organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11,12-Di­chloro­dibenzo[a,c]phenazine

aDepartment of Chemistry, Central Connecticut State University, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@mail.ccsu.edu

(Received 1 November 2012; accepted 4 December 2012; online 8 December 2012)

The title compound, C20H10Cl2N2, has crystallographic twofold rotational symmetry [maximum deviation from the least-squares plane = 0.038 (1) Å]. In the crystal, weak ππ ring stacking inter­actions occur down the a-axis direction [minimum centroid–centroid separation = 3.7163 (8) Å].

Related literature

For the synthesis of the title compound, see: Bellizzi et al. (2006[Bellizzi, M., Crundwell, G., Zeller, M., Hunter, A. D. & McBurney, B. (2006). Acta Cryst. E62, o5249-o5251.]). For the structures of similar compounds, see: Bellizzi et al. (2006[Bellizzi, M., Crundwell, G., Zeller, M., Hunter, A. D. & McBurney, B. (2006). Acta Cryst. E62, o5249-o5251.]); Day et al. (2002[Day, M. W., Amashukeli, X. A. & Gray, H. B. (2002). Private communication (refcode MIVRUE). CCDC, Cambridge, England.]); Richards et al. (2009[Richards, G. J., Hill, J. P., Okamoto, K., Shundo, A., Akada, M., Elsegood, M. R. J., Mori, T. & Ariga, K. (2009). Langmuir Lett. 25, 8408-8413.]).

[Scheme 1]

Experimental

Crystal data
  • C20H10Cl2N2

  • Mr = 349.20

  • Monoclinic, C 2/c

  • a = 3.8583 (3) Å

  • b = 26.2739 (13) Å

  • c = 15.1147 (10) Å

  • β = 94.877 (6)°

  • V = 1526.67 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.32 × 0.14 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.915, Tmax = 1.000

  • 5082 measured reflections

  • 2520 independent reflections

  • 1372 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 0.83

  • 2520 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound C20H10Cl2N2 is planar [maximum deviation from the l.s. plane over the 24 atoms = 0.038 (1) Å] and lies on a crystallographic twofold axis (Fig. 1). All bond lengths and angles fall within typical ranges found in other dibenzo[a,c]phenazines (Day et al., 2002; Richards et al., 2009). In the crystal, the molecules are involved in weak ππ-stacking interactions [minimum ring centroid separation = 3.7163 (8) Å], giving stacks down the a axial direction of the unit cell.

Related literature top

For the synthesis of the title compound, see: Bellizzi et al. (2006). For the structures of similar compounds, see: Bellizzi et al. (2006); Day et al. (2002); Richards et al. (2009).

Experimental top

To a 25 ml round bottom flask equipped with a reflux condenser was added 0.27 g (1.5 mmol) of 4,5-dichloro-1,2-phenylenediamine, 0.27 g (1.3 mmol) of phenanthraquinone, and 10 ml of glacial acetic acid (Bellizzi et al., 2006) and the mixture was heated with refluxing for 6 h. After this time, the resulting yellow solution was concentrated under reduced pressure, and the product obtained was purified by recrystallization from methanol, producing 0.48 g of the title compound as a yellow solid (m.p. 273 °C; yield: 92%). Rf 0.31 (SiO2, 80% hexanes-ethyl acetate); 1H NMR (300 MHz, CDCl3) d 9.35 (dd, 2H, J = 8.0 Hz, J = 1.5 Hz), 8.58 (d, 2H, J = 8.0 Hz, J = 1.2 Hz), 8.47 (s, 2H), 7.86 (dt, 2H, J = 7.2 Hz, J = 1.5 Hz), 7.774 (dt, 2H, J =7.2 Hz, J = 1.2 Hz); 13C NMR (300 MHz, CDCl3) d 143.30, 140.76, 134.30, 132.32, 130.92, 129.85, 129.79, 128.16, 126.45, 123.03; UV/Vis (CH2Cl2; λmax) 260 nm.

Refinement top

Hydrogen atoms were included in calculated positions with a C—H distance of 0.93 Å in the refinement in a riding motion approximation, with Uiso = 1.2Ueq of the carrier atom.

Structure description top

The title compound C20H10Cl2N2 is planar [maximum deviation from the l.s. plane over the 24 atoms = 0.038 (1) Å] and lies on a crystallographic twofold axis (Fig. 1). All bond lengths and angles fall within typical ranges found in other dibenzo[a,c]phenazines (Day et al., 2002; Richards et al., 2009). In the crystal, the molecules are involved in weak ππ-stacking interactions [minimum ring centroid separation = 3.7163 (8) Å], giving stacks down the a axial direction of the unit cell.

For the synthesis of the title compound, see: Bellizzi et al. (2006). For the structures of similar compounds, see: Bellizzi et al. (2006); Day et al. (2002); Richards et al. (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing atom numbering, with displacement ellipsoids drawn at the 50% probability level. Symmetry code (i) (-x, y, -z + 1/2), indicates atoms related by twofold rotational symmetry.
11,12-Dichlorodibenzo[a,c]phenazine top
Crystal data top
C20H10Cl2N2F(000) = 712
Mr = 349.20Dx = 1.519 Mg m3
Monoclinic, C2/cMelting point: 546 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 3.8583 (3) ÅCell parameters from 1714 reflections
b = 26.2739 (13) Åθ = 4.1–32.5°
c = 15.1147 (10) ŵ = 0.43 mm1
β = 94.877 (6)°T = 293 K
V = 1526.67 (17) Å3Needle, yellow
Z = 40.32 × 0.14 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3 CCD
diffractometer
2520 independent reflections
Radiation source: Enhance (Mo) X-ray Source1372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.1790 pixels mm-1θmax = 32.6°, θmin = 4.1°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2738
Tmin = 0.915, Tmax = 1.000l = 2110
5082 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0575P)2]
where P = (Fo2 + 2Fc2)/3
2520 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H10Cl2N2V = 1526.67 (17) Å3
Mr = 349.20Z = 4
Monoclinic, C2/cMo Kα radiation
a = 3.8583 (3) ŵ = 0.43 mm1
b = 26.2739 (13) ÅT = 293 K
c = 15.1147 (10) Å0.32 × 0.14 × 0.09 mm
β = 94.877 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3 CCD
diffractometer
2520 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1372 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 1.000Rint = 0.020
5082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.83Δρmax = 0.26 e Å3
2520 reflectionsΔρmin = 0.25 e Å3
109 parameters
Special details top

Experimental. Hydrogen atoms were included in calculated positions with a C—H distance of 0.93 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13563 (12)1.243825 (14)0.15408 (3)0.07256 (18)
C10.0618 (3)1.18700 (5)0.20681 (10)0.0463 (3)
C20.1244 (3)1.14234 (5)0.16590 (9)0.0430 (3)
H20.20721.14270.10990.052*
C30.0651 (3)1.09527 (4)0.20751 (8)0.0355 (3)
N10.1324 (3)1.05122 (4)0.16541 (7)0.0356 (2)
C40.0669 (3)1.00812 (4)0.20704 (8)0.0308 (3)
C50.1338 (3)0.95984 (4)0.16356 (8)0.0306 (3)
C60.2605 (3)0.95979 (5)0.07952 (8)0.0390 (3)
H60.30170.99060.05190.047*
C70.3246 (4)0.91492 (5)0.03731 (9)0.0447 (3)
H70.40780.91520.01870.054*
C80.2642 (4)0.86907 (5)0.07896 (9)0.0472 (4)
H80.30890.83860.05080.057*
C90.1394 (3)0.86825 (5)0.16127 (9)0.0421 (3)
H90.10100.83710.18800.051*
C100.0685 (3)0.91342 (4)0.20592 (8)0.0321 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0829 (3)0.0336 (2)0.1023 (4)0.00414 (17)0.0140 (3)0.0163 (2)
C10.0413 (8)0.0305 (6)0.0665 (9)0.0025 (5)0.0004 (7)0.0067 (6)
C20.0440 (8)0.0364 (7)0.0490 (8)0.0003 (6)0.0053 (6)0.0062 (6)
C30.0333 (7)0.0311 (6)0.0417 (6)0.0006 (5)0.0010 (5)0.0014 (5)
N10.0380 (6)0.0323 (5)0.0366 (5)0.0000 (4)0.0047 (5)0.0029 (4)
C40.0281 (7)0.0325 (6)0.0315 (6)0.0005 (4)0.0014 (5)0.0018 (5)
C50.0272 (6)0.0327 (6)0.0315 (6)0.0025 (5)0.0006 (5)0.0012 (5)
C60.0393 (7)0.0410 (7)0.0375 (7)0.0028 (5)0.0074 (6)0.0012 (5)
C70.0450 (8)0.0526 (8)0.0373 (7)0.0081 (6)0.0072 (6)0.0067 (6)
C80.0549 (9)0.0403 (7)0.0464 (8)0.0090 (6)0.0041 (6)0.0115 (6)
C90.0476 (8)0.0317 (6)0.0467 (8)0.0028 (5)0.0018 (6)0.0027 (5)
C100.0290 (6)0.0316 (6)0.0351 (6)0.0014 (4)0.0012 (5)0.0011 (5)
Geometric parameters (Å, º) top
Cl1—C11.7274 (13)C5—C101.4101 (15)
C1—C21.3576 (17)C6—C71.3731 (17)
C1—C1i1.428 (3)C6—H60.9300
C2—C31.4147 (16)C7—C81.3879 (18)
C2—H20.9300C7—H70.9300
C3—N11.3564 (14)C8—C91.3719 (18)
C3—C3i1.418 (2)C8—H80.9300
N1—C41.3301 (14)C9—C101.4037 (15)
C4—C4i1.438 (2)C9—H90.9300
C4—C51.4616 (15)C10—C10i1.475 (2)
C5—C61.3991 (16)
C2—C1—C1i120.17 (8)C7—C6—C5120.89 (12)
C2—C1—Cl1119.62 (11)C7—C6—H6119.6
C1i—C1—Cl1120.20 (5)C5—C6—H6119.6
C1—C2—C3120.76 (12)C6—C7—C8119.38 (12)
C1—C2—H2119.6C6—C7—H7120.3
C3—C2—H2119.6C8—C7—H7120.3
N1—C3—C2119.52 (11)C9—C8—C7120.69 (12)
N1—C3—C3i121.43 (6)C9—C8—H8119.7
C2—C3—C3i119.05 (7)C7—C8—H8119.7
C4—N1—C3116.93 (10)C8—C9—C10121.36 (12)
N1—C4—C4i121.64 (6)C8—C9—H9119.3
N1—C4—C5118.57 (10)C10—C9—H9119.3
C4i—C4—C5119.79 (6)C9—C10—C5117.61 (11)
C6—C5—C10120.06 (11)C9—C10—C10i122.27 (7)
C6—C5—C4119.85 (10)C5—C10—C10i120.12 (6)
C10—C5—C4120.08 (10)
C3—N1—C4—C4i0.40 (17)N1—C4—C4i—N1i0.24 (19)
C4—N1—C3—C2179.01 (11)N1—C4—C4i—C5i179.76 (11)
C4—N1—C3—C3i0.75 (17)C5—C4—C4i—N1i179.76 (11)
C3—N1—C4—C5179.59 (11)C5—C4—C4i—C5i0.25 (17)
Cl1—C1—C1i—C2i179.08 (10)C4—C5—C6—C7179.86 (12)
C2—C1—C1i—C2i1.40 (19)C10—C5—C6—C70.32 (18)
Cl1—C1—C1i—Cl1i0.44 (15)C4—C5—C10—C9179.65 (11)
C2—C1—C1i—Cl1i179.08 (10)C4—C5—C10—C10i0.19 (17)
C1i—C1—C2—C30.67 (18)C6—C5—C10—C90.80 (17)
Cl1—C1—C2—C3179.81 (10)C6—C5—C10—C10i179.36 (11)
C1—C2—C3—C3i0.74 (18)C5—C6—C7—C80.3 (2)
C1—C2—C3—N1179.50 (12)C6—C7—C8—C90.4 (2)
N1—C3—C3i—N1i0.96 (18)C7—C8—C9—C100.1 (2)
C2—C3—C3i—C2i1.44 (17)C8—C9—C10—C50.69 (18)
N1—C3—C3i—C2i178.80 (11)C8—C9—C10—C10i179.48 (12)
C2—C3—C3i—N1i178.80 (11)C5—C10—C10i—C5i0.17 (17)
N1—C4—C5—C60.68 (17)C5—C10—C10i—C9i179.66 (11)
N1—C4—C5—C10179.77 (11)C9—C10—C10i—C5i179.66 (11)
C4i—C4—C5—C6179.32 (11)C9—C10—C10i—C9i0.51 (18)
C4i—C4—C5—C100.24 (17)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H10Cl2N2
Mr349.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)3.8583 (3), 26.2739 (13), 15.1147 (10)
β (°) 94.877 (6)
V3)1526.67 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.32 × 0.14 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3 CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.915, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5082, 2520, 1372
Rint0.020
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 0.83
No. of reflections2520
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was funded by a CCSU–AAUP research grant.

References

First citationBellizzi, M., Crundwell, G., Zeller, M., Hunter, A. D. & McBurney, B. (2006). Acta Cryst. E62, o5249–o5251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDay, M. W., Amashukeli, X. A. & Gray, H. B. (2002). Private communication (refcode MIVRUE). CCDC, Cambridge, England.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRichards, G. J., Hill, J. P., Okamoto, K., Shundo, A., Akada, M., Elsegood, M. R. J., Mori, T. & Ariga, K. (2009). Langmuir Lett. 25, 8408–8413.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds