organic compounds
Cinnarizinium fumarate
aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: jjasinski@keene.edu
In the title salt {systematic name: 4-diphenylmethyl-1-[(E)-3-phenylprop-2-en-1-yl]piperazin-1-ium (2Z)-3-carboxyprop-2-enoate}, C26H29N2+·C4H3O4−, the piperazine ring in the cation adopts a distorted chair conformation and contains a positively charged N atom with quaternary character. The dihedral angle between the mean planes of the phenyl rings of the diphenylmethyl group is 74.2 (7)° and those between these rings and the phenyl ring of the 3-phenylprop-2-en-1-yl group are 12.7 (9) and 80.6 (8)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds form chains along [001]. Weak C—H⋯O interactions connect parallel chains along [010], forming layers perpendicular to the a-axis direction.
Related literature
For cinnarizine as a calcium channel blocker, see: Terland & Flatmark (1999), as a nootropic drug, see: Towse (1980) and for a clinical evaluation in various allergic disorders, see: Barrett & Zolov (1960). For related structures, see: Bertolasi et al. (1980); Dayananda et al. (2012); Jasinski et al. (2011); Mouillé et al. (1975); Siddegowda et al. (2011); Song et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812051239/zl2527sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812051239/zl2527Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812051239/zl2527Isup3.cml
Cinnarizine (3.68 g, 0.01 mol) and fumaric acid (1.16 g, 0.01 mol) were dissolved in hot dimethyl sulphoxide solution and stirred over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature. X-ray quality crystals of the title compound appeared after a few days. (m.p.: 468–471 K).
H1N and H1O1 were located by Fourier maps and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.97Å (CH2). Isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH, CH2) times Ueq of the parent atom.
Cinnarizine (1-benzhydryl-4-cinnamyl-piperazine) is a drug derivative of piperazine and a calcium channel blocker (Terland & Flatmark, 1999). Cinnarizine is an antihistamine which is mainly used for the control of nausea and vomiting due to motion sickness. It could be also viewed as a nootropic drug because of its vasorelaxating abilities (due to calcium channel blockage), which happen mostly in the brain and it is also used as a labyrinthine sedative (Towse, 1980). A clinical evaluation of cinnarizine in various allergic disorders is published (Barrett & Zolov, 1960). Cinnarizine can be used in scuba divers without an increased risk of central nervous system oxygen toxicity. The crystal structures of some related compounds viz., cinnarizine (Mouillé et al., 1975), cyclizine hydrochloride (Bertolasi et al., 1980), cinnarizinium dipicrate (Jasinski et al., 2011), cinnarizinium picrate (Song et al., 2012), opipramolium fumarate (Siddegowda et al., 2011) and cinnarizinium 3,5-dinitrosalicylate (Dayananda et al., 2012) have been reported. In continuation of our work on the salts of pharmaceutical compounds and in view of the importance of cinnarizine, this paper reports the
of the title salt, C26H29N2+ . C4H3O4-, (I).The θ = 174.02 (12)°, φ = 184.5 (13)°, (Cremer & Pople (1975)) and contains a positively charged N atom (N2) with quaternary character. The dihderal angle between the mean planes of the two diphenyl rings (C1–C6 and C8–C13)is 74.2 (7)° and that between these rings and the extended phenyl ring (C21–C26) is 12.7 (9)° and 80.6 (8)°, respectively. Bond lengths are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds forming infinite one-dimensional chains along [001] (Fig. 2). Weak C—H···O intermolecular interactions (Table 1) are also observed connecting parallel chains along [010] (Fig. 3) to form layers perpendicular to the a-axis direction of the structure.
of (I) consists of a cinnarizinium-hydrogen fumarate cation-anion pair (Fig. 1). The six-membered piperazine ring (N1/C14/C15/N2/C16/C17) in the cation adopts a distorted chair conformation with puckering parameters Q = 0.6021 (14)Å,For cinnarizine as a calcium channel blocker, see: Terland & Flatmark (1999), as a nootropic drug, see: Towse (1980) and for a clinical evaluation in various allergic disorders, see: Barrett & Zolov (1960) . For related structures, see: Bertolasi et al. (1980); Dayananda et al. (2012); Jasinski et al. (2011); Mouillé et al. (1975); Siddegowda et al. (2011); Song et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C26H29N2+·C4H3O4− | F(000) = 1032 |
Mr = 484.58 | Dx = 1.254 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 3517 reflections |
a = 21.9467 (4) Å | θ = 3.9–75.4° |
b = 10.43729 (18) Å | µ = 0.67 mm−1 |
c = 11.20623 (19) Å | T = 123 K |
β = 90.0458 (15)° | Prism, colorless |
V = 2566.95 (8) Å3 | 0.60 × 0.30 × 0.25 mm |
Z = 4 |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 5146 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 4289 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 75.6°, θmin = 4.0° |
ω scans | h = −23→27 |
Absorption correction: multi-scan (CrysAlis RED and CrysAlis PRO; Agilent, 2011) | k = −12→8 |
Tmin = 0.732, Tmax = 1.000 | l = −13→13 |
9777 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0628P)2 + 0.4518P] where P = (Fo2 + 2Fc2)/3 |
5146 reflections | (Δ/σ)max = 0.001 |
333 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C26H29N2+·C4H3O4− | V = 2566.95 (8) Å3 |
Mr = 484.58 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 21.9467 (4) Å | µ = 0.67 mm−1 |
b = 10.43729 (18) Å | T = 123 K |
c = 11.20623 (19) Å | 0.60 × 0.30 × 0.25 mm |
β = 90.0458 (15)° |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 5146 independent reflections |
Absorption correction: multi-scan (CrysAlis RED and CrysAlis PRO; Agilent, 2011) | 4289 reflections with I > 2σ(I) |
Tmin = 0.732, Tmax = 1.000 | Rint = 0.028 |
9777 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.27 e Å−3 |
5146 reflections | Δρmin = −0.22 e Å−3 |
333 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.70117 (5) | 0.78316 (11) | 0.33222 (10) | 0.0323 (3) | |
O2 | 0.76739 (6) | 0.88857 (12) | 0.44702 (12) | 0.0446 (3) | |
O3 | 0.64077 (5) | 0.41055 (10) | 0.57965 (9) | 0.0298 (2) | |
O4 | 0.70688 (5) | 0.50977 (10) | 0.69945 (9) | 0.0272 (2) | |
N1 | 0.79869 (5) | 0.16984 (11) | 0.86255 (10) | 0.0208 (2) | |
N2 | 0.68573 (5) | 0.31174 (11) | 0.84519 (10) | 0.0200 (2) | |
C1 | 0.87241 (6) | 0.02312 (14) | 0.76576 (13) | 0.0237 (3) | |
C2 | 0.85173 (7) | −0.09616 (15) | 0.80480 (14) | 0.0287 (3) | |
H2A | 0.8321 | −0.1028 | 0.8780 | 0.034* | |
C3 | 0.86015 (7) | −0.20467 (16) | 0.73566 (16) | 0.0340 (3) | |
H3A | 0.8461 | −0.2837 | 0.7625 | 0.041* | |
C4 | 0.88951 (7) | −0.19554 (17) | 0.62621 (16) | 0.0362 (4) | |
H4A | 0.8954 | −0.2685 | 0.5800 | 0.043* | |
C5 | 0.90995 (7) | −0.07792 (18) | 0.58618 (15) | 0.0367 (4) | |
H5A | 0.9293 | −0.0716 | 0.5126 | 0.044* | |
C6 | 0.90159 (7) | 0.03164 (16) | 0.65610 (13) | 0.0288 (3) | |
H6A | 0.9156 | 0.1105 | 0.6291 | 0.035* | |
C7 | 0.86398 (6) | 0.14289 (13) | 0.84173 (12) | 0.0223 (3) | |
H7A | 0.8818 | 0.2158 | 0.7990 | 0.027* | |
C8 | 0.89718 (6) | 0.12793 (13) | 0.96069 (13) | 0.0241 (3) | |
C9 | 0.95738 (7) | 0.16951 (15) | 0.96988 (15) | 0.0315 (3) | |
H9A | 0.9759 | 0.2094 | 0.9052 | 0.038* | |
C10 | 0.98986 (8) | 0.15168 (18) | 1.07497 (17) | 0.0396 (4) | |
H10A | 1.0300 | 0.1796 | 1.0803 | 0.048* | |
C11 | 0.96277 (8) | 0.09271 (17) | 1.17150 (16) | 0.0402 (4) | |
H11A | 0.9847 | 0.0802 | 1.2416 | 0.048* | |
C12 | 0.90255 (8) | 0.05206 (15) | 1.16380 (14) | 0.0348 (4) | |
H12A | 0.8842 | 0.0127 | 1.2290 | 0.042* | |
C13 | 0.86965 (7) | 0.07003 (14) | 1.05883 (14) | 0.0280 (3) | |
H13A | 0.8293 | 0.0434 | 1.0542 | 0.034* | |
C14 | 0.79157 (6) | 0.29648 (13) | 0.91797 (12) | 0.0215 (3) | |
H14A | 0.8042 | 0.3624 | 0.8622 | 0.026* | |
H14B | 0.8174 | 0.3022 | 0.9881 | 0.026* | |
C15 | 0.72582 (6) | 0.31822 (13) | 0.95322 (11) | 0.0205 (3) | |
H15A | 0.7134 | 0.2535 | 1.0103 | 0.025* | |
H15B | 0.7217 | 0.4015 | 0.9908 | 0.025* | |
C16 | 0.69605 (6) | 0.18874 (13) | 0.78029 (12) | 0.0220 (3) | |
H16A | 0.6727 | 0.1888 | 0.7068 | 0.026* | |
H16B | 0.6820 | 0.1179 | 0.8290 | 0.026* | |
C17 | 0.76314 (6) | 0.17046 (14) | 0.75159 (12) | 0.0226 (3) | |
H17A | 0.7689 | 0.0901 | 0.7096 | 0.027* | |
H17B | 0.7771 | 0.2394 | 0.7003 | 0.027* | |
C18 | 0.61896 (6) | 0.32482 (14) | 0.87638 (12) | 0.0241 (3) | |
H18A | 0.5951 | 0.3275 | 0.8035 | 0.029* | |
H18B | 0.6062 | 0.2504 | 0.9217 | 0.029* | |
C19 | 0.60671 (6) | 0.44322 (14) | 0.94778 (13) | 0.0243 (3) | |
H19A | 0.6144 | 0.5229 | 0.9137 | 0.029* | |
C20 | 0.58525 (6) | 0.43782 (14) | 1.05838 (13) | 0.0234 (3) | |
H20A | 0.5786 | 0.3563 | 1.0892 | 0.028* | |
C21 | 0.57077 (6) | 0.54589 (14) | 1.13783 (12) | 0.0235 (3) | |
C22 | 0.57635 (6) | 0.67372 (15) | 1.10234 (13) | 0.0265 (3) | |
H22A | 0.5904 | 0.6926 | 1.0261 | 0.032* | |
C23 | 0.56116 (7) | 0.77284 (15) | 1.17925 (14) | 0.0307 (3) | |
H23A | 0.5651 | 0.8574 | 1.1543 | 0.037* | |
C24 | 0.54012 (7) | 0.74589 (16) | 1.29343 (14) | 0.0305 (3) | |
H24A | 0.5295 | 0.8123 | 1.3447 | 0.037* | |
C25 | 0.53502 (7) | 0.61982 (17) | 1.33073 (13) | 0.0318 (3) | |
H25A | 0.5213 | 0.6015 | 1.4073 | 0.038* | |
C26 | 0.55045 (7) | 0.52071 (15) | 1.25361 (13) | 0.0282 (3) | |
H26A | 0.5472 | 0.4363 | 1.2795 | 0.034* | |
C100 | 0.73414 (7) | 0.79844 (14) | 0.43019 (13) | 0.0269 (3) | |
C101 | 0.72630 (7) | 0.69456 (14) | 0.51966 (13) | 0.0253 (3) | |
H10B | 0.7510 | 0.6958 | 0.5871 | 0.030* | |
C102 | 0.68628 (7) | 0.60047 (13) | 0.50916 (12) | 0.0233 (3) | |
H10C | 0.6627 | 0.5971 | 0.4402 | 0.028* | |
C103 | 0.67661 (6) | 0.49876 (13) | 0.60193 (12) | 0.0222 (3) | |
H1N | 0.6971 (8) | 0.3776 (18) | 0.7921 (17) | 0.027 (4)* | |
H1O1 | 0.7076 (11) | 0.851 (2) | 0.279 (2) | 0.054 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0442 (6) | 0.0275 (5) | 0.0254 (5) | −0.0047 (5) | −0.0059 (4) | 0.0074 (4) |
O2 | 0.0537 (8) | 0.0318 (6) | 0.0484 (7) | −0.0153 (6) | −0.0188 (6) | 0.0135 (5) |
O3 | 0.0385 (6) | 0.0226 (5) | 0.0282 (5) | −0.0041 (4) | −0.0018 (4) | −0.0003 (4) |
O4 | 0.0407 (6) | 0.0207 (5) | 0.0201 (5) | −0.0006 (4) | −0.0027 (4) | 0.0004 (4) |
N1 | 0.0217 (5) | 0.0202 (5) | 0.0204 (5) | 0.0032 (4) | −0.0016 (4) | −0.0015 (4) |
N2 | 0.0219 (5) | 0.0201 (5) | 0.0180 (5) | 0.0036 (4) | −0.0001 (4) | 0.0003 (4) |
C1 | 0.0185 (6) | 0.0249 (7) | 0.0278 (7) | 0.0044 (5) | −0.0032 (5) | −0.0019 (5) |
C2 | 0.0270 (7) | 0.0267 (7) | 0.0325 (8) | 0.0022 (6) | 0.0005 (5) | −0.0027 (6) |
C3 | 0.0296 (8) | 0.0264 (8) | 0.0461 (9) | 0.0017 (6) | −0.0042 (6) | −0.0054 (7) |
C4 | 0.0295 (8) | 0.0349 (8) | 0.0443 (9) | 0.0068 (7) | −0.0036 (6) | −0.0173 (7) |
C5 | 0.0304 (8) | 0.0484 (10) | 0.0313 (8) | 0.0058 (7) | 0.0020 (6) | −0.0109 (7) |
C6 | 0.0260 (7) | 0.0322 (8) | 0.0282 (7) | 0.0035 (6) | −0.0005 (5) | −0.0012 (6) |
C7 | 0.0219 (6) | 0.0212 (6) | 0.0239 (6) | 0.0008 (5) | −0.0003 (5) | 0.0009 (5) |
C8 | 0.0247 (7) | 0.0198 (6) | 0.0280 (7) | 0.0055 (5) | −0.0029 (5) | −0.0042 (5) |
C9 | 0.0253 (7) | 0.0306 (8) | 0.0387 (8) | 0.0035 (6) | −0.0022 (6) | −0.0071 (6) |
C10 | 0.0272 (8) | 0.0444 (10) | 0.0473 (10) | 0.0080 (7) | −0.0112 (7) | −0.0136 (8) |
C11 | 0.0448 (9) | 0.0386 (9) | 0.0372 (9) | 0.0195 (8) | −0.0199 (7) | −0.0115 (7) |
C12 | 0.0511 (10) | 0.0252 (7) | 0.0282 (7) | 0.0105 (7) | −0.0045 (7) | −0.0010 (6) |
C13 | 0.0320 (7) | 0.0218 (7) | 0.0303 (7) | 0.0024 (6) | −0.0037 (6) | −0.0006 (6) |
C14 | 0.0234 (6) | 0.0208 (6) | 0.0202 (6) | 0.0014 (5) | −0.0012 (5) | −0.0009 (5) |
C15 | 0.0235 (6) | 0.0216 (6) | 0.0163 (6) | 0.0026 (5) | −0.0015 (4) | −0.0003 (5) |
C16 | 0.0241 (7) | 0.0223 (6) | 0.0197 (6) | 0.0016 (5) | −0.0025 (5) | −0.0015 (5) |
C17 | 0.0246 (7) | 0.0238 (7) | 0.0193 (6) | 0.0043 (5) | −0.0015 (5) | −0.0023 (5) |
C18 | 0.0205 (6) | 0.0282 (7) | 0.0237 (6) | 0.0026 (5) | −0.0009 (5) | 0.0009 (5) |
C19 | 0.0215 (6) | 0.0256 (7) | 0.0260 (7) | 0.0043 (5) | 0.0001 (5) | 0.0028 (6) |
C20 | 0.0192 (6) | 0.0246 (7) | 0.0265 (7) | 0.0012 (5) | −0.0012 (5) | 0.0011 (5) |
C21 | 0.0177 (6) | 0.0283 (7) | 0.0246 (7) | 0.0001 (5) | −0.0004 (5) | −0.0003 (5) |
C22 | 0.0239 (7) | 0.0303 (8) | 0.0253 (7) | −0.0010 (6) | 0.0029 (5) | 0.0003 (6) |
C23 | 0.0286 (7) | 0.0274 (8) | 0.0360 (8) | −0.0003 (6) | 0.0004 (6) | −0.0020 (6) |
C24 | 0.0248 (7) | 0.0342 (8) | 0.0326 (8) | 0.0021 (6) | 0.0000 (5) | −0.0100 (6) |
C25 | 0.0320 (8) | 0.0402 (9) | 0.0233 (7) | −0.0004 (7) | 0.0034 (5) | −0.0021 (6) |
C26 | 0.0282 (7) | 0.0292 (7) | 0.0271 (7) | −0.0016 (6) | 0.0016 (5) | 0.0012 (6) |
C100 | 0.0291 (7) | 0.0233 (7) | 0.0284 (7) | 0.0019 (6) | −0.0019 (5) | 0.0035 (6) |
C101 | 0.0285 (7) | 0.0244 (7) | 0.0230 (6) | 0.0033 (6) | −0.0025 (5) | 0.0028 (5) |
C102 | 0.0297 (7) | 0.0209 (6) | 0.0194 (6) | 0.0045 (5) | −0.0009 (5) | −0.0011 (5) |
C103 | 0.0286 (7) | 0.0183 (6) | 0.0196 (6) | 0.0051 (5) | 0.0024 (5) | −0.0012 (5) |
O1—C100 | 1.3240 (19) | C12—H12A | 0.9300 |
O1—H1O1 | 0.94 (3) | C13—H13A | 0.9300 |
O2—C100 | 1.205 (2) | C14—C15 | 1.5135 (18) |
O3—C103 | 1.2363 (18) | C14—H14A | 0.9700 |
O4—C103 | 1.2837 (18) | C14—H14B | 0.9700 |
N1—C17 | 1.4675 (17) | C15—H15A | 0.9700 |
N1—C14 | 1.4688 (17) | C15—H15B | 0.9700 |
N1—C7 | 1.4790 (17) | C16—C17 | 1.5194 (18) |
N2—C16 | 1.4929 (17) | C16—H16A | 0.9700 |
N2—C15 | 1.4976 (16) | C16—H16B | 0.9700 |
N2—C18 | 1.5129 (17) | C17—H17A | 0.9700 |
N2—H1N | 0.943 (19) | C17—H17B | 0.9700 |
C1—C6 | 1.389 (2) | C18—C19 | 1.497 (2) |
C1—C2 | 1.395 (2) | C18—H18A | 0.9700 |
C1—C7 | 1.5238 (19) | C18—H18B | 0.9700 |
C2—C3 | 1.385 (2) | C19—C20 | 1.327 (2) |
C2—H2A | 0.9300 | C19—H19A | 0.9300 |
C3—C4 | 1.389 (3) | C20—C21 | 1.472 (2) |
C3—H3A | 0.9300 | C20—H20A | 0.9300 |
C4—C5 | 1.382 (3) | C21—C26 | 1.397 (2) |
C4—H4A | 0.9300 | C21—C22 | 1.398 (2) |
C5—C6 | 1.398 (2) | C22—C23 | 1.387 (2) |
C5—H5A | 0.9300 | C22—H22A | 0.9300 |
C6—H6A | 0.9300 | C23—C24 | 1.389 (2) |
C7—C8 | 1.5267 (19) | C23—H23A | 0.9300 |
C7—H7A | 0.9800 | C24—C25 | 1.385 (2) |
C8—C13 | 1.393 (2) | C24—H24A | 0.9300 |
C8—C9 | 1.394 (2) | C25—C26 | 1.390 (2) |
C9—C10 | 1.389 (2) | C25—H25A | 0.9300 |
C9—H9A | 0.9300 | C26—H26A | 0.9300 |
C10—C11 | 1.380 (3) | C100—C101 | 1.487 (2) |
C10—H10A | 0.9300 | C101—C102 | 1.323 (2) |
C11—C12 | 1.391 (3) | C101—H10B | 0.9300 |
C11—H11A | 0.9300 | C102—C103 | 1.5010 (19) |
C12—C13 | 1.392 (2) | C102—H10C | 0.9300 |
C100—O1—H1O1 | 110.6 (15) | N2—C15—H15A | 109.7 |
C17—N1—C14 | 107.31 (10) | C14—C15—H15A | 109.7 |
C17—N1—C7 | 112.44 (10) | N2—C15—H15B | 109.7 |
C14—N1—C7 | 109.95 (11) | C14—C15—H15B | 109.7 |
C16—N2—C15 | 110.08 (10) | H15A—C15—H15B | 108.2 |
C16—N2—C18 | 109.73 (11) | N2—C16—C17 | 111.02 (11) |
C15—N2—C18 | 112.20 (10) | N2—C16—H16A | 109.4 |
C16—N2—H1N | 106.2 (11) | C17—C16—H16A | 109.4 |
C15—N2—H1N | 108.8 (12) | N2—C16—H16B | 109.4 |
C18—N2—H1N | 109.7 (11) | C17—C16—H16B | 109.4 |
C6—C1—C2 | 119.00 (14) | H16A—C16—H16B | 108.0 |
C6—C1—C7 | 119.86 (13) | N1—C17—C16 | 109.63 (11) |
C2—C1—C7 | 121.14 (13) | N1—C17—H17A | 109.7 |
C3—C2—C1 | 120.71 (14) | C16—C17—H17A | 109.7 |
C3—C2—H2A | 119.6 | N1—C17—H17B | 109.7 |
C1—C2—H2A | 119.6 | C16—C17—H17B | 109.7 |
C2—C3—C4 | 120.00 (16) | H17A—C17—H17B | 108.2 |
C2—C3—H3A | 120.0 | C19—C18—N2 | 111.86 (11) |
C4—C3—H3A | 120.0 | C19—C18—H18A | 109.2 |
C5—C4—C3 | 119.90 (15) | N2—C18—H18A | 109.2 |
C5—C4—H4A | 120.1 | C19—C18—H18B | 109.2 |
C3—C4—H4A | 120.1 | N2—C18—H18B | 109.2 |
C4—C5—C6 | 120.11 (15) | H18A—C18—H18B | 107.9 |
C4—C5—H5A | 119.9 | C20—C19—C18 | 121.87 (13) |
C6—C5—H5A | 119.9 | C20—C19—H19A | 119.1 |
C1—C6—C5 | 120.28 (15) | C18—C19—H19A | 119.1 |
C1—C6—H6A | 119.9 | C19—C20—C21 | 127.53 (14) |
C5—C6—H6A | 119.9 | C19—C20—H20A | 116.2 |
N1—C7—C1 | 111.23 (11) | C21—C20—H20A | 116.2 |
N1—C7—C8 | 110.08 (11) | C26—C21—C22 | 118.15 (14) |
C1—C7—C8 | 110.24 (11) | C26—C21—C20 | 119.13 (13) |
N1—C7—H7A | 108.4 | C22—C21—C20 | 122.72 (13) |
C1—C7—H7A | 108.4 | C23—C22—C21 | 120.93 (13) |
C8—C7—H7A | 108.4 | C23—C22—H22A | 119.5 |
C13—C8—C9 | 119.22 (14) | C21—C22—H22A | 119.5 |
C13—C8—C7 | 121.79 (13) | C22—C23—C24 | 120.09 (15) |
C9—C8—C7 | 118.95 (13) | C22—C23—H23A | 120.0 |
C10—C9—C8 | 120.44 (16) | C24—C23—H23A | 120.0 |
C10—C9—H9A | 119.8 | C25—C24—C23 | 119.81 (14) |
C8—C9—H9A | 119.8 | C25—C24—H24A | 120.1 |
C11—C10—C9 | 120.23 (16) | C23—C24—H24A | 120.1 |
C11—C10—H10A | 119.9 | C24—C25—C26 | 119.97 (14) |
C9—C10—H10A | 119.9 | C24—C25—H25A | 120.0 |
C10—C11—C12 | 119.84 (15) | C26—C25—H25A | 120.0 |
C10—C11—H11A | 120.1 | C25—C26—C21 | 121.03 (14) |
C12—C11—H11A | 120.1 | C25—C26—H26A | 119.5 |
C11—C12—C13 | 120.23 (16) | C21—C26—H26A | 119.5 |
C11—C12—H12A | 119.9 | O2—C100—O1 | 123.66 (14) |
C13—C12—H12A | 119.9 | O2—C100—C101 | 122.27 (14) |
C12—C13—C8 | 120.03 (15) | O1—C100—C101 | 114.07 (13) |
C12—C13—H13A | 120.0 | C102—C101—C100 | 123.96 (14) |
C8—C13—H13A | 120.0 | C102—C101—H10B | 118.0 |
N1—C14—C15 | 110.31 (11) | C100—C101—H10B | 118.0 |
N1—C14—H14A | 109.6 | C101—C102—C103 | 123.90 (13) |
C15—C14—H14A | 109.6 | C101—C102—H10C | 118.0 |
N1—C14—H14B | 109.6 | C103—C102—H10C | 118.0 |
C15—C14—H14B | 109.6 | O3—C103—O4 | 124.57 (13) |
H14A—C14—H14B | 108.1 | O3—C103—C102 | 118.50 (13) |
N2—C15—C14 | 110.00 (10) | O4—C103—C102 | 116.93 (12) |
C6—C1—C2—C3 | 0.1 (2) | C7—N1—C14—C15 | −173.18 (10) |
C7—C1—C2—C3 | −179.34 (13) | C16—N2—C15—C14 | 54.01 (14) |
C1—C2—C3—C4 | 0.1 (2) | C18—N2—C15—C14 | 176.51 (11) |
C2—C3—C4—C5 | −0.4 (2) | N1—C14—C15—N2 | −60.16 (14) |
C3—C4—C5—C6 | 0.6 (2) | C15—N2—C16—C17 | −54.01 (14) |
C2—C1—C6—C5 | 0.1 (2) | C18—N2—C16—C17 | −177.96 (10) |
C7—C1—C6—C5 | 179.51 (13) | C14—N1—C17—C16 | −63.17 (14) |
C4—C5—C6—C1 | −0.4 (2) | C7—N1—C17—C16 | 175.81 (11) |
C17—N1—C7—C1 | −50.90 (15) | N2—C16—C17—N1 | 59.32 (14) |
C14—N1—C7—C1 | −170.41 (11) | C16—N2—C18—C19 | 176.75 (11) |
C17—N1—C7—C8 | −173.39 (11) | C15—N2—C18—C19 | 54.05 (15) |
C14—N1—C7—C8 | 67.10 (14) | N2—C18—C19—C20 | −117.16 (14) |
C6—C1—C7—N1 | 119.21 (14) | C18—C19—C20—C21 | −179.45 (13) |
C2—C1—C7—N1 | −61.36 (17) | C19—C20—C21—C26 | −177.76 (14) |
C6—C1—C7—C8 | −118.38 (14) | C19—C20—C21—C22 | 2.4 (2) |
C2—C1—C7—C8 | 61.04 (17) | C26—C21—C22—C23 | −1.1 (2) |
N1—C7—C8—C13 | 36.25 (18) | C20—C21—C22—C23 | 178.80 (14) |
C1—C7—C8—C13 | −86.82 (16) | C21—C22—C23—C24 | 0.1 (2) |
N1—C7—C8—C9 | −145.97 (13) | C22—C23—C24—C25 | 0.7 (2) |
C1—C7—C8—C9 | 90.96 (16) | C23—C24—C25—C26 | −0.5 (2) |
C13—C8—C9—C10 | 1.0 (2) | C24—C25—C26—C21 | −0.5 (2) |
C7—C8—C9—C10 | −176.85 (14) | C22—C21—C26—C25 | 1.3 (2) |
C8—C9—C10—C11 | −0.1 (3) | C20—C21—C26—C25 | −178.60 (13) |
C9—C10—C11—C12 | −0.6 (3) | O2—C100—C101—C102 | 173.65 (16) |
C10—C11—C12—C13 | 0.4 (2) | O1—C100—C101—C102 | −5.8 (2) |
C11—C12—C13—C8 | 0.5 (2) | C100—C101—C102—C103 | −177.35 (13) |
C9—C8—C13—C12 | −1.2 (2) | C101—C102—C103—O3 | −175.41 (14) |
C7—C8—C13—C12 | 176.58 (13) | C101—C102—C103—O4 | 4.2 (2) |
C17—N1—C14—C15 | 64.23 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N···O4 | 0.943 (19) | 1.740 (19) | 2.6750 (15) | 170.9 (17) |
O1—H1O1···O4i | 0.94 (3) | 1.70 (3) | 2.6270 (15) | 168 (2) |
C18—H18B···O3ii | 0.97 | 2.56 | 3.3839 (18) | 143 |
C15—H15A···O3ii | 0.97 | 2.47 | 3.3463 (18) | 151 |
C15—H15B···O2iii | 0.97 | 2.46 | 3.1941 (19) | 132 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C26H29N2+·C4H3O4− |
Mr | 484.58 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 21.9467 (4), 10.43729 (18), 11.20623 (19) |
β (°) | 90.0458 (15) |
V (Å3) | 2566.95 (8) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.67 |
Crystal size (mm) | 0.60 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Agilent Xcalibur (Ruby, Gemini) |
Absorption correction | Multi-scan (CrysAlis RED and CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.732, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9777, 5146, 4289 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.121, 1.02 |
No. of reflections | 5146 |
No. of parameters | 333 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.22 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N···O4 | 0.943 (19) | 1.740 (19) | 2.6750 (15) | 170.9 (17) |
O1—H1O1···O4i | 0.94 (3) | 1.70 (3) | 2.6270 (15) | 168 (2) |
C18—H18B···O3ii | 0.97 | 2.56 | 3.3839 (18) | 143.4 |
C15—H15A···O3ii | 0.97 | 2.47 | 3.3463 (18) | 150.9 |
C15—H15B···O2iii | 0.97 | 2.46 | 3.1941 (19) | 132.4 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+3/2, z+1/2. |
Acknowledgements
CNK thanks the University of Mysore for research facilities. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.
References
Agilent (2011). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Barrett, R. J. & Zolov, B. (1960). J. Maine Med. Assoc. 51, 454–457. PubMed Google Scholar
Bertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 1975–1977. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165–o1166. CSD CrossRef CAS IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500–o501. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mouillé, Y., Cotrait, M., Hospital, M. & Marsau, P. (1975). Acta Cryst. B31, 1495–1496. CSD CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011). Acta Cryst. E67, o2296. Web of Science CSD CrossRef IUCr Journals Google Scholar
Song, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747. CSD CrossRef IUCr Journals Google Scholar
Terland, O. & Flatmark, T. (1999). Neuropharmacology, 38, 879–882. Web of Science CrossRef PubMed CAS Google Scholar
Towse, G. (1980). J. Laryngol. Otol. 94, 1009–1015. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cinnarizine (1-benzhydryl-4-cinnamyl-piperazine) is a drug derivative of piperazine and a calcium channel blocker (Terland & Flatmark, 1999). Cinnarizine is an antihistamine which is mainly used for the control of nausea and vomiting due to motion sickness. It could be also viewed as a nootropic drug because of its vasorelaxating abilities (due to calcium channel blockage), which happen mostly in the brain and it is also used as a labyrinthine sedative (Towse, 1980). A clinical evaluation of cinnarizine in various allergic disorders is published (Barrett & Zolov, 1960). Cinnarizine can be used in scuba divers without an increased risk of central nervous system oxygen toxicity. The crystal structures of some related compounds viz., cinnarizine (Mouillé et al., 1975), cyclizine hydrochloride (Bertolasi et al., 1980), cinnarizinium dipicrate (Jasinski et al., 2011), cinnarizinium picrate (Song et al., 2012), opipramolium fumarate (Siddegowda et al., 2011) and cinnarizinium 3,5-dinitrosalicylate (Dayananda et al., 2012) have been reported. In continuation of our work on the salts of pharmaceutical compounds and in view of the importance of cinnarizine, this paper reports the crystal structure of the title salt, C26H29N2+ . C4H3O4-, (I).
The asymmetric unit of (I) consists of a cinnarizinium-hydrogen fumarate cation-anion pair (Fig. 1). The six-membered piperazine ring (N1/C14/C15/N2/C16/C17) in the cation adopts a distorted chair conformation with puckering parameters Q = 0.6021 (14)Å, θ = 174.02 (12)°, φ = 184.5 (13)°, (Cremer & Pople (1975)) and contains a positively charged N atom (N2) with quaternary character. The dihderal angle between the mean planes of the two diphenyl rings (C1–C6 and C8–C13)is 74.2 (7)° and that between these rings and the extended phenyl ring (C21–C26) is 12.7 (9)° and 80.6 (8)°, respectively. Bond lengths are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by N—H···O and O—H···O hydrogen bonds forming infinite one-dimensional chains along [001] (Fig. 2). Weak C—H···O intermolecular interactions (Table 1) are also observed connecting parallel chains along [010] (Fig. 3) to form layers perpendicular to the a-axis direction of the structure.