0.0662 (18)
P10.38018 (8)0.23788 (4)0.59951 (6)0.0136 (2)
P20.42899 (8)0.11516 (4)0.65079 (6)0.0130 (2)
P30.13118 (8)0.23514 (4)0.65131 (6)0.0130 (2)
P40.19412 (8)0.12008 (4)0.72331 (6)0.0132 (2)
S10.18473 (8)0.13532 (4)0.50372 (6)0.01496 (19)
Cu10.20473 (4)0.223317 (19)0.55840 (3)0.01406 (11)
Cu20.25996 (4)0.095310 (19)0.63076 (3)0.01382 (11)
I10.10743 (2)0.286304 (11)0.431721 (16)0.01865 (7)
I20.23544 (2)0.012447 (10)0.611802 (17)0.01886 (7)
H1A0.032 (2)0.0543 (19)0.414 (2)0.023*
H1B0.073 (3)0.0450 (17)0.479 (2)0.023*
H20.024 (4)0.1856 (11)0.394 (3)0.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.016 (2)0.024 (2)0.014 (2)0.0039 (16)0.0078 (18)0.0042 (16)
C20.022 (3)0.044 (3)0.028 (3)0.005 (2)0.001 (2)0.008 (2)
C30.042 (4)0.077 (5)0.040 (4)0.007 (3)0.006 (3)0.002 (3)
C40.018 (2)0.0165 (18)0.0123 (19)0.0002 (16)0.0052 (17)0.0003 (15)
C50.0133 (19)0.0162 (18)0.0129 (19)0.0033 (15)0.0036 (17)0.0029 (15)
C60.028 (3)0.063 (4)0.058 (4)0.011 (3)0.022 (3)0.017 (4)
C70.044 (4)0.049 (4)0.058 (4)0.022 (3)0.014 (3)0.002 (3)
C80.050 (7)0.042 (6)0.044 (7)0.000 (5)0.029 (6)0.014 (5)
C90.030 (5)0.026 (5)0.041 (6)0.017 (4)0.016 (5)0.020 (4)
N40.039 (7)0.148 (13)0.081 (9)0.055 (8)0.038 (7)0.071 (9)
C110.020 (2)0.0127 (17)0.017 (2)0.0039 (16)0.0096 (18)0.0000 (15)
C120.024 (2)0.021 (2)0.023 (2)0.0022 (18)0.009 (2)0.0027 (17)
C130.038 (3)0.029 (3)0.023 (2)0.012 (2)0.008 (2)0.006 (2)
C140.054 (4)0.018 (2)0.026 (3)0.009 (2)0.017 (3)0.0102 (19)
C150.045 (3)0.017 (2)0.028 (3)0.003 (2)0.015 (3)0.0036 (19)
C160.028 (2)0.022 (2)0.020 (2)0.0013 (18)0.007 (2)0.0024 (17)
C210.0149 (19)0.0188 (19)0.016 (2)0.0000 (16)0.0091 (18)0.0010 (16)
C220.021 (2)0.022 (2)0.021 (2)0.0024 (17)0.007 (2)0.0010 (17)
C230.019 (2)0.030 (2)0.028 (3)0.0000 (18)0.013 (2)0.0094 (19)
C240.022 (2)0.031 (2)0.020 (2)0.0058 (19)0.013 (2)0.0085 (18)
C250.023 (2)0.032 (2)0.018 (2)0.0013 (19)0.010 (2)0.0020 (18)
C260.023 (2)0.021 (2)0.017 (2)0.0019 (17)0.009 (2)0.0020 (16)
C310.020 (2)0.0180 (19)0.017 (2)0.0019 (16)0.0103 (19)0.0006 (16)
C320.022 (2)0.023 (2)0.025 (2)0.0018 (17)0.014 (2)0.0014 (18)
C330.025 (2)0.030 (2)0.029 (3)0.0041 (19)0.019 (2)0.006 (2)
C340.030 (3)0.029 (2)0.019 (2)0.013 (2)0.015 (2)0.0040 (18)
C350.024 (2)0.026 (2)0.015 (2)0.0069 (18)0.0054 (19)0.0045 (17)
C360.015 (2)0.021 (2)0.020 (2)0.0043 (16)0.0093 (19)0.0015 (17)
C410.015 (2)0.0137 (18)0.017 (2)0.0038 (15)0.0047 (18)0.0006 (15)
C420.024 (2)0.020 (2)0.020 (2)0.0036 (17)0.013 (2)0.0036 (17)
C430.018 (2)0.027 (2)0.032 (3)0.0002 (18)0.010 (2)0.005 (2)
C440.021 (2)0.033 (3)0.018 (2)0.0037 (19)0.001 (2)0.0081 (19)
C450.030 (3)0.030 (2)0.018 (2)0.005 (2)0.008 (2)0.0009 (19)
C460.021 (2)0.024 (2)0.021 (2)0.0013 (18)0.010 (2)0.0021 (17)
C510.013 (2)0.0173 (19)0.019 (2)0.0024 (15)0.0053 (18)0.0031 (16)
C520.019 (2)0.035 (3)0.018 (2)0.0011 (19)0.005 (2)0.0028 (19)
C530.014 (2)0.046 (3)0.033 (3)0.004 (2)0.001 (2)0.004 (2)
C540.016 (2)0.031 (3)0.042 (3)0.0027 (19)0.010 (2)0.012 (2)
C550.022 (3)0.059 (4)0.044 (4)0.000 (2)0.020 (3)0.003 (3)
C560.028 (3)0.054 (3)0.029 (3)0.004 (2)0.018 (3)0.008 (2)
C610.022 (2)0.0138 (18)0.020 (2)0.0007 (16)0.0127 (19)0.0000 (16)
C620.023 (2)0.0181 (19)0.016 (2)0.0002 (16)0.0093 (19)0.0021 (16)
C630.036 (3)0.022 (2)0.019 (2)0.0058 (19)0.014 (2)0.0056 (17)
C640.040 (3)0.016 (2)0.028 (3)0.0005 (19)0.019 (2)0.0014 (18)
C650.055 (4)0.018 (2)0.028 (3)0.010 (2)0.017 (3)0.0045 (19)
C660.044 (3)0.025 (2)0.017 (2)0.007 (2)0.010 (2)0.0011 (18)
C710.019 (2)0.0151 (18)0.018 (2)0.0009 (15)0.0109 (18)0.0031 (15)
C720.023 (2)0.0176 (19)0.019 (2)0.0007 (17)0.012 (2)0.0007 (16)
C730.023 (2)0.032 (2)0.015 (2)0.0041 (19)0.008 (2)0.0042 (18)
C740.023 (2)0.031 (2)0.020 (2)0.0088 (19)0.007 (2)0.0080 (19)
C750.039 (3)0.016 (2)0.032 (3)0.005 (2)0.010 (3)0.0057 (19)
C760.031 (3)0.0145 (19)0.021 (2)0.0004 (18)0.008 (2)0.0010 (17)
C810.017 (2)0.0123 (18)0.023 (2)0.0026 (15)0.0116 (19)0.0014 (15)
C820.022 (2)0.029 (2)0.020 (2)0.0004 (18)0.011 (2)0.0019 (18)
C830.019 (2)0.032 (2)0.027 (3)0.0050 (19)0.006 (2)0.005 (2)
C840.024 (2)0.023 (2)0.046 (3)0.0044 (19)0.021 (2)0.003 (2)
C850.037 (3)0.049 (3)0.039 (3)0.022 (3)0.027 (3)0.019 (3)
C860.039 (3)0.043 (3)0.031 (3)0.021 (2)0.026 (3)0.018 (2)
N10.0152 (19)0.024 (2)0.024 (2)0.0025 (16)0.0004 (17)0.0010 (16)
N20.0161 (18)0.0247 (19)0.0180 (19)0.0041 (15)0.0014 (16)0.0031 (15)
N30.040 (3)0.101 (5)0.053 (4)0.004 (3)0.012 (3)0.002 (4)
P10.0149 (5)0.0143 (5)0.0130 (5)0.0025 (4)0.0067 (4)0.0017 (4)
P20.0130 (5)0.0146 (5)0.0132 (5)0.0014 (4)0.0071 (4)0.0021 (4)
P30.0143 (5)0.0143 (5)0.0117 (5)0.0007 (4)0.0064 (4)0.0003 (4)
P40.0158 (5)0.0129 (5)0.0134 (5)0.0008 (4)0.0084 (4)0.0002 (4)
S10.0141 (5)0.0169 (5)0.0137 (5)0.0016 (4)0.0051 (4)0.0014 (4)
Cu10.0151 (2)0.0159 (2)0.0129 (2)0.00091 (19)0.0072 (2)0.00045 (18)
Cu20.0135 (2)0.0153 (2)0.0147 (2)0.00164 (18)0.0076 (2)0.00205 (18)
I10.02440 (15)0.01919 (13)0.01354 (14)0.00084 (10)0.00841 (12)0.00374 (10)
I20.01749 (14)0.01558 (13)0.02425 (15)0.00252 (10)0.00860 (12)0.00355 (10)
Geometric parameters (Å, º) top
C1—N11.319 (5)C42—H420.9500
C1—N21.323 (6)C43—C441.389 (6)
C1—S11.729 (4)C43—H430.9500
C2—N21.462 (6)C44—C451.388 (7)
C2—C31.476 (8)C44—H440.9500
C2—H2A0.9900C45—C461.369 (6)
C2—H2B0.9900C45—H450.9500
C3—H3A0.9800C46—H460.9500
C3—H3B0.9800C51—C521.380 (6)
C3—H3C0.9800C51—C561.399 (6)
C4—P41.838 (4)C51—P31.821 (4)
C4—P31.846 (4)C52—C531.395 (7)
C4—H4A0.9900C52—H520.9500
C4—H4B0.9900C53—C541.365 (7)
C5—P11.850 (4)C53—H530.9500
C5—P21.849 (4)C54—C551.380 (8)
C5—H5A0.9900C54—H540.9500
C5—H5B0.9900C55—C561.404 (7)
C6—N31.125 (9)C55—H550.9500
C6—C71.453 (10)C56—H560.9500
C7—H7A0.9800C61—C621.380 (6)
C7—H7B0.9800C61—C661.399 (6)
C7—H7C0.9800C61—P31.833 (4)
C8—N41.138 (16)C62—C631.402 (6)
C8—C91.431 (16)C62—H620.9500
C9—H9A0.9800C63—C641.381 (7)
C9—H9B0.9800C63—H630.9500
C9—H9C0.9800C64—C651.388 (7)
C11—C161.389 (6)C64—H640.9500
C11—C121.393 (6)C65—C661.391 (6)
C11—P11.830 (4)C65—H650.9500
C12—C131.403 (6)C66—H660.9500
C12—H120.9500C71—C721.396 (6)
C13—C141.373 (8)C71—C761.399 (5)
C13—H130.9500C71—P41.826 (4)
C14—C151.384 (8)C72—C731.397 (6)
C14—H140.9500C72—H720.9500
C15—C161.377 (6)C73—C741.365 (6)
C15—H150.9500C73—H730.9500
C16—H160.9500C74—C751.386 (7)
C21—C261.385 (6)C74—H740.9500
C21—C221.388 (6)C75—C761.384 (7)
C21—P11.847 (4)C75—H750.9500
C22—C231.382 (6)C76—H760.9500
C22—H220.9500C81—C821.378 (6)
C23—C241.376 (7)C81—C861.384 (6)
C23—H230.9500C81—P41.837 (4)
C24—C251.394 (6)C82—C831.390 (6)
C24—H240.9500C82—H820.9500
C25—C261.392 (6)C83—C841.379 (6)
C25—H250.9500C83—H830.9500
C26—H260.9500C84—C851.377 (7)
C31—C361.384 (6)C84—H840.9500
C31—C321.404 (6)C85—C861.394 (7)
C31—P21.828 (4)C85—H850.9500
C32—C331.381 (6)C86—H860.9500
C32—H320.9500N1—H1A0.873 (19)
C33—C341.395 (7)N1—H1B0.841 (19)
C33—H330.9500N2—H20.875 (19)
C34—C351.370 (7)P1—Cu12.2786 (11)
C34—H340.9500P2—Cu22.2730 (11)
C35—C361.394 (5)P3—Cu12.2733 (10)
C35—H350.9500P4—Cu22.2563 (10)
C36—H360.9500S1—Cu12.3450 (11)
C41—C421.394 (6)S1—Cu22.3493 (11)
C41—C461.397 (6)Cu1—I12.6694 (6)
C41—P21.831 (4)Cu2—I22.6690 (5)
C42—C431.370 (7)
N1—C1—N2122.0 (4)C56—C51—P3120.7 (4)
N1—C1—S1119.0 (3)C51—C52—C53120.6 (4)
N2—C1—S1118.9 (3)C51—C52—H52119.7
N2—C2—C3114.0 (5)C53—C52—H52119.7
N2—C2—H2A108.8C54—C53—C52120.2 (5)
C3—C2—H2A108.8C54—C53—H53119.9
N2—C2—H2B108.8C52—C53—H53119.9
C3—C2—H2B108.8C53—C54—C55120.3 (5)
H2A—C2—H2B107.7C53—C54—H54119.8
C2—C3—H3A109.5C55—C54—H54119.8
C2—C3—H3B109.5C54—C55—C56120.1 (5)
H3A—C3—H3B109.5C54—C55—H55120.0
C2—C3—H3C109.5C56—C55—H55120.0
H3A—C3—H3C109.5C51—C56—C55119.5 (5)
H3B—C3—H3C109.5C51—C56—H56120.2
P4—C4—P3114.1 (2)C55—C56—H56120.2
P4—C4—H4A108.7C62—C61—C66118.9 (4)
P3—C4—H4A108.7C62—C61—P3124.5 (3)
P4—C4—H4B108.7C66—C61—P3116.6 (3)
P3—C4—H4B108.7C61—C62—C63120.3 (4)
H4A—C4—H4B107.6C61—C62—H62119.8
P1—C5—P2116.5 (2)C63—C62—H62119.8
P1—C5—H5A108.2C64—C63—C62120.6 (4)
P2—C5—H5A108.2C64—C63—H63119.7
P1—C5—H5B108.2C62—C63—H63119.7
P2—C5—H5B108.2C63—C64—C65119.3 (4)
H5A—C5—H5B107.3C63—C64—H64120.3
N3—C6—C7178.1 (7)C65—C64—H64120.3
C6—C7—H7A109.5C66—C65—C64120.2 (4)
C6—C7—H7B109.5C66—C65—H65119.9
H7A—C7—H7B109.5C64—C65—H65119.9
C6—C7—H7C109.5C65—C66—C61120.6 (4)
H7A—C7—H7C109.5C65—C66—H66119.7
H7B—C7—H7C109.5C61—C66—H66119.7
N4—C8—C9175.2 (15)C72—C71—C76118.3 (4)
C8—C9—H9A109.5C72—C71—P4124.7 (3)
C8—C9—H9B109.5C76—C71—P4117.0 (3)
H9A—C9—H9B109.5C73—C72—C71120.1 (4)
C8—C9—H9C109.5C73—C72—H72120.0
H9A—C9—H9C109.5C71—C72—H72120.0
H9B—C9—H9C109.5C74—C73—C72121.3 (4)
C16—C11—C12118.7 (4)C74—C73—H73119.4
C16—C11—P1117.2 (3)C72—C73—H73119.4
C12—C11—P1124.0 (3)C73—C74—C75119.0 (4)
C11—C12—C13120.0 (4)C73—C74—H74120.5
C11—C12—H12120.0C75—C74—H74120.5
C13—C12—H12120.0C76—C75—C74121.0 (4)
C14—C13—C12120.0 (5)C76—C75—H75119.5
C14—C13—H13120.0C74—C75—H75119.5
C12—C13—H13120.0C75—C76—C71120.4 (4)
C13—C14—C15120.0 (4)C75—C76—H76119.8
C13—C14—H14120.0C71—C76—H76119.8
C15—C14—H14120.0C82—C81—C86119.6 (4)
C14—C15—C16120.1 (5)C82—C81—P4119.3 (3)
C14—C15—H15120.0C86—C81—P4121.1 (4)
C16—C15—H15120.0C81—C82—C83120.6 (4)
C15—C16—C11121.1 (5)C81—C82—H82119.7
C15—C16—H16119.5C83—C82—H82119.7
C11—C16—H16119.5C84—C83—C82119.9 (5)
C26—C21—C22119.5 (4)C84—C83—H83120.0
C26—C21—P1118.4 (3)C82—C83—H83120.0
C22—C21—P1122.1 (3)C83—C84—C85119.8 (4)
C23—C22—C21119.8 (4)C83—C84—H84120.1
C23—C22—H22120.1C85—C84—H84120.1
C21—C22—H22120.1C84—C85—C86120.5 (4)
C24—C23—C22121.3 (4)C84—C85—H85119.8
C24—C23—H23119.3C86—C85—H85119.8
C22—C23—H23119.3C81—C86—C85119.7 (5)
C23—C24—C25119.1 (4)C81—C86—H86120.2
C23—C24—H24120.4C85—C86—H86120.2
C25—C24—H24120.4C1—N1—H1A122 (3)
C26—C25—C24119.8 (4)C1—N1—H1B116 (4)
C26—C25—H25120.1H1A—N1—H1B122 (5)
C24—C25—H25120.1C1—N2—C2126.6 (4)
C21—C26—C25120.4 (4)C1—N2—H2117 (3)
C21—C26—H26119.8C2—N2—H2116 (3)
C25—C26—H26119.8C11—P1—C21102.63 (18)
C36—C31—C32119.3 (4)C11—P1—C5101.56 (19)
C36—C31—P2118.2 (3)C21—P1—C5103.90 (18)
C32—C31—P2122.5 (3)C11—P1—Cu1113.42 (14)
C33—C32—C31120.2 (4)C21—P1—Cu1116.59 (14)
C33—C32—H32119.9C5—P1—Cu1116.72 (13)
C31—C32—H32119.9C31—P2—C41105.06 (19)
C32—C33—C34119.9 (4)C31—P2—C5104.17 (18)
C32—C33—H33120.0C41—P2—C598.51 (18)
C34—C33—H33120.0C31—P2—Cu2115.48 (15)
C35—C34—C33119.9 (4)C41—P2—Cu2116.10 (13)
C35—C34—H34120.0C5—P2—Cu2115.44 (13)
C33—C34—H34120.0C51—P3—C6199.41 (19)
C34—C35—C36120.7 (4)C51—P3—C4104.06 (19)
C34—C35—H35119.7C61—P3—C4103.32 (19)
C36—C35—H35119.7C51—P3—Cu1118.56 (14)
C31—C36—C35119.9 (4)C61—P3—Cu1115.48 (12)
C31—C36—H36120.0C4—P3—Cu1113.87 (13)
C35—C36—H36120.0C71—P4—C81101.49 (19)
C42—C41—C46118.0 (4)C71—P4—C4102.91 (18)
C42—C41—P2124.3 (3)C81—P4—C4103.77 (18)
C46—C41—P2117.7 (3)C71—P4—Cu2112.88 (13)
C43—C42—C41120.9 (4)C81—P4—Cu2117.63 (13)
C43—C42—H42119.5C4—P4—Cu2116.13 (12)
C41—C42—H42119.5C1—S1—Cu1116.57 (15)
C42—C43—C44120.4 (4)C1—S1—Cu2118.81 (14)
C42—C43—H43119.8Cu1—S1—Cu291.94 (4)
C44—C43—H43119.8P3—Cu1—P1116.67 (4)
C45—C44—C43119.3 (4)P3—Cu1—S1114.30 (4)
C45—C44—H44120.3P1—Cu1—S1103.08 (4)
C43—C44—H44120.3P3—Cu1—I1109.65 (3)
C46—C45—C44120.1 (4)P1—Cu1—I1108.89 (3)
C46—C45—H45120.0S1—Cu1—I1103.25 (3)
C44—C45—H45120.0P4—Cu2—P2119.56 (4)
C45—C46—C41121.2 (4)P4—Cu2—S1117.04 (4)
C45—C46—H46119.4P2—Cu2—S197.00 (4)
C41—C46—H46119.4P4—Cu2—I2107.13 (3)
C52—C51—C56119.2 (4)P2—Cu2—I2107.81 (3)
C52—C51—P3120.0 (3)S1—Cu2—I2107.41 (3)
C16—C11—C12—C131.9 (6)C42—C41—P2—C5112.7 (4)
P1—C11—C12—C13175.6 (3)C46—C41—P2—C567.4 (3)
C11—C12—C13—C140.9 (7)C42—C41—P2—Cu2123.4 (3)
C12—C13—C14—C153.4 (7)C46—C41—P2—Cu256.4 (4)
C13—C14—C15—C163.0 (7)P1—C5—P2—C3177.2 (2)
C14—C15—C16—C110.2 (7)P1—C5—P2—C41174.8 (2)
C12—C11—C16—C152.2 (6)P1—C5—P2—Cu250.5 (2)
P1—C11—C16—C15175.4 (3)C52—C51—P3—C61121.4 (4)
C26—C21—C22—C231.3 (7)C56—C51—P3—C6156.7 (4)
P1—C21—C22—C23179.8 (3)C52—C51—P3—C4132.2 (4)
C21—C22—C23—C242.6 (7)C56—C51—P3—C449.7 (4)
C22—C23—C24—C252.2 (7)C52—C51—P3—Cu14.5 (4)
C23—C24—C25—C260.3 (7)C56—C51—P3—Cu1177.4 (4)
C22—C21—C26—C250.5 (7)C62—C61—P3—C51106.4 (4)
P1—C21—C26—C25178.4 (3)C66—C61—P3—C5172.5 (4)
C24—C25—C26—C211.0 (7)C62—C61—P3—C40.6 (4)
C36—C31—C32—C330.4 (7)C66—C61—P3—C4179.5 (3)
P2—C31—C32—C33179.4 (3)C62—C61—P3—Cu1125.6 (3)
C31—C32—C33—C340.7 (7)C66—C61—P3—Cu155.5 (4)
C32—C33—C34—C350.3 (7)P4—C4—P3—C5174.8 (2)
C33—C34—C35—C361.3 (7)P4—C4—P3—C61178.3 (2)
C32—C31—C36—C352.0 (6)P4—C4—P3—Cu155.7 (2)
P2—C31—C36—C35177.9 (3)C72—C71—P4—C81112.8 (4)
C34—C35—C36—C312.4 (7)C76—C71—P4—C8168.8 (3)
C46—C41—C42—C431.4 (6)C72—C71—P4—C45.6 (4)
P2—C41—C42—C43178.7 (3)C76—C71—P4—C4176.0 (3)
C41—C42—C43—C441.0 (7)C72—C71—P4—Cu2120.4 (3)
C42—C43—C44—C450.7 (7)C76—C71—P4—Cu258.1 (3)
C43—C44—C45—C462.0 (7)C82—C81—P4—C71141.0 (3)
C44—C45—C46—C411.6 (7)C86—C81—P4—C7139.3 (4)
C42—C41—C46—C450.1 (6)C82—C81—P4—C4112.5 (4)
P2—C41—C46—C45180.0 (3)C86—C81—P4—C467.2 (4)
C56—C51—C52—C530.0 (7)C82—C81—P4—Cu217.3 (4)
P3—C51—C52—C53178.1 (4)C86—C81—P4—Cu2163.0 (4)
C51—C52—C53—C541.9 (8)P3—C4—P4—C71175.0 (2)
C52—C53—C54—C552.0 (8)P3—C4—P4—C8179.6 (2)
C53—C54—C55—C560.2 (8)P3—C4—P4—Cu251.1 (3)
C52—C51—C56—C551.8 (8)N1—C1—S1—Cu1143.2 (3)
P3—C51—C56—C55176.3 (4)N2—C1—S1—Cu140.2 (4)
C54—C55—C56—C511.7 (8)N1—C1—S1—Cu234.7 (4)
C66—C61—C62—C630.9 (6)N2—C1—S1—Cu2148.8 (3)
P3—C61—C62—C63179.8 (3)C51—P3—Cu1—P1178.53 (15)
C61—C62—C63—C641.1 (7)C61—P3—Cu1—P163.72 (17)
C62—C63—C64—C650.3 (7)C4—P3—Cu1—P155.62 (15)
C63—C64—C65—C660.8 (8)C51—P3—Cu1—S158.22 (16)
C64—C65—C66—C611.0 (8)C61—P3—Cu1—S1175.97 (16)
C62—C61—C66—C650.2 (7)C4—P3—Cu1—S164.68 (15)
P3—C61—C66—C65178.8 (4)C51—P3—Cu1—I157.13 (15)
C76—C71—C72—C730.1 (6)C61—P3—Cu1—I160.62 (17)
P4—C71—C72—C73178.3 (3)C4—P3—Cu1—I1179.96 (14)
C71—C72—C73—C740.0 (6)C11—P1—Cu1—P348.21 (15)
C72—C73—C74—C750.4 (7)C21—P1—Cu1—P3167.11 (15)
C73—C74—C75—C761.0 (7)C5—P1—Cu1—P369.35 (14)
C74—C75—C76—C711.1 (7)C11—P1—Cu1—S1174.32 (14)
C72—C71—C76—C750.7 (6)C21—P1—Cu1—S166.78 (15)
P4—C71—C76—C75177.8 (4)C5—P1—Cu1—S156.77 (14)
C86—C81—C82—C831.0 (7)C11—P1—Cu1—I176.52 (14)
P4—C81—C82—C83178.7 (4)C21—P1—Cu1—I142.38 (15)
C81—C82—C83—C840.1 (7)C5—P1—Cu1—I1165.93 (14)
C82—C83—C84—C850.6 (8)C1—S1—Cu1—P368.75 (16)
C83—C84—C85—C860.0 (8)Cu2—S1—Cu1—P355.03 (5)
C82—C81—C86—C851.7 (8)C1—S1—Cu1—P1163.63 (15)
P4—C81—C86—C85178.0 (4)Cu2—S1—Cu1—P172.59 (4)
C84—C85—C86—C811.2 (9)C1—S1—Cu1—I150.29 (15)
N1—C1—N2—C22.2 (7)Cu2—S1—Cu1—I1174.07 (3)
S1—C1—N2—C2178.6 (4)C71—P4—Cu2—P256.81 (15)
C3—C2—N2—C184.3 (6)C81—P4—Cu2—P2174.52 (15)
C16—C11—P1—C2198.8 (3)C4—P4—Cu2—P261.69 (16)
C12—C11—P1—C2178.7 (4)C71—P4—Cu2—S1173.35 (14)
C16—C11—P1—C5153.9 (3)C81—P4—Cu2—S168.94 (16)
C12—C11—P1—C528.5 (4)C4—P4—Cu2—S154.85 (16)
C16—C11—P1—Cu127.9 (3)C71—P4—Cu2—I266.06 (15)
C12—C11—P1—Cu1154.6 (3)C81—P4—Cu2—I251.64 (16)
C26—C21—P1—C11160.4 (4)C4—P4—Cu2—I2175.44 (15)
C22—C21—P1—C1120.6 (4)C31—P2—Cu2—P4176.36 (15)
C26—C21—P1—C594.1 (4)C41—P2—Cu2—P459.99 (15)
C22—C21—P1—C584.8 (4)C5—P2—Cu2—P454.57 (15)
C26—C21—P1—Cu135.9 (4)C31—P2—Cu2—S149.76 (15)
C22—C21—P1—Cu1145.2 (3)C41—P2—Cu2—S1173.40 (14)
P2—C5—P1—C11165.5 (2)C5—P2—Cu2—S172.04 (15)
P2—C5—P1—C2188.2 (2)C31—P2—Cu2—I261.10 (15)
P2—C5—P1—Cu141.6 (2)C41—P2—Cu2—I262.55 (15)
C36—C31—P2—C41122.1 (3)C5—P2—Cu2—I2177.11 (14)
C32—C31—P2—C4158.1 (4)C1—S1—Cu2—P470.66 (16)
C36—C31—P2—C5134.9 (3)Cu1—S1—Cu2—P451.30 (5)
C32—C31—P2—C545.0 (4)C1—S1—Cu2—P2160.97 (16)
C36—C31—P2—Cu27.2 (4)Cu1—S1—Cu2—P277.07 (4)
C32—C31—P2—Cu2172.6 (3)C1—S1—Cu2—I249.77 (16)
C42—C41—P2—C315.5 (4)Cu1—S1—Cu2—I2171.74 (3)
C46—C41—P2—C31174.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C41–C46 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···I2i0.87 (2)2.85 (3)3.645 (4)152 (4)
N1—H1B···I20.84 (2)2.96 (2)3.796 (4)171 (5)
N2—H2···I10.88 (2)2.70 (2)3.563 (4)168 (4)
C63—H63···S1ii0.952.953.751 (5)143
C7—H7A···I1iii0.983.023.961 (7)161
C14—H14···Cg1iv0.953.37 (1)4.08130
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu2I2(C3H8N2S)(C25H22P2)2]·1.5C2H3N
Mr1315.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.7751 (6), 24.5147 (11), 18.0172 (8)
β (°) 111.720 (1)
V3)5652.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.28 × 0.17 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.670, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
53066, 10863, 9108
Rint0.054
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.101, 1.05
No. of reflections10863
No. of parameters643
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.55

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C41–C46 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···I2i0.873 (19)2.85 (3)3.645 (4)152 (4)
N1—H1B···I20.841 (19)2.96 (2)3.796 (4)171 (5)
N2—H2···I10.875 (19)2.70 (2)3.563 (4)168 (4)
C63—H63···S1ii0.952.9483.751 (5)142.6
C7—H7A···I1iii0.983.0193.961 (7)161
C14—H14···Cg1iv0.953.367 (14)4.08129.8
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education, the Department of Chemistry and the Graduate School, Prince of Songkla University is gratefully acknowledged.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColacio, E., Cuesta, R. & Moreno, J. M. (1997). Inorg. Chem. 36, 1084–1087.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationIsab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q., Chen, L., Yang, L. & Li, P. (2009). Inorg. Chim. Acta, 362, 1743–1748.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiaw, B.-J., Lobana, T. S., Lin, Y.-W., Wang, J.-C. & Liu, C. W. (2005). Inorg. Chem. 44, 9921–9929.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPakawatchai, C., Wattanakanjana, Y., Choto, P. & Nimthong, R. (2012). Acta Cryst. E68, m773–m774.  CSD CrossRef IUCr Journals Google Scholar
First citationSafin, D. A., Babashkina, M. G., Bolte, M. & Klein, A. (2010). Inorg. Chim. Acta, 363, 1897–1901.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYam, V. W.-W., Lam, C.-H., Fung, W. K.-M. & Cheung, K.-K. (2001). Inorg. Chem. 40, 3435–3442.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, R.-N., Sun, Y.-A., Hou, Y.-M., Hu, X.-Y. & Jin, D.-M. (2000). Inorg. Chim. Acta, 304, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, W.-B., Dong, Z.-C., Song, J.-L., Zeng, H.-Y., Cao, R., Guo, G.-C., Huang, J.-S. & Li, J. (2001). J. Cluster Sci. 13, 119–136.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds