organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1-Methyl­eth­yl)-N-((E)-4-{[1-(prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl]meth­­oxy}benzyl­­idene)aniline

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr, dmntahir_uos@yahoo.com

(Received 3 January 2013; accepted 8 January 2013; online 19 January 2013)

In the title compound, C22H24N4O, the terminal and central benzene rings make dihedral angles of 52.7 (3) and 43.8 (2)°, respectively, with the triazole ring. The dihedral angle between the benzene rings is 8.9 (2)°. The crystal structure features C—H⋯π inter­actions. The atoms of the terminal propenyl group are disordered over two sets of sites, with a refined occupancy ratio of 0.714 (14):0.286 (14).

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For general background to the properties of Schiff bases, see: Ajello & Cusmanos (1940[Ajello, T. & Cusmanos, G. (1940). Chim. Ital. 70, 770-778.]); Dhar & Taploo (1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.]); Holla et al. (2005[Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Poojary, B., Akberali, P. M. & Kumari, N. S. (2005). Eur. J. Med. Chem. 40, 1173-1178.]); Singh et al. (2012[Singh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594-600.]); Supuran et al. (1996[Supuran, C. T., Barboiu, M., Luca, C., Pop, E., Brewster, M. E. & Dinculescu, A. (1996). Eur. J. Med. Chem. 31, 597-606.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N4O

  • Mr = 360.45

  • Monoclinic, P 21 /c

  • a = 5.5885 (11) Å

  • b = 8.3929 (18) Å

  • c = 42.069 (9) Å

  • β = 92.149 (10)°

  • V = 1971.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.986

  • 13866 measured reflections

  • 3451 independent reflections

  • 1259 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.217

  • S = 0.96

  • 3451 reflections

  • 256 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the N2–N4/C18/C19 1H-1,2,3-triazole and C11–C16 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg3i 0.93 2.96 3.752 (5) 144
C8—H8ACg1ii 0.96 2.80 3.678 (6) 153
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

Compounds containing an azomethine group (–CH=N–), known as Schiff bases are formed by the condensation of a primary amine with a carbonyl compound. Schiff bases are some of the most widely used organic compounds. They are used as pigments and dyes, catalysts, intermediates in organic synthesis, and as polymer stabilisers (Dhar & Taploo, 1982). In azomethine derivatives, the C=N linkage is essential for biological activity, several azomethines were reported to possess remarkable antibacterial, antifungal, anticancer and diuretic activities (Supuran et al., 1996). Triazoles are also important class of heterocycles because of their varied biological activities (Singh et al., 2012). 1,2,3-triazoles, are five-membered, doubly unsaturated heterocycles, the ring consisting of three sequentially linked nitrogen atoms and two carbon atoms (Ajello & Cusmanos, 1940). The 1,2,3-triazole moiety has several good properties: high chemical stability (hydrolytic, oxidant, and reducing conditions), aromatic character, good hydrogen-bond-accepting ability and this moiety is relatively resistant to metabolic degradation (Holla et al., 2005). Therefore, compound (I), was synthesized and its X-ray studies is reported here.

The C1–C6 and C11–C16 benzene rings of the title compound (I), (Fig. 1), make a dihedral angle of 8.9 (2)° with each other. They form dihedral angles of 52.7 (3) and 43.8 (2) ° with the N2–N4/C18/C19 propenyl ring. The C1—N1—C10—C11, C14—O1—C17—C18 and N4—C20A—C21A—C22A torsion angles are 179.7 (4), -174.2 (3) and 151.9 (14)°, respectively. The values of the bond lengths and bond angles in (I) are normal (Allen et al., 1987).

In the crystal, the molecular packing of (I) is stabilized by C—H···π interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For general background to the properties of Schiff bases, see: Ajello & Cusmanos (1940); Dhar & Taploo (1982); Holla et al. (2005); Singh et al. (2012); Supuran et al. (1996).

Experimental top

Reaction of 4-((1-allyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde (1.00 mmol) with 4-isopropylbenzenamine (1.00 mmol) in refluxing ethanol gave the title compound. Recrystallization from ethanol gave colourless crystals in 70% yield. Mp: 119–121 0 C. IR (KBr, cm-1):1620 (C=N). 1H-NMR(250 MHz, CDCl3) δ (p.p.m.): 1.11 (2CH3, d, 6H, J=7.5), 2.75 (CH, m, 1H), 4.87 (d, 2H, J=5), 5.05 (s, 2H), 5.25 (d, 2H, J=10), 5.92 (m, 1H), 6.71–7.07 (aromatic protons, m, 8H), 7.50 (H triazole, s, 1H), 8.13 (HCN, s, 1H). 13CNMR δ (p.p.m): 23.9 (2CH3), 33.6 (CH), 52.8 (CH2—N), 61.6 (CH2—O), 114.6–145.3 (aromatic carbons and C=C triazole), 158.5 (C=N).

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 - 0.98 Å and refined by using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The atoms of the terminal propenyl group, C20, C21 and C22, are disordered over two sites with refined occupancies of 0.714 (14) and 0.286 (14).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with atomic numbering scheme and thermal ellipsoids at 30% probability level. The minor disorder component is not shown.
4-(1-Methylethyl)-N-((E)-4-{[1-(prop-2-en-1-yl)-1H- 1,2,3-triazol-4-yl]methoxy}benzylidene)aniline top
Crystal data top
C22H24N4OF(000) = 768
Mr = 360.45Dx = 1.214 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 219 reflections
a = 5.5885 (11) Åθ = 3.5–21.5°
b = 8.3929 (18) ŵ = 0.08 mm1
c = 42.069 (9) ÅT = 296 K
β = 92.149 (10)°Prism, colorless
V = 1971.8 (7) Å30.30 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3451 independent reflections
Radiation source: fine-focus sealed tube1259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 64
Tmin = 0.982, Tmax = 0.986k = 99
13866 measured reflectionsl = 4949
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0893P)2]
where P = (Fo2 + 2Fc2)/3
3451 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.20 e Å3
7 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H24N4OV = 1971.8 (7) Å3
Mr = 360.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.5885 (11) ŵ = 0.08 mm1
b = 8.3929 (18) ÅT = 296 K
c = 42.069 (9) Å0.30 × 0.20 × 0.18 mm
β = 92.149 (10)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3451 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1259 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.986Rint = 0.082
13866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0687 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 0.96Δρmax = 0.20 e Å3
3451 reflectionsΔρmin = 0.20 e Å3
256 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6921 (5)0.1556 (4)0.35472 (7)0.0741 (14)
N10.0796 (6)0.1766 (4)0.22415 (8)0.0634 (14)
N20.7693 (6)0.0586 (5)0.41985 (9)0.0879 (18)
N30.8731 (6)0.0688 (6)0.44832 (9)0.0939 (18)
N41.1055 (6)0.0885 (5)0.44413 (9)0.0762 (16)
C10.0186 (7)0.1560 (5)0.19307 (10)0.0581 (17)
C20.2092 (7)0.2503 (6)0.18440 (11)0.0708 (19)
C30.3158 (8)0.2422 (6)0.15464 (12)0.084 (2)
C40.2360 (8)0.1385 (6)0.13217 (11)0.0717 (19)
C50.0502 (9)0.0411 (6)0.14117 (11)0.0805 (19)
C60.0617 (7)0.0478 (6)0.17103 (11)0.0763 (19)
C70.3528 (10)0.1319 (8)0.09917 (12)0.106 (3)
C80.1850 (11)0.1621 (7)0.07339 (12)0.137 (3)
C90.4985 (10)0.0154 (8)0.09435 (12)0.132 (3)
C100.2749 (8)0.1146 (5)0.23238 (10)0.0681 (19)
C110.3876 (7)0.1292 (5)0.26388 (10)0.0577 (17)
C120.2894 (7)0.2200 (5)0.28752 (10)0.0633 (17)
C130.3977 (7)0.2279 (5)0.31714 (10)0.0653 (19)
C140.6026 (7)0.1427 (5)0.32409 (10)0.0578 (17)
C150.7072 (7)0.0562 (5)0.30096 (10)0.0638 (17)
C160.5967 (8)0.0500 (5)0.27125 (10)0.0683 (19)
C170.8850 (7)0.0529 (6)0.36388 (9)0.0683 (19)
C180.9390 (7)0.0723 (5)0.39809 (10)0.0618 (18)
C191.1516 (7)0.0906 (5)0.41344 (10)0.0684 (19)
C20A1.2557 (18)0.0919 (15)0.4733 (2)0.083 (3)0.714 (14)
C21A1.251 (2)0.254 (2)0.4850 (4)0.138 (7)0.714 (14)
C22A1.272 (2)0.3163 (18)0.5105 (3)0.203 (8)0.714 (14)
C21B1.341 (6)0.263 (6)0.4899 (12)0.138 (7)0.286 (14)
C22B1.120 (5)0.342 (4)0.4916 (8)0.203 (8)0.286 (14)
C20B1.318 (4)0.118 (5)0.4674 (6)0.083 (3)0.286 (14)
H20.268000.321800.199100.0850*
H30.445000.308500.149500.1010*
H8A0.086900.252700.078800.2060*
H8B0.274300.182900.053900.2060*
H8C0.085100.070400.070800.2060*
H9A0.395300.106900.095400.1980*
H50.003600.032900.126600.0970*
H60.189300.019600.176200.0910*
H70.467400.220300.098200.1270*
H120.148400.276200.283200.0760*
H130.332100.291400.332700.0790*
H150.850300.002400.305200.0760*
H160.666600.010200.255500.0820*
H17A1.025000.079100.352000.0820*
H17B0.841500.056900.359300.0820*
H191.300200.102200.404500.0820*
H20A1.193700.019300.488900.1000*0.714 (14)
H20B1.418200.060500.468900.1000*0.714 (14)
H21A1.226900.327300.468600.1660*0.714 (14)
H22A1.296900.254600.528700.2430*0.714 (14)
H22B1.262200.426600.512200.2430*0.714 (14)
H9B0.580500.011500.073900.1980*
H9C0.613500.022900.110700.1980*
H100.353500.055100.217300.0820*
H20C1.459900.119100.454800.1000*0.286 (14)
H20D1.331100.024400.480900.1000*0.286 (14)
H21B1.480800.294300.500800.1660*0.286 (14)
H22C0.986900.304800.480000.2430*0.286 (14)
H22D1.107200.432500.504300.2430*0.286 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.077 (2)0.081 (3)0.063 (2)0.0161 (18)0.0145 (16)0.0069 (16)
N10.057 (2)0.072 (3)0.061 (2)0.001 (2)0.0013 (19)0.0060 (19)
N20.047 (2)0.146 (4)0.070 (3)0.000 (2)0.005 (2)0.016 (3)
N30.052 (2)0.159 (4)0.071 (3)0.003 (3)0.005 (2)0.020 (3)
N40.049 (2)0.111 (3)0.068 (3)0.002 (2)0.007 (2)0.001 (2)
C10.054 (3)0.066 (3)0.054 (3)0.010 (3)0.001 (2)0.004 (2)
C20.056 (3)0.081 (4)0.075 (3)0.009 (3)0.004 (2)0.013 (3)
C30.071 (3)0.096 (4)0.084 (4)0.023 (3)0.014 (3)0.009 (3)
C40.068 (3)0.080 (4)0.066 (3)0.004 (3)0.011 (3)0.008 (3)
C50.078 (3)0.092 (4)0.071 (3)0.008 (3)0.002 (3)0.014 (3)
C60.073 (3)0.085 (4)0.070 (3)0.015 (3)0.009 (3)0.006 (3)
C70.112 (4)0.122 (6)0.082 (4)0.003 (4)0.022 (4)0.004 (3)
C80.184 (6)0.154 (6)0.073 (4)0.071 (5)0.010 (4)0.010 (4)
C90.112 (4)0.187 (7)0.096 (4)0.044 (5)0.020 (3)0.008 (4)
C100.069 (3)0.076 (4)0.059 (3)0.001 (3)0.000 (2)0.003 (2)
C110.052 (3)0.067 (3)0.054 (3)0.002 (2)0.001 (2)0.006 (2)
C120.059 (3)0.072 (3)0.059 (3)0.010 (2)0.002 (2)0.008 (3)
C130.066 (3)0.070 (4)0.060 (3)0.008 (3)0.002 (2)0.002 (2)
C140.056 (3)0.061 (3)0.056 (3)0.003 (2)0.004 (2)0.005 (2)
C150.054 (3)0.069 (3)0.068 (3)0.009 (2)0.002 (2)0.005 (3)
C160.068 (3)0.075 (4)0.062 (3)0.004 (3)0.003 (2)0.011 (3)
C170.053 (3)0.077 (4)0.074 (3)0.001 (3)0.011 (2)0.002 (3)
C180.045 (2)0.080 (4)0.060 (3)0.001 (2)0.005 (2)0.005 (3)
C190.051 (3)0.091 (4)0.063 (3)0.009 (3)0.001 (2)0.000 (3)
C20A0.044 (5)0.140 (7)0.065 (5)0.006 (5)0.002 (4)0.014 (5)
C21A0.142 (16)0.172 (9)0.094 (10)0.010 (11)0.082 (8)0.019 (7)
C22A0.227 (14)0.216 (13)0.158 (13)0.046 (10)0.088 (10)0.053 (10)
C21B0.142 (16)0.172 (9)0.094 (10)0.010 (11)0.082 (8)0.019 (7)
C22B0.227 (14)0.216 (13)0.158 (13)0.046 (10)0.088 (10)0.053 (10)
C20B0.044 (5)0.140 (7)0.065 (5)0.006 (5)0.002 (4)0.014 (5)
Geometric parameters (Å, º) top
O1—C141.369 (5)C21B—C22B1.41 (5)
O1—C171.422 (5)C2—H20.9300
N1—C11.410 (5)C3—H30.9300
N1—C101.246 (6)C5—H50.9300
N2—N31.314 (5)C6—H60.9300
N2—C181.348 (5)C7—H70.9800
N3—N41.328 (5)C8—H8A0.9600
N4—C191.326 (6)C8—H8B0.9600
N4—C20A1.461 (10)C8—H8C0.9600
N4—C20B1.53 (2)C9—H9A0.9600
C1—C21.366 (6)C9—H9B0.9600
C1—C61.385 (6)C9—H9C0.9600
C2—C31.368 (7)C10—H100.9300
C3—C41.372 (7)C12—H120.9300
C4—C51.364 (7)C13—H130.9300
C4—C71.513 (7)C15—H150.9300
C5—C61.383 (7)C16—H160.9300
C7—C81.482 (8)C17—H17A0.9700
C7—C91.490 (9)C17—H17B0.9700
C10—C111.451 (6)C19—H190.9300
C11—C121.383 (6)C20A—H20A0.9700
C11—C161.370 (6)C20A—H20B0.9700
C12—C131.366 (6)C20B—H20C0.9700
C13—C141.372 (6)C20B—H20D0.9700
C14—C151.363 (6)C21A—H21A0.9300
C15—C161.374 (6)C21B—H21B0.9300
C17—C181.468 (6)C22A—H22A0.9300
C18—C191.340 (6)C22A—H22B0.9300
C20A—C21A1.45 (2)C22B—H22C0.9300
C20B—C21B1.54 (6)C22B—H22D0.9300
C21A—C22A1.20 (2)
C14—O1—C17117.0 (3)C8—C7—H7106.00
C1—N1—C10120.9 (4)C9—C7—H7106.00
N3—N2—C18108.4 (3)C7—C8—H8A109.00
N2—N3—N4106.7 (3)C7—C8—H8B109.00
N3—N4—C19111.0 (3)C7—C8—H8C109.00
N3—N4—C20A115.2 (5)H8A—C8—H8B109.00
N3—N4—C20B132.4 (9)H8A—C8—H8C109.00
C19—N4—C20A133.7 (5)H8B—C8—H8C110.00
C19—N4—C20B116.5 (9)C7—C9—H9A109.00
N1—C1—C2116.7 (4)C7—C9—H9B109.00
N1—C1—C6125.2 (4)C7—C9—H9C109.00
C2—C1—C6118.1 (4)H9A—C9—H9B110.00
C1—C2—C3121.6 (4)H9A—C9—H9C109.00
C2—C3—C4121.4 (4)H9B—C9—H9C110.00
C3—C4—C5116.9 (4)N1—C10—H10118.00
C3—C4—C7121.0 (4)C11—C10—H10118.00
C5—C4—C7122.1 (5)C11—C12—H12120.00
C4—C5—C6122.8 (4)C13—C12—H12120.00
C1—C6—C5119.2 (4)C12—C13—H13120.00
C4—C7—C8113.7 (5)C14—C13—H13120.00
C4—C7—C9111.7 (5)C14—C15—H15121.00
C8—C7—C9113.6 (5)C16—C15—H15121.00
N1—C10—C11124.3 (4)C11—C16—H16119.00
C10—C11—C12122.2 (4)C15—C16—H16119.00
C10—C11—C16120.2 (4)O1—C17—H17A110.00
C12—C11—C16117.6 (4)O1—C17—H17B110.00
C11—C12—C13120.6 (4)C18—C17—H17A110.00
C12—C13—C14120.4 (4)C18—C17—H17B110.00
O1—C14—C13115.6 (4)H17A—C17—H17B108.00
O1—C14—C15124.2 (4)N4—C19—H19127.00
C13—C14—C15120.2 (4)C18—C19—H19127.00
C14—C15—C16118.6 (4)N4—C20A—H20A110.00
C11—C16—C15122.5 (4)N4—C20A—H20B110.00
O1—C17—C18108.9 (3)C21A—C20A—H20A110.00
N2—C18—C17122.2 (4)C21A—C20A—H20B110.00
N2—C18—C19108.4 (4)H20A—C20A—H20B109.00
C17—C18—C19129.1 (4)C21B—C20B—H20C106.00
N4—C19—C18105.5 (4)C21B—C20B—H20D106.00
N4—C20A—C21A106.7 (10)H20C—C20B—H20D106.00
N4—C20B—C21B124 (3)N4—C20B—H20D106.00
C20A—C21A—C22A135.6 (16)N4—C20B—H20C106.00
C20B—C21B—C22B111 (3)C20A—C21A—H21A112.00
C1—C2—H2119.00C22A—C21A—H21A113.00
C3—C2—H2119.00C20B—C21B—H21B125.00
C2—C3—H3119.00C22B—C21B—H21B124.00
C4—C3—H3119.00C21A—C22A—H22A120.00
C4—C5—H5119.00C21A—C22A—H22B120.00
C6—C5—H5119.00H22A—C22A—H22B120.00
C1—C6—H6120.00C21B—C22B—H22C120.00
C5—C6—H6120.00C21B—C22B—H22D120.00
C4—C7—H7106.00H22C—C22B—H22D120.00
C17—O1—C14—C1510.0 (6)C5—C4—C7—C971.5 (6)
C17—O1—C14—C13171.9 (4)C3—C4—C7—C9107.5 (6)
C14—O1—C17—C18174.2 (3)C7—C4—C5—C6178.7 (5)
C1—N1—C10—C11179.7 (4)C5—C4—C7—C858.6 (7)
C10—N1—C1—C611.9 (6)C3—C4—C7—C8122.3 (6)
C10—N1—C1—C2168.6 (4)C4—C5—C6—C10.9 (7)
N3—N2—C18—C190.3 (5)N1—C10—C11—C16176.6 (4)
C18—N2—N3—N40.1 (5)N1—C10—C11—C122.5 (7)
N3—N2—C18—C17174.9 (4)C10—C11—C16—C15178.2 (4)
N2—N3—N4—C20A176.1 (6)C10—C11—C12—C13178.4 (4)
N2—N3—N4—C190.2 (6)C12—C11—C16—C151.0 (6)
N3—N4—C20A—C21A84.7 (9)C16—C11—C12—C130.7 (6)
N3—N4—C19—C180.3 (5)C11—C12—C13—C141.6 (6)
C20A—N4—C19—C18175.2 (8)C12—C13—C14—C153.6 (6)
C19—N4—C20A—C21A100.6 (9)C12—C13—C14—O1178.1 (4)
N1—C1—C6—C5179.4 (4)C13—C14—C15—C163.3 (6)
C2—C1—C6—C51.1 (7)O1—C14—C15—C16178.6 (4)
N1—C1—C2—C3178.9 (4)C14—C15—C16—C111.0 (6)
C6—C1—C2—C31.6 (7)O1—C17—C18—N253.0 (6)
C1—C2—C3—C40.1 (7)O1—C17—C18—C19133.6 (5)
C2—C3—C4—C7179.2 (5)N2—C18—C19—N40.4 (5)
C2—C3—C4—C51.8 (7)C17—C18—C19—N4174.5 (4)
C3—C4—C5—C62.3 (7)N4—C20A—C21A—C22A151.9 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N2–N4/C18/C19 1H-1,2,3-triazole and C11–C16 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg3i0.932.963.752 (5)144
C8—H8A···Cg1ii0.962.803.678 (6)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H24N4O
Mr360.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.5885 (11), 8.3929 (18), 42.069 (9)
β (°) 92.149 (10)
V3)1971.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.982, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13866, 3451, 1259
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.217, 0.96
No. of reflections3451
No. of parameters256
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N2–N4/C18/C19 1H-1,2,3-triazole and C11–C16 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg3i0.932.963.752 (5)144
C8—H8A···Cg1ii0.962.803.678 (6)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAjello, T. & Cusmanos, G. (1940). Chim. Ital. 70, 770–778.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolla, B. S., Mahalinga, M., Karthikeyan, M. S., Poojary, B., Akberali, P. M. & Kumari, N. S. (2005). Eur. J. Med. Chem. 40, 1173–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594–600.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T., Barboiu, M., Luca, C., Pop, E., Brewster, M. E. & Dinculescu, A. (1996). Eur. J. Med. Chem. 31, 597–606.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds