organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4′-(4-fluoro­phen­yl)-1′-methyl-3′-nitro­methyl-2-oxo­spiro­[indoline-3,2′-pyrrolidine]-3′-carboxyl­ate

aPost Graduate and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai-25, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

(Received 2 January 2013; accepted 16 January 2013; online 23 January 2013)

In the title compound, C21H20FN3O5, the the pyrrolidine ring makes dihedral angles of 84.91 (6) and 62.38 (7)° with the oxindole unit and the fluoro­phenyl ring, respectively. The pyrrolidine ring assumes an envelope conformation with the spiro C atom as the flap. The crystal packing features weak N—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For background to pyrrolidine derivatives, see: Raj et al. (2003[Raj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]); Cordell (1981[Cordell, G. A. (1981). In Introduction to Alkaloids: A Biogenetic Approach. New York: Wiley International.]); Usha et al. (2005[Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jaisankar, P. & Srinivasan, P. C. (2005). Acta Cryst. E61, o2227-o2229.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20FN3O5

  • Mr = 413.40

  • Orthorhombic, P n a 21

  • a = 8.0265 (5) Å

  • b = 25.7011 (15) Å

  • c = 9.7763 (6) Å

  • V = 2016.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.981

  • 22124 measured reflections

  • 2551 independent reflections

  • 2355 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.132

  • S = 1.13

  • 2551 reflections

  • 271 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.34 3.127 (2) 152
C4—H4⋯O1i 0.93 2.42 3.223 (2) 145
C9—H9B⋯O1ii 0.97 2.49 3.314 (2) 142
C9—H9A⋯O4iii 0.97 2.51 3.443 (3) 160
Symmetry codes: (i) [-x, -y, z-{\script{1\over 2}}]; (ii) [-x, -y, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrrolidine ring system is a frequently encountered structural motif in many biologically relevant alkaloids (Cordell, 1981). Substituted pyrrolidines possess anti-microbial and anti-fungal activity against various pathogens (Raj et al., 2003). In the title compound (Fig. 1), the N—C and C—C bond lengths are slightly longer than the normal values, but are comparable with those in other reported structures (e.g. Usha et al., 2005). This may be due to the spiro-atom character and the steric forces of bulky substituents in the pyrrolidine moiety. Bond length C7—O1, 1.226 (3) Å, indicates a keto group character. The dihedral angle [84.91 (6)°] between oxindole moiety and pyrrolidine ring shows that they are almost orthogonal to each other. The sum of the angles around N2 atom, 360.0°, and N3 atom, 359.9°, is an indication of their sp2 hybridization. The O atoms of the nitro group have somewhat higher displacement parameters than the other atoms, indicating greater thermal motion for these atoms. The pyrrolidine ring adopts envelope conformation, with C8 as the flap.

The crystal packing is stabilized by weak N—H···N and C—H···O hydrogen bonds. The symmetry-related molecules linked through alternate N—H···N and C—H···O type hydrogen bonds are forming loops. These units running along [001] form molecular chains, which are connected by C—H···O hydrogen bonds, resulting in molecular layers (Fig. 2).

Related literature top

For background to pyrrolidine derivatives, see: Raj et al. (2003); Cordell (1981); Usha et al. (2005).

Experimental top

A mixture of (E)-methyl 3-(4-fluorophenyl)-2-(nitromethyl)acrylate (1 mmol, 0.24 g), isatin (1 mmol, 0.15 g) and sarcosine (1 mmol, 0.09 g) in acetonitrile (6 ml) was refluxed for 14 h. After completion of the reaction, as indicated by TLC, the reaction mixture was concentrated, and the resulting crude diluted with water (10 ml), and extracted with ethyl acetate (3 × 10 ml). The combined organic layers were washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4. The organic layer thus obtained was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate:hexanes (3:7), to afford the title compound as a colourless solid, in 68% yield.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances in the range 0.93–0.98 Å and N2—H2A distance of 0.86 Å. Displacement parameters for H atoms were calculated as and Uiso(H) = 1.2Ueq(N, C), except for the methyl groups, for which Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure. The dashed lines indicate the hydrogen bonds.
Methyl 4'-(4-fluorophenyl)-1'-methyl-3'-nitromethyl-2-oxospiro[indoline-3,2'-pyrrolidine]-3'-carboxylate top
Crystal data top
C21H20FN3O5F(000) = 864
Mr = 413.40Dx = 1.362 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nθ = 2.2–28.0°
a = 8.0265 (5) ŵ = 0.10 mm1
b = 25.7011 (15) ÅT = 293 K
c = 9.7763 (6) ÅBlock, colourless
V = 2016.8 (2) Å30.20 × 0.18 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed tube2355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scanθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.979, Tmax = 0.981k = 3333
22124 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.16 e Å3
0 constraints
Crystal data top
C21H20FN3O5V = 2016.8 (2) Å3
Mr = 413.40Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.0265 (5) ŵ = 0.10 mm1
b = 25.7011 (15) ÅT = 293 K
c = 9.7763 (6) Å0.20 × 0.18 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2355 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.981Rint = 0.022
22124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.132H-atom parameters constrained
S = 1.13Δρmax = 0.30 e Å3
2551 reflectionsΔρmin = 0.16 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3956 (3)0.11630 (9)0.1303 (3)0.0495 (5)
H10.42610.13060.21400.059*
C20.4898 (3)0.12602 (10)0.0138 (3)0.0565 (6)
H20.58500.14650.02060.068*
C30.4449 (3)0.10596 (11)0.1112 (3)0.0587 (6)
H30.50850.11370.18800.070*
C40.3039 (3)0.07382 (10)0.1246 (3)0.0547 (5)
H40.27290.05990.20860.066*
C50.2141 (3)0.06398 (8)0.0077 (3)0.0451 (5)
C60.2544 (3)0.08481 (7)0.1197 (2)0.0427 (4)
C70.0156 (3)0.03050 (8)0.1341 (3)0.0493 (5)
C80.1232 (3)0.06782 (7)0.2227 (2)0.0411 (4)
C90.2291 (3)0.08136 (9)0.4461 (3)0.0514 (5)
H9A0.34910.08560.44210.062*
H9B0.19820.07170.53860.062*
C100.1406 (2)0.13220 (7)0.4033 (2)0.0390 (4)
H100.22580.15480.36290.047*
C110.0209 (2)0.11542 (7)0.2839 (2)0.0365 (4)
C120.0607 (3)0.16266 (9)0.5181 (2)0.0456 (5)
C130.0601 (4)0.21706 (11)0.5106 (3)0.0588 (6)
H130.11310.23330.43750.071*
C140.0166 (5)0.24707 (14)0.6083 (4)0.0829 (11)
H140.01770.28320.60140.099*
C150.0913 (5)0.2224 (2)0.7158 (4)0.0902 (13)
C160.0913 (5)0.1694 (2)0.7311 (3)0.0904 (13)
H160.14250.15390.80600.109*
C170.0125 (4)0.13928 (14)0.6316 (3)0.0628 (7)
H170.00880.10330.64120.075*
C180.1491 (3)0.09642 (8)0.3340 (2)0.0466 (5)
H18A0.20320.07780.26010.056*
H18B0.13180.07200.40820.056*
C190.0041 (3)0.15462 (7)0.1679 (2)0.0390 (4)
C200.0779 (4)0.23421 (12)0.0716 (4)0.0769 (10)
H20A0.14860.26340.09140.115*
H20B0.03500.24590.06190.115*
H20C0.11370.21800.01190.115*
C210.2968 (4)0.00037 (11)0.3289 (4)0.0769 (9)
H21A0.32310.01560.41590.115*
H21B0.39610.01380.28890.115*
H21C0.25150.02650.26940.115*
N10.1739 (3)0.04125 (7)0.3481 (2)0.0503 (4)
N20.0717 (2)0.03194 (7)0.0047 (2)0.0506 (5)
H2A0.02660.01540.06220.061*
N30.2642 (2)0.13883 (9)0.3830 (2)0.0558 (5)
O10.0977 (3)0.00319 (8)0.1779 (2)0.0701 (6)
O20.0938 (2)0.14544 (7)0.0731 (2)0.0534 (4)
O30.0879 (2)0.19697 (6)0.18238 (18)0.0467 (4)
O40.3674 (3)0.12634 (12)0.4665 (3)0.0891 (8)
O50.2541 (3)0.18170 (9)0.3327 (3)0.0725 (6)
F0.1702 (4)0.25155 (16)0.8126 (3)0.1407 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (10)0.0469 (11)0.0586 (13)0.0016 (9)0.0007 (10)0.0078 (10)
C20.0408 (10)0.0505 (12)0.0781 (17)0.0041 (9)0.0071 (11)0.0067 (12)
C30.0542 (12)0.0576 (13)0.0644 (15)0.0041 (10)0.0159 (12)0.0052 (12)
C40.0578 (12)0.0523 (12)0.0539 (12)0.0018 (10)0.0035 (11)0.0060 (10)
C50.0449 (10)0.0352 (9)0.0553 (12)0.0008 (8)0.0011 (9)0.0069 (9)
C60.0434 (10)0.0346 (9)0.0501 (11)0.0033 (7)0.0005 (9)0.0002 (8)
C70.0603 (12)0.0302 (9)0.0573 (13)0.0074 (8)0.0015 (11)0.0072 (9)
C80.0477 (10)0.0302 (8)0.0455 (10)0.0024 (7)0.0014 (9)0.0011 (8)
C90.0537 (11)0.0453 (11)0.0551 (12)0.0007 (10)0.0151 (11)0.0084 (10)
C100.0439 (9)0.0360 (8)0.0371 (9)0.0064 (7)0.0058 (8)0.0027 (7)
C110.0409 (9)0.0321 (8)0.0364 (9)0.0035 (7)0.0031 (7)0.0007 (7)
C120.0476 (10)0.0525 (12)0.0369 (10)0.0055 (9)0.0060 (9)0.0045 (9)
C130.0703 (15)0.0514 (13)0.0546 (14)0.0030 (11)0.0120 (12)0.0122 (11)
C140.099 (2)0.080 (2)0.070 (2)0.0254 (18)0.0267 (18)0.0332 (18)
C150.083 (2)0.133 (4)0.0544 (17)0.037 (2)0.0180 (16)0.039 (2)
C160.0714 (19)0.161 (4)0.0392 (13)0.000 (2)0.0035 (13)0.0025 (19)
C170.0645 (15)0.0838 (19)0.0401 (12)0.0096 (13)0.0040 (11)0.0066 (12)
C180.0481 (10)0.0426 (10)0.0491 (11)0.0088 (8)0.0016 (10)0.0030 (9)
C190.0414 (9)0.0357 (9)0.0397 (10)0.0009 (7)0.0033 (8)0.0013 (8)
C200.089 (2)0.0620 (16)0.079 (2)0.0208 (14)0.0223 (17)0.0373 (16)
C210.087 (2)0.0523 (14)0.091 (2)0.0249 (14)0.002 (2)0.0125 (14)
N10.0629 (11)0.0336 (8)0.0543 (10)0.0054 (8)0.0047 (9)0.0061 (8)
N20.0552 (10)0.0433 (10)0.0532 (11)0.0086 (7)0.0016 (9)0.0114 (8)
N30.0382 (9)0.0719 (13)0.0573 (12)0.0055 (8)0.0024 (9)0.0161 (11)
O10.0878 (13)0.0495 (10)0.0729 (12)0.0332 (9)0.0181 (11)0.0134 (9)
O20.0571 (9)0.0571 (9)0.0460 (9)0.0035 (7)0.0132 (8)0.0043 (7)
O30.0568 (8)0.0361 (7)0.0472 (8)0.0059 (6)0.0068 (7)0.0092 (6)
O40.0599 (11)0.1159 (19)0.0916 (18)0.0154 (12)0.0277 (12)0.0243 (16)
O50.0721 (12)0.0647 (11)0.0806 (14)0.0173 (9)0.0032 (11)0.0056 (11)
F0.131 (2)0.222 (4)0.0689 (15)0.078 (2)0.0131 (14)0.0631 (18)
Geometric parameters (Å, º) top
C1—C21.389 (4)C12—C131.400 (4)
C1—C61.396 (3)C13—C141.374 (4)
C1—H10.9300C13—H130.9300
C2—C31.375 (4)C14—C151.365 (7)
C2—H20.9300C14—H140.9300
C3—C41.407 (3)C15—F1.363 (4)
C3—H30.9300C15—C161.372 (7)
C4—C51.374 (3)C16—C171.394 (5)
C4—H40.9300C16—H160.9300
C5—C61.394 (3)C17—H170.9300
C5—N21.414 (3)C18—N31.507 (3)
C6—C81.521 (3)C18—H18A0.9700
C7—O11.226 (3)C18—H18B0.9700
C7—N21.343 (3)C19—O21.196 (3)
C7—C81.554 (3)C19—O31.323 (2)
C8—N11.460 (3)C20—O31.447 (3)
C8—C111.590 (3)C20—H20A0.9600
C9—N11.476 (3)C20—H20B0.9600
C9—C101.545 (3)C20—H20C0.9600
C9—H9A0.9700C21—N11.467 (3)
C9—H9B0.9700C21—H21A0.9600
C10—C121.511 (3)C21—H21B0.9600
C10—C111.573 (3)C21—H21C0.9600
C10—H100.9800N2—H2A0.8600
C11—C181.529 (3)N3—O41.207 (3)
C11—C191.530 (3)N3—O51.209 (3)
C12—C171.392 (4)
C2—C1—C6119.0 (2)C13—C12—C10118.7 (2)
C2—C1—H1120.5C14—C13—C12121.7 (3)
C6—C1—H1120.5C14—C13—H13119.1
C3—C2—C1121.2 (2)C12—C13—H13119.1
C3—C2—H2119.4C15—C14—C13118.1 (3)
C1—C2—H2119.4C15—C14—H14120.9
C2—C3—C4120.9 (2)C13—C14—H14120.9
C2—C3—H3119.5F—C15—C14119.0 (4)
C4—C3—H3119.5F—C15—C16118.0 (4)
C5—C4—C3116.9 (2)C14—C15—C16123.0 (3)
C5—C4—H4121.6C15—C16—C17118.4 (4)
C3—C4—H4121.6C15—C16—H16120.8
C4—C5—C6123.4 (2)C17—C16—H16120.8
C4—C5—N2127.0 (2)C12—C17—C16120.5 (4)
C6—C5—N2109.5 (2)C12—C17—H17119.7
C5—C6—C1118.5 (2)C16—C17—H17119.7
C5—C6—C8108.73 (18)N3—C18—C11114.69 (17)
C1—C6—C8132.8 (2)N3—C18—H18A108.6
O1—C7—N2126.4 (2)C11—C18—H18A108.6
O1—C7—C8124.8 (2)N3—C18—H18B108.6
N2—C7—C8108.78 (19)C11—C18—H18B108.6
N1—C8—C6119.80 (19)H18A—C18—H18B107.6
N1—C8—C7109.50 (17)O2—C19—O3125.5 (2)
C6—C8—C7101.10 (18)O2—C19—C11121.53 (18)
N1—C8—C11100.84 (17)O3—C19—C11112.90 (17)
C6—C8—C11112.69 (16)O3—C20—H20A109.5
C7—C8—C11113.42 (18)O3—C20—H20B109.5
N1—C9—C10106.07 (17)H20A—C20—H20B109.5
N1—C9—H9A110.5O3—C20—H20C109.5
C10—C9—H9A110.5H20A—C20—H20C109.5
N1—C9—H9B110.5H20B—C20—H20C109.5
C10—C9—H9B110.5N1—C21—H21A109.5
H9A—C9—H9B108.7N1—C21—H21B109.5
C12—C10—C9115.6 (2)H21A—C21—H21B109.5
C12—C10—C11115.70 (16)N1—C21—H21C109.5
C9—C10—C11104.48 (16)H21A—C21—H21C109.5
C12—C10—H10106.8H21B—C21—H21C109.5
C9—C10—H10106.8C8—N1—C21114.9 (2)
C11—C10—H10106.8C8—N1—C9107.58 (16)
C18—C11—C19109.31 (17)C21—N1—C9113.0 (2)
C18—C11—C10113.27 (17)C7—N2—C5111.58 (19)
C19—C11—C10116.74 (15)C7—N2—H2A124.2
C18—C11—C8109.60 (16)C5—N2—H2A124.2
C19—C11—C8107.18 (16)O4—N3—O5124.3 (3)
C10—C11—C8100.04 (15)O4—N3—C18116.3 (2)
C17—C12—C13118.1 (3)O5—N3—C18119.3 (2)
C17—C12—C10123.2 (2)C19—O3—C20115.7 (2)
C6—C1—C2—C31.1 (4)C9—C10—C12—C1734.3 (3)
C1—C2—C3—C41.6 (4)C11—C10—C12—C1788.4 (3)
C2—C3—C4—C50.4 (4)C9—C10—C12—C13145.6 (2)
C3—C4—C5—C61.2 (4)C11—C10—C12—C1391.8 (2)
C3—C4—C5—N2178.1 (2)C17—C12—C13—C143.0 (4)
C4—C5—C6—C11.7 (3)C10—C12—C13—C14177.2 (2)
N2—C5—C6—C1177.79 (19)C12—C13—C14—C151.0 (5)
C4—C5—C6—C8177.1 (2)C13—C14—C15—F179.0 (3)
N2—C5—C6—C83.4 (2)C13—C14—C15—C160.8 (5)
C2—C1—C6—C50.5 (3)F—C15—C16—C17179.3 (3)
C2—C1—C6—C8177.9 (2)C14—C15—C16—C170.6 (5)
C5—C6—C8—N1125.3 (2)C13—C12—C17—C163.2 (4)
C1—C6—C8—N156.2 (3)C10—C12—C17—C16177.0 (3)
C5—C6—C8—C75.0 (2)C15—C16—C17—C121.5 (5)
C1—C6—C8—C7176.4 (2)C19—C11—C18—N357.6 (2)
C5—C6—C8—C11116.37 (19)C10—C11—C18—N374.4 (2)
C1—C6—C8—C1162.2 (3)C8—C11—C18—N3174.82 (19)
O1—C7—C8—N145.3 (3)C18—C11—C19—O249.3 (3)
N2—C7—C8—N1132.4 (2)C10—C11—C19—O2179.5 (2)
O1—C7—C8—C6172.7 (2)C8—C11—C19—O269.4 (3)
N2—C7—C8—C65.1 (2)C18—C11—C19—O3133.43 (19)
O1—C7—C8—C1166.4 (3)C10—C11—C19—O33.2 (2)
N2—C7—C8—C11115.8 (2)C8—C11—C19—O3107.87 (19)
N1—C9—C10—C12133.5 (2)C6—C8—N1—C2145.7 (3)
N1—C9—C10—C115.2 (2)C7—C8—N1—C2170.3 (3)
C12—C10—C11—C1841.3 (2)C11—C8—N1—C21169.9 (2)
C9—C10—C11—C1887.1 (2)C6—C8—N1—C981.1 (2)
C12—C10—C11—C1987.0 (2)C7—C8—N1—C9162.96 (19)
C9—C10—C11—C19144.63 (19)C11—C8—N1—C943.2 (2)
C12—C10—C11—C8157.81 (18)C10—C9—N1—C824.4 (2)
C9—C10—C11—C829.5 (2)C10—C9—N1—C21152.3 (2)
N1—C8—C11—C1875.4 (2)O1—C7—N2—C5174.3 (3)
C6—C8—C11—C18155.62 (19)C8—C7—N2—C53.4 (3)
C7—C8—C11—C1841.5 (2)C4—C5—N2—C7179.4 (2)
N1—C8—C11—C19166.04 (16)C6—C5—N2—C70.0 (3)
C6—C8—C11—C1937.1 (2)C11—C18—N3—O4153.5 (2)
C7—C8—C11—C1977.0 (2)C11—C18—N3—O530.2 (3)
N1—C8—C11—C1043.83 (18)O2—C19—O3—C200.8 (4)
C6—C8—C11—C1085.1 (2)C11—C19—O3—C20176.3 (2)
C7—C8—C11—C10160.79 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.343.127 (2)152
C4—H4···O1i0.932.423.223 (2)145
C9—H9B···O1ii0.972.493.314 (2)142
C9—H9A···O4iii0.972.513.443 (3)160
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H20FN3O5
Mr413.40
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)8.0265 (5), 25.7011 (15), 9.7763 (6)
V3)2016.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.979, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
22124, 2551, 2355
Rint0.022
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.132, 1.13
No. of reflections2551
No. of parameters271
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.343.127 (2)151.8
C4—H4···O1i0.932.423.223 (2)145.0
C9—H9B···O1ii0.972.493.314 (2)142.1
C9—H9A···O4iii0.972.513.443 (3)160.2
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors thank Professor D. Velmurugan (Centre for Advanced Study in Crystallography and Biophysics, University of Madras) for providing data collection and computer facilities.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordell, G. A. (1981). In Introduction to Alkaloids: A Biogenetic Approach. New York: Wiley International.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jaisankar, P. & Srinivasan, P. C. (2005). Acta Cryst. E61, o2227–o2229.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds