metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[μ2-iodido-di­iodidobis(μ3-pyridine-2-thione-κ3S:S:S)(μ2-pyridine-2-thione-κ2S:S)tricopper(I)]

aCollege of Pharmacy, Fujian Medical University, Fuzhou 350004, People's Republic of China, and bXiamen Maternity and Child Health Care Hospital, Xiamen 361001, People's Republic of China
*Correspondence e-mail: carsten.ke@hotmail.com

(Received 29 November 2012; accepted 29 December 2012; online 9 January 2013)

In the title compound, [Cu3I3(C5H5NS)3]n, a polymeric structure is formed along [100] through bridging iodide and pyridine-2-thione ligands. The metal atoms are engaged in [Cu3S3] and [Cu2S2] rings sharing Cu—S edges, with the [Cu2S2] rings located about inversion centers. CuI atoms bridged by iodide ions exhibit the shortest Cu⋯Cu separation in the polymer [2.8590 (14) Å]. The three independent CuI atoms all display distorted tetra­hedral coordination geometries.

Related literature

For applications of CuI complexes and coordination compounds based on 1H-pyridine-2-thione, see: Kitagawa et al. (1990[Kitagawa, S., Munakata, M., Shimono, H., Matsuyama, S. & Masuda, H. (1990). J. Chem. Soc. Dalton Trans. pp. 2105-2109.]); Raper (1996[Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.], 1997[Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.]); García-Vázquez et al. (1999[García-Vázquez, J. A., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. 193-195, 691-745.]); Akrivos (2001[Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.]); Lobana & Castineiras (2002[Lobana, T. S. & Castineiras, A. (2002). Polyhedron, 21, 1603-1611.]). For the structure of a polymer isoformular to the title compound, see: Lobana et al. (2003[Lobana, T. S., Sharma, R., Bermojo, E. & Castineiras, A. (2003). Inorg. Chem. 42, 7728-7730.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3I3(C5H5NS)3]

  • Mr = 904.80

  • Triclinic, [P \overline 1]

  • a = 10.035 (1) Å

  • b = 10.9220 (11) Å

  • c = 12.2500 (15) Å

  • α = 105.956 (2)°

  • β = 100.088 (3)°

  • γ = 109.377 (3)°

  • V = 1164.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.97 mm−1

  • T = 298 K

  • 0.40 × 0.23 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.167, Tmax = 0.421

  • 6013 measured reflections

  • 4009 independent reflections

  • 3215 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.06

  • 4009 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −1.45 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—S3 2.315 (2)
Cu1—S1 2.356 (2)
Cu1—S1i 2.480 (2)
Cu1—I1 2.5917 (11)
Cu1—Cu2 2.8590 (14)
Cu1—Cu1i 2.928 (2)
Cu2—S2 2.315 (2)
Cu2—S1i 2.367 (2)
Cu2—I2 2.5632 (11)
Cu2—I1 2.6896 (12)
Cu3—S3 2.273 (2)
Cu3—S2i 2.290 (2)
Cu3—I3 2.5726 (11)
Cu3—S2ii 2.639 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of Cu(I) is of considerable interest because these complexes have luminescence properties, antimicrobial activity, and potential applications in catalysis, photography, and electrochemical processes (Kitagawa et al., 1990; Raper, 1996, 1997). On the other hand, pyridine-2-thiolate can bind to a metal or a group of metals via a variety of bonding modes, and this versatility is attributed to the size of the S atom and its proximity to the pyridyl N atom (García-Vázquez et al., 1999; Akrivos, 2001; Lobana et al., 2002). The large size of the S atom makes it easier to adopt different coordination angles in complexes, which is necessary in order to match different geometries.

We report here the crystal structure of the title compound, which displays a polymeric chain structure (Fig. 1 and 2). The polymer is isoformular, although not isostructural to that previously described by Lobana et al. (2003). Two sulfur atoms S1 and S2 act as µ3-S donor atoms, while S3 acts as a µ2-S donor atom. There are three independent Cu atoms in the asymmetric unit; Cu1 and Cu3 are coordinated to S1, S3, I1, S1i and S3, I3, S2i, S2ii, respectively. Atom Cu2 is coordinated to I1, I2, S2 and S1i (symmetry codes: i: 1-x, 1-y, 1-z; ii: x-1, y, z). From bond lengths and angles around Cu centers, these metals are placed in a distorted tetrahedral coordination geometry. Moreover, metal–metal interactions are observed, with Cu1···Cu1i and Cu1···Cu2 separations of 2.928 and 2.859 Å, shorter than metal–metal contacts in the isoformular polymer (Lobana et al., 2003).

Related literature top

For applications of CuI complexes and coordination compounds based on 1H-pyridine-2-thione, see: Kitagawa et al. (1990); Raper (1996, 1997); García-Vázquez et al. (1999); Akrivos (2001); Lobana & Castineiras (2002). For the structure of a polymer isoformular to the title compound, see: Lobana et al. (2003).

Experimental top

An oven-dried Schlenk tube was charged with CuI (0.4 mmol), and pyridine-2-thione (0.4 mmol). The tube was evacuated and backfilled with N2. The reaction mixture was stirred at 333 K for 4 h and then allowed to cool to room temperature. The insoluble residues were removed by filtration, and the filtrate was evaporated slowly at room temperature for about one month, to yield yellow crystals. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

All H atoms were placed in calculated positions and treated as riding on their parent atoms, with bond lengths fixed to 0.93 Å for C—H bonds and 0.86 Å for N—H bonds. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(carrier atom).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. View of the one-dimensional extended chain structure in the title compound.
catena-Poly[µ2-iodido-diiodidobis(µ3-pyridine-2-thione- κ3S:S:S)(µ2-pyridine-2-thione- κ2S:S)tricopper(I)] top
Crystal data top
[Cu3I3(C5H5NS)3]Z = 2
Mr = 904.80F(000) = 840
Triclinic, P1Dx = 2.581 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.035 (1) ÅCell parameters from 3445 reflections
b = 10.9220 (11) Åθ = 2.2–26.0°
c = 12.2500 (15) ŵ = 6.97 mm1
α = 105.956 (2)°T = 298 K
β = 100.088 (3)°Block, yellow
γ = 109.377 (3)°0.40 × 0.23 × 0.15 mm
V = 1164.1 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
4009 independent reflections
Radiation source: fine-focus sealed tube3215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.167, Tmax = 0.421k = 1212
6013 measured reflectionsl = 1410
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0556P)2 + 2.5913P]
where P = (Fo2 + 2Fc2)/3
4009 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 1.45 e Å3
0 constraints
Crystal data top
[Cu3I3(C5H5NS)3]γ = 109.377 (3)°
Mr = 904.80V = 1164.1 (2) Å3
Triclinic, P1Z = 2
a = 10.035 (1) ÅMo Kα radiation
b = 10.9220 (11) ŵ = 6.97 mm1
c = 12.2500 (15) ÅT = 298 K
α = 105.956 (2)°0.40 × 0.23 × 0.15 mm
β = 100.088 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4009 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3215 reflections with I > 2σ(I)
Tmin = 0.167, Tmax = 0.421Rint = 0.028
6013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.06Δρmax = 1.33 e Å3
4009 reflectionsΔρmin = 1.45 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.48634 (11)0.50567 (10)0.61815 (8)0.0417 (3)
Cu20.79614 (11)0.58824 (10)0.71789 (8)0.0432 (3)
Cu30.14805 (12)0.65287 (11)0.57965 (8)0.0495 (3)
I10.58333 (6)0.39571 (5)0.75952 (5)0.04314 (17)
I20.95579 (7)0.79131 (6)0.91260 (5)0.0568 (2)
I30.16049 (6)0.90228 (5)0.63917 (5)0.04906 (18)
N10.1790 (7)0.0857 (6)0.3003 (6)0.0479 (17)
H10.10890.10950.27660.057*
N21.0746 (7)0.3244 (7)0.6514 (6)0.0422 (15)
H21.04760.28860.57510.051*
N30.3203 (7)0.7738 (6)0.8801 (5)0.0410 (15)
H30.23410.75750.83770.049*
S10.3069 (2)0.35003 (18)0.43695 (15)0.0328 (4)
S20.9240 (2)0.4776 (2)0.61847 (16)0.0403 (5)
S30.3492 (2)0.6317 (2)0.67672 (16)0.0422 (5)
C10.3003 (8)0.1836 (7)0.3837 (6)0.0325 (16)
C20.4146 (10)0.1418 (8)0.4198 (7)0.047 (2)
H2A0.50220.20540.47780.057*
C30.3937 (11)0.0047 (9)0.3675 (8)0.055 (2)
H3A0.46900.02310.39000.066*
C40.2641 (11)0.0914 (8)0.2828 (8)0.053 (2)
H40.25060.18360.24910.063*
C50.1579 (11)0.0491 (8)0.2500 (9)0.058 (2)
H50.06950.11220.19260.069*
C61.0204 (8)0.4156 (8)0.7040 (6)0.0360 (16)
C71.0588 (9)0.4641 (8)0.8276 (7)0.0438 (19)
H71.02060.52370.86740.053*
C81.1536 (11)0.4235 (10)0.8911 (8)0.061 (3)
H81.17870.45470.97360.073*
C91.2119 (11)0.3342 (11)0.8293 (9)0.063 (3)
H91.27950.30950.87050.075*
C101.1695 (10)0.2871 (9)0.7138 (9)0.055 (2)
H101.20540.22600.67290.066*
C110.4100 (8)0.7287 (7)0.8249 (6)0.0334 (16)
C120.5518 (9)0.7651 (8)0.8966 (7)0.045 (2)
H120.61840.73850.86250.053*
C130.5946 (11)0.8381 (9)1.0143 (8)0.061 (3)
H130.69040.86351.06030.074*
C140.4937 (11)0.8752 (9)1.0667 (7)0.056 (2)
H140.52070.92191.14820.067*
C150.3594 (11)0.8436 (9)0.9995 (7)0.053 (2)
H150.29220.86891.03370.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0459 (6)0.0397 (5)0.0395 (5)0.0245 (5)0.0052 (4)0.0097 (4)
Cu20.0466 (6)0.0423 (6)0.0382 (5)0.0235 (5)0.0080 (4)0.0064 (4)
Cu30.0618 (7)0.0513 (6)0.0355 (5)0.0371 (5)0.0002 (4)0.0065 (4)
I10.0422 (3)0.0431 (3)0.0480 (3)0.0177 (2)0.0081 (2)0.0245 (2)
I20.0619 (4)0.0487 (4)0.0412 (3)0.0151 (3)0.0040 (3)0.0043 (3)
I30.0481 (3)0.0371 (3)0.0573 (4)0.0208 (3)0.0090 (3)0.0095 (2)
N10.034 (4)0.029 (3)0.063 (4)0.009 (3)0.004 (3)0.004 (3)
N20.051 (4)0.043 (4)0.047 (4)0.030 (3)0.016 (3)0.024 (3)
N30.039 (4)0.037 (3)0.039 (3)0.015 (3)0.009 (3)0.005 (3)
S10.0351 (9)0.0281 (9)0.0313 (9)0.0152 (8)0.0038 (7)0.0058 (7)
S20.0494 (11)0.0546 (12)0.0292 (9)0.0364 (10)0.0111 (8)0.0142 (8)
S30.0396 (11)0.0502 (12)0.0335 (10)0.0285 (9)0.0024 (8)0.0026 (8)
C10.040 (4)0.032 (4)0.032 (4)0.021 (3)0.013 (3)0.011 (3)
C20.058 (5)0.038 (4)0.042 (4)0.023 (4)0.005 (4)0.012 (4)
C30.077 (6)0.048 (5)0.055 (5)0.043 (5)0.018 (5)0.020 (4)
C40.075 (6)0.029 (4)0.058 (5)0.026 (4)0.023 (5)0.013 (4)
C50.060 (6)0.026 (4)0.068 (6)0.009 (4)0.012 (5)0.002 (4)
C60.037 (4)0.040 (4)0.040 (4)0.019 (3)0.014 (3)0.021 (3)
C70.054 (5)0.046 (5)0.032 (4)0.021 (4)0.009 (3)0.017 (3)
C80.066 (6)0.066 (6)0.037 (5)0.010 (5)0.002 (4)0.030 (4)
C90.056 (6)0.072 (7)0.076 (7)0.032 (5)0.006 (5)0.049 (6)
C100.060 (6)0.057 (6)0.084 (7)0.044 (5)0.032 (5)0.046 (5)
C110.041 (4)0.023 (3)0.032 (4)0.012 (3)0.007 (3)0.007 (3)
C120.039 (4)0.044 (5)0.048 (5)0.027 (4)0.000 (3)0.009 (4)
C130.063 (6)0.049 (5)0.060 (6)0.029 (5)0.017 (5)0.013 (4)
C140.079 (7)0.045 (5)0.026 (4)0.012 (5)0.005 (4)0.007 (4)
C150.067 (6)0.044 (5)0.045 (5)0.015 (4)0.029 (5)0.012 (4)
Geometric parameters (Å, º) top
Cu1—S32.315 (2)S2—Cu3i2.290 (2)
Cu1—S12.356 (2)S2—Cu3iii2.639 (3)
Cu1—S1i2.480 (2)S3—C111.708 (7)
Cu1—I12.5917 (11)C1—C21.414 (10)
Cu1—Cu22.8590 (14)C2—C31.384 (11)
Cu1—Cu1i2.928 (2)C2—H2A0.9300
Cu2—S22.315 (2)C3—C41.376 (13)
Cu2—S1i2.367 (2)C3—H3A0.9300
Cu2—I22.5632 (11)C4—C51.337 (13)
Cu2—I12.6896 (12)C4—H40.9300
Cu3—S32.273 (2)C5—H50.9300
Cu3—S2i2.290 (2)C6—C71.393 (10)
Cu3—I32.5726 (11)C7—C81.385 (12)
Cu3—S2ii2.639 (3)C7—H70.9300
N1—C11.330 (9)C8—C91.412 (14)
N1—C51.357 (10)C8—H80.9300
N1—H10.8600C9—C101.300 (13)
N2—C101.353 (10)C9—H90.9300
N2—C61.354 (9)C10—H100.9300
N2—H20.8600C11—C121.396 (10)
N3—C111.355 (9)C12—C131.351 (12)
N3—C151.365 (10)C12—H120.9300
N3—H30.8600C13—C141.399 (13)
S1—C11.728 (7)C13—H130.9300
S1—Cu2i2.367 (2)C14—C151.326 (13)
S1—Cu1i2.480 (2)C14—H140.9300
S2—C61.721 (7)C15—H150.9300
S3—Cu1—S195.70 (7)Cu3i—S2—Cu3iii87.07 (8)
S3—Cu1—S1i109.08 (8)Cu2—S2—Cu3iii112.17 (9)
S1—Cu1—S1i105.53 (6)C11—S3—Cu3112.4 (3)
S3—Cu1—I1118.52 (7)C11—S3—Cu1113.8 (3)
S1—Cu1—I1116.47 (6)Cu3—S3—Cu1133.81 (9)
S1i—Cu1—I1110.13 (5)N1—C1—C2116.4 (6)
S3—Cu1—Cu2126.14 (6)N1—C1—S1118.1 (5)
S1—Cu1—Cu2135.86 (6)C2—C1—S1125.6 (6)
S1i—Cu1—Cu252.03 (5)C3—C2—C1118.9 (8)
I1—Cu1—Cu258.89 (3)C3—C2—H2A120.6
S3—Cu1—Cu1i110.90 (7)C1—C2—H2A120.6
S1—Cu1—Cu1i54.69 (6)C4—C3—C2121.5 (8)
S1i—Cu1—Cu1i50.84 (5)C4—C3—H3A119.3
I1—Cu1—Cu1i130.56 (5)C2—C3—H3A119.3
Cu2—Cu1—Cu1i93.24 (5)C5—C4—C3118.5 (7)
S2—Cu2—S1i97.69 (7)C5—C4—H4120.8
S2—Cu2—I2114.82 (7)C3—C4—H4120.8
S1i—Cu2—I2115.43 (6)C4—C5—N1120.0 (8)
S2—Cu2—I1107.63 (7)C4—C5—H5120.0
S1i—Cu2—I1110.49 (6)N1—C5—H5120.0
I2—Cu2—I1110.04 (4)N2—C6—C7117.0 (7)
S2—Cu2—Cu1120.62 (6)N2—C6—S2119.4 (5)
S1i—Cu2—Cu155.70 (5)C7—C6—S2123.3 (6)
I2—Cu2—Cu1124.49 (4)C8—C7—C6120.0 (8)
I1—Cu2—Cu155.59 (3)C8—C7—H7120.0
S3—Cu3—S2i110.21 (7)C6—C7—H7120.0
S3—Cu3—I3114.83 (7)C7—C8—C9119.3 (8)
S2i—Cu3—I3118.15 (7)C7—C8—H8120.4
S3—Cu3—S2ii104.12 (8)C9—C8—H8120.4
S2i—Cu3—S2ii92.93 (8)C10—C9—C8119.0 (8)
I3—Cu3—S2ii113.75 (6)C10—C9—H9120.5
Cu1—I1—Cu265.52 (3)C8—C9—H9120.5
C1—N1—C5124.8 (7)C9—C10—N2121.9 (8)
C1—N1—H1117.6C9—C10—H10119.1
C5—N1—H1117.6N2—C10—H10119.1
C10—N2—C6122.8 (7)N3—C11—C12116.0 (7)
C10—N2—H2118.6N3—C11—S3120.9 (6)
C6—N2—H2118.6C12—C11—S3123.1 (6)
C11—N3—C15123.5 (7)C13—C12—C11121.5 (8)
C11—N3—H3118.3C13—C12—H12119.2
C15—N3—H3118.3C11—C12—H12119.2
C1—S1—Cu1117.6 (3)C12—C13—C14119.5 (8)
C1—S1—Cu2i111.4 (2)C12—C13—H13120.3
Cu1—S1—Cu2i125.91 (8)C14—C13—H13120.3
C1—S1—Cu1i104.9 (3)C15—C14—C13119.7 (8)
Cu1—S1—Cu1i74.47 (6)C15—C14—H14120.1
Cu2i—S1—Cu1i72.26 (6)C13—C14—H14120.1
C6—S2—Cu3i112.1 (3)C14—C15—N3119.7 (8)
C6—S2—Cu2112.9 (3)C14—C15—H15120.1
Cu3i—S2—Cu2126.77 (9)N3—C15—H15120.1
C6—S2—Cu3iii98.9 (3)
S3—Cu1—Cu2—S2164.32 (10)S2i—Cu3—S3—Cu11.65 (19)
S1—Cu1—Cu2—S26.01 (13)I3—Cu3—S3—Cu1138.06 (12)
S1i—Cu1—Cu2—S277.56 (9)S2ii—Cu3—S3—Cu196.91 (15)
I1—Cu1—Cu2—S291.21 (8)S1—Cu1—S3—C11162.0 (3)
Cu1i—Cu1—Cu2—S245.38 (9)S1i—Cu1—S3—C1189.3 (3)
S3—Cu1—Cu2—S1i86.77 (10)I1—Cu1—S3—C1137.7 (3)
S1—Cu1—Cu2—S1i71.55 (11)Cu2—Cu1—S3—C1132.9 (3)
I1—Cu1—Cu2—S1i168.77 (6)Cu1i—Cu1—S3—C11143.7 (3)
Cu1i—Cu1—Cu2—S1i32.17 (6)S1—Cu1—S3—Cu317.16 (16)
S3—Cu1—Cu2—I212.56 (11)S1i—Cu1—S3—Cu391.46 (15)
S1—Cu1—Cu2—I2170.87 (8)I1—Cu1—S3—Cu3141.50 (12)
S1i—Cu1—Cu2—I299.32 (7)Cu2—Cu1—S3—Cu3147.85 (12)
I1—Cu1—Cu2—I291.91 (5)Cu1i—Cu1—S3—Cu337.13 (17)
Cu1i—Cu1—Cu2—I2131.49 (6)C5—N1—C1—C20.8 (12)
S3—Cu1—Cu2—I1104.47 (9)C5—N1—C1—S1179.9 (7)
S1—Cu1—Cu2—I197.22 (9)Cu1—S1—C1—N1162.9 (5)
S1i—Cu1—Cu2—I1168.77 (6)Cu2i—S1—C1—N140.6 (7)
Cu1i—Cu1—Cu2—I1136.59 (5)Cu1i—S1—C1—N1117.0 (6)
S3—Cu1—I1—Cu2117.13 (8)Cu1—S1—C1—C218.1 (8)
S1—Cu1—I1—Cu2129.49 (7)Cu2i—S1—C1—C2138.4 (6)
S1i—Cu1—I1—Cu29.41 (5)Cu1i—S1—C1—C261.9 (7)
Cu1i—Cu1—I1—Cu264.56 (7)N1—C1—C2—C30.0 (12)
S2—Cu2—I1—Cu1115.48 (6)S1—C1—C2—C3179.0 (7)
S1i—Cu2—I1—Cu19.89 (5)C1—C2—C3—C40.9 (14)
I2—Cu2—I1—Cu1118.74 (4)C2—C3—C4—C51.1 (15)
S3—Cu1—S1—C1149.4 (3)C3—C4—C5—N10.3 (15)
S1i—Cu1—S1—C199.0 (3)C1—N1—C5—C40.7 (15)
I1—Cu1—S1—C123.6 (3)C10—N2—C6—C74.2 (12)
Cu2—Cu1—S1—C148.0 (3)C10—N2—C6—S2169.9 (7)
Cu1i—Cu1—S1—C199.0 (3)Cu3i—S2—C6—N215.5 (7)
S3—Cu1—S1—Cu2i57.90 (12)Cu2—S2—C6—N2166.3 (5)
S1i—Cu1—S1—Cu2i53.73 (9)Cu3iii—S2—C6—N275.0 (6)
I1—Cu1—S1—Cu2i176.24 (7)Cu3i—S2—C6—C7170.8 (6)
Cu2—Cu1—S1—Cu2i104.64 (10)Cu2—S2—C6—C720.0 (8)
Cu1i—Cu1—S1—Cu2i53.73 (9)Cu3iii—S2—C6—C798.7 (7)
S3—Cu1—S1—Cu1i111.63 (8)N2—C6—C7—C82.8 (12)
S1i—Cu1—S1—Cu1i0.0S2—C6—C7—C8171.0 (7)
I1—Cu1—S1—Cu1i122.51 (6)C6—C7—C8—C90.7 (14)
Cu2—Cu1—S1—Cu1i50.91 (9)C7—C8—C9—C103.2 (15)
S1i—Cu2—S2—C6179.4 (3)C8—C9—C10—N22.0 (15)
I2—Cu2—S2—C656.7 (3)C6—N2—C10—C91.8 (14)
I1—Cu2—S2—C666.2 (3)C15—N3—C11—C123.8 (11)
Cu1—Cu2—S2—C6126.1 (3)C15—N3—C11—S3175.5 (6)
S1i—Cu2—S2—Cu3i34.96 (14)Cu3—S3—C11—N319.6 (7)
I2—Cu2—S2—Cu3i157.63 (10)Cu1—S3—C11—N3159.8 (5)
I1—Cu2—S2—Cu3i79.47 (13)Cu3—S3—C11—C12161.2 (6)
Cu1—Cu2—S2—Cu3i19.54 (16)Cu1—S3—C11—C1219.4 (8)
S1i—Cu2—S2—Cu3iii68.67 (9)N3—C11—C12—C131.5 (12)
I2—Cu2—S2—Cu3iii54.00 (9)S3—C11—C12—C13177.8 (7)
I1—Cu2—S2—Cu3iii176.90 (5)C11—C12—C13—C141.7 (14)
Cu1—Cu2—S2—Cu3iii123.16 (7)C12—C13—C14—C152.8 (14)
S2i—Cu3—S3—C11179.1 (3)C13—C14—C15—N30.7 (14)
I3—Cu3—S3—C1142.7 (3)C11—N3—C15—C142.7 (13)
S2ii—Cu3—S3—C1182.3 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu3I3(C5H5NS)3]
Mr904.80
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.035 (1), 10.9220 (11), 12.2500 (15)
α, β, γ (°)105.956 (2), 100.088 (3), 109.377 (3)
V3)1164.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)6.97
Crystal size (mm)0.40 × 0.23 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.167, 0.421
No. of measured, independent and
observed [I > 2σ(I)] reflections
6013, 4009, 3215
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.06
No. of reflections4009
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 1.45

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—S32.315 (2)Cu2—S1i2.367 (2)
Cu1—S12.356 (2)Cu2—I22.5632 (11)
Cu1—S1i2.480 (2)Cu2—I12.6896 (12)
Cu1—I12.5917 (11)Cu3—S32.273 (2)
Cu1—Cu22.8590 (14)Cu3—S2i2.290 (2)
Cu1—Cu1i2.928 (2)Cu3—I32.5726 (11)
Cu2—S22.315 (2)Cu3—S2ii2.639 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors thank the Fujian Provincial Foundation (2012-J05150) and the Research Fund of Fujian Medical University (2011BS006) for financial support.

References

First citationAkrivos, P. D. (2001). Coord. Chem. Rev. 213, 181–210.  Web of Science CrossRef CAS Google Scholar
First citationGarcía-Vázquez, J. A., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. 193–195, 691–745.  Google Scholar
First citationKitagawa, S., Munakata, M., Shimono, H., Matsuyama, S. & Masuda, H. (1990). J. Chem. Soc. Dalton Trans. pp. 2105–2109.  CSD CrossRef Web of Science Google Scholar
First citationLobana, T. S. & Castineiras, A. (2002). Polyhedron, 21, 1603–1611.  Web of Science CSD CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bermojo, E. & Castineiras, A. (2003). Inorg. Chem. 42, 7728–7730.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRaper, E. S. (1996). Coord. Chem. Rev. 153, 199–255.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S. (1997). Coord. Chem. Rev. 165, 475–567.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds