metal-organic compounds
Dichlorido(2,9-dimethyl-1,10-phenanthroline-κ2N,N′)mercury(II)
aDepartment of Chemistry, AN-Najah National University, Nablus, Palestinian Territories, bDepartment of Chemistry, Hashemite University, Zarqa 13115, Jordan, cDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, and dLanguage Centre, Hashemite University, Zarqa 13115, Jordan
*Correspondence e-mail: manoaimi@hu.edu.jo
The title compound, [HgCl2(C14H12N2)], consists of one 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand chelating the HgII ion and two chloride ligands coordinating to the HgII ion, forming a distorted tetrahedral environment. The dmphen ligand is nearly planar (r.m.s. deviation = 0.0225 Å). The dihedral angle between the normal to the plane defined by the HgII atom and the two Cl atoms and the normal to the plane of the dmphen ring is 81.8 (1)°.
Related literature
For related structures, see Alizadeh (2009); Alizadeh et al. (2009); Wang & Zhong (2009); Warad et al. (2011). For properties and application of mercury(II) complexes, see: Ramazani et al. (2005); Mahjoub et al. (2004); Canty & Maker (1976); Canty & Lee (1982).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536813001086/br2220sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813001086/br2220Isup2.hkl
The desired complex was prepared by mixting of mercury chloride (HgCl2, 39.7 mg,0.14 mmol) in methanol (10 ml) with dmphen (32.0 mg, 0.15 mmol) in dichloromethane (5 ml) is stirred for one houre at room temperature. The obtained solution was concentrated to about 2 ml underreduced pressure and mixed to 30 ml of diethyl ether. The white precipitate was filtered and dried. suitable colourless crystals were obtained by slow diffusion of diethyl ether into a solution of the complex in dichloromethane.
All nonhydrogen atoms were refined anisotropically.H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). Highest difference peak and hole are 1.81 and -1.83e/Å3 close to the Hg atom.
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. An ORTEP (Burnett & Johnson, 1996) view of Hg(Cl)2(dmphen). Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. |
[HgCl2(C14H12N2)] | F(000) = 896 |
Mr = 479.75 | Dx = 2.178 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1534 reflections |
a = 7.5732 (13) Å | θ = 2.9–29.0° |
b = 10.3733 (16) Å | µ = 10.87 mm−1 |
c = 18.673 (2) Å | T = 293 K |
β = 94.308 (12)° | Block, colourless |
V = 1462.8 (4) Å3 | 0.22 × 0.20 × 0.18 mm |
Z = 4 |
Agilent Xcalibur Eos diffractometer | 2564 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1758 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
Detector resolution: 16.0534 pixels mm-1 | θmax = 25.0°, θmin = 2.9° |
ω scans | h = −9→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −12→12 |
Tmin = 0.106, Tmax = 0.140 | l = −16→22 |
5483 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0521P)2] where P = (Fo2 + 2Fc2)/3 |
2564 reflections | (Δ/σ)max < 0.001 |
174 parameters | Δρmax = 1.81 e Å−3 |
0 restraints | Δρmin = −1.83 e Å−3 |
[HgCl2(C14H12N2)] | V = 1462.8 (4) Å3 |
Mr = 479.75 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.5732 (13) Å | µ = 10.87 mm−1 |
b = 10.3733 (16) Å | T = 293 K |
c = 18.673 (2) Å | 0.22 × 0.20 × 0.18 mm |
β = 94.308 (12)° |
Agilent Xcalibur Eos diffractometer | 2564 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1758 reflections with I > 2σ(I) |
Tmin = 0.106, Tmax = 0.140 | Rint = 0.061 |
5483 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 0.99 | Δρmax = 1.81 e Å−3 |
2564 reflections | Δρmin = −1.83 e Å−3 |
174 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.21008 (6) | 0.28289 (4) | 0.39470 (2) | 0.0597 (2) | |
Cl1 | −0.0404 (4) | 0.3290 (4) | 0.31096 (16) | 0.0818 (10) | |
Cl2 | 0.4266 (5) | 0.4523 (3) | 0.39503 (19) | 0.0871 (11) | |
C5 | 0.3385 (16) | −0.2144 (11) | 0.4986 (7) | 0.063 (3) | |
H5A | 0.3736 | −0.3002 | 0.4975 | 0.076* | |
N1 | 0.2952 (11) | 0.0704 (7) | 0.3787 (4) | 0.047 (2) | |
C1 | 0.3465 (14) | 0.0196 (11) | 0.3185 (6) | 0.057 (3) | |
C10 | 0.1290 (15) | 0.2260 (10) | 0.5625 (7) | 0.055 (3) | |
C11 | 0.2939 (12) | −0.0049 (11) | 0.4375 (5) | 0.048 (2) | |
C3 | 0.3905 (15) | −0.1866 (12) | 0.3704 (7) | 0.060 (3) | |
H3A | 0.4210 | −0.2731 | 0.3670 | 0.072* | |
C8 | 0.1676 (15) | 0.0244 (12) | 0.6240 (6) | 0.067 (3) | |
H8A | 0.1636 | −0.0247 | 0.6655 | 0.080* | |
C12 | 0.2350 (11) | 0.0470 (11) | 0.5026 (5) | 0.048 (3) | |
N2 | 0.1849 (11) | 0.1747 (8) | 0.5019 (4) | 0.045 (2) | |
C7 | 0.2276 (13) | −0.0328 (10) | 0.5619 (6) | 0.052 (3) | |
C14 | 0.0775 (16) | 0.3651 (12) | 0.5595 (6) | 0.073 (4) | |
H14A | 0.1822 | 0.4176 | 0.5615 | 0.110* | |
H14B | 0.0100 | 0.3853 | 0.5995 | 0.110* | |
H14C | 0.0073 | 0.3819 | 0.5155 | 0.110* | |
C4 | 0.3430 (13) | −0.1380 (10) | 0.4363 (6) | 0.052 (3) | |
C2 | 0.3929 (15) | −0.1104 (11) | 0.3118 (7) | 0.066 (3) | |
H2A | 0.4245 | −0.1434 | 0.2683 | 0.080* | |
C6 | 0.2834 (14) | −0.1637 (11) | 0.5598 (7) | 0.062 (3) | |
H6A | 0.2820 | −0.2147 | 0.6007 | 0.074* | |
C9 | 0.1155 (14) | 0.1497 (14) | 0.6246 (5) | 0.061 (3) | |
H9A | 0.0715 | 0.1850 | 0.6654 | 0.074* | |
C13 | 0.3475 (18) | 0.1076 (12) | 0.2547 (6) | 0.083 (4) | |
H13A | 0.3449 | 0.0572 | 0.2116 | 0.124* | |
H13B | 0.4528 | 0.1594 | 0.2587 | 0.124* | |
H13C | 0.2453 | 0.1626 | 0.2532 | 0.124* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0813 (4) | 0.0419 (4) | 0.0565 (3) | 0.0057 (2) | 0.0083 (3) | 0.00836 (19) |
Cl1 | 0.075 (2) | 0.111 (3) | 0.0590 (19) | 0.016 (2) | 0.0022 (15) | 0.0250 (18) |
Cl2 | 0.106 (3) | 0.0474 (18) | 0.107 (3) | −0.0145 (19) | 0.003 (2) | 0.0152 (18) |
C5 | 0.070 (8) | 0.046 (8) | 0.075 (9) | −0.002 (6) | 0.009 (6) | 0.023 (7) |
N1 | 0.056 (5) | 0.033 (5) | 0.051 (5) | −0.001 (4) | 0.002 (4) | −0.003 (4) |
C1 | 0.061 (7) | 0.052 (7) | 0.059 (7) | 0.003 (6) | 0.014 (5) | 0.003 (6) |
C10 | 0.053 (7) | 0.047 (7) | 0.065 (8) | 0.003 (5) | 0.007 (5) | −0.008 (6) |
C11 | 0.037 (6) | 0.056 (7) | 0.049 (6) | −0.003 (5) | −0.001 (4) | 0.003 (6) |
C3 | 0.050 (7) | 0.049 (7) | 0.080 (9) | 0.007 (5) | −0.004 (6) | −0.003 (7) |
C8 | 0.071 (8) | 0.066 (8) | 0.062 (8) | −0.016 (7) | −0.002 (6) | 0.017 (7) |
C12 | 0.020 (5) | 0.060 (7) | 0.062 (7) | −0.006 (5) | −0.007 (4) | 0.008 (6) |
N2 | 0.051 (5) | 0.043 (5) | 0.041 (5) | −0.006 (4) | 0.004 (4) | −0.002 (4) |
C7 | 0.062 (7) | 0.038 (6) | 0.055 (7) | −0.007 (5) | 0.001 (5) | 0.015 (5) |
C14 | 0.078 (9) | 0.088 (10) | 0.055 (7) | 0.002 (8) | 0.015 (6) | −0.021 (7) |
C4 | 0.042 (6) | 0.036 (6) | 0.077 (8) | −0.007 (5) | 0.000 (5) | 0.005 (6) |
C2 | 0.076 (9) | 0.057 (8) | 0.065 (8) | 0.015 (7) | −0.001 (6) | −0.016 (7) |
C6 | 0.048 (7) | 0.060 (8) | 0.075 (9) | −0.014 (6) | −0.006 (6) | 0.030 (7) |
C9 | 0.051 (7) | 0.099 (10) | 0.035 (6) | −0.009 (7) | 0.007 (4) | 0.005 (7) |
C13 | 0.133 (13) | 0.059 (8) | 0.061 (8) | 0.001 (8) | 0.031 (8) | 0.006 (7) |
Hg1—N2 | 2.314 (8) | C3—C4 | 1.401 (15) |
Hg1—N1 | 2.322 (8) | C3—H3A | 0.9300 |
Hg1—Cl2 | 2.403 (3) | C8—C9 | 1.359 (16) |
Hg1—Cl1 | 2.414 (3) | C8—C7 | 1.408 (15) |
C5—C6 | 1.352 (16) | C8—H8A | 0.9300 |
C5—C4 | 1.410 (15) | C12—N2 | 1.378 (13) |
C5—H5A | 0.9300 | C12—C7 | 1.386 (13) |
N1—C1 | 1.326 (12) | C7—C6 | 1.424 (15) |
N1—C11 | 1.348 (12) | C14—H14A | 0.9600 |
C1—C2 | 1.402 (15) | C14—H14B | 0.9600 |
C1—C13 | 1.501 (15) | C14—H14C | 0.9600 |
C10—N2 | 1.348 (13) | C2—H2A | 0.9300 |
C10—C9 | 1.414 (15) | C6—H6A | 0.9300 |
C10—C14 | 1.494 (15) | C9—H9A | 0.9300 |
C11—C4 | 1.430 (14) | C13—H13A | 0.9600 |
C11—C12 | 1.432 (13) | C13—H13B | 0.9600 |
C3—C2 | 1.350 (16) | C13—H13C | 0.9600 |
N2—Hg1—N1 | 72.1 (3) | C10—N2—C12 | 118.3 (9) |
N2—Hg1—Cl2 | 116.9 (2) | C10—N2—Hg1 | 125.9 (7) |
N1—Hg1—Cl2 | 119.9 (2) | C12—N2—Hg1 | 115.8 (6) |
N2—Hg1—Cl1 | 123.0 (2) | C12—C7—C8 | 116.1 (10) |
N1—Hg1—Cl1 | 108.5 (2) | C12—C7—C6 | 121.2 (11) |
Cl2—Hg1—Cl1 | 111.07 (13) | C8—C7—C6 | 122.6 (10) |
C6—C5—C4 | 120.5 (11) | C10—C14—H14A | 109.5 |
C6—C5—H5A | 119.8 | C10—C14—H14B | 109.5 |
C4—C5—H5A | 119.8 | H14A—C14—H14B | 109.5 |
C1—N1—C11 | 118.8 (9) | C10—C14—H14C | 109.5 |
C1—N1—Hg1 | 126.0 (7) | H14A—C14—H14C | 109.5 |
C11—N1—Hg1 | 115.2 (7) | H14B—C14—H14C | 109.5 |
N1—C1—C2 | 123.3 (10) | C3—C4—C5 | 123.1 (10) |
N1—C1—C13 | 116.8 (10) | C3—C4—C11 | 116.5 (10) |
C2—C1—C13 | 119.9 (10) | C5—C4—C11 | 120.4 (10) |
N2—C10—C9 | 120.9 (10) | C3—C2—C1 | 118.2 (11) |
N2—C10—C14 | 116.5 (10) | C3—C2—H2A | 120.9 |
C9—C10—C14 | 122.5 (10) | C1—C2—H2A | 120.9 |
N1—C11—C4 | 121.9 (9) | C5—C6—C7 | 120.3 (11) |
N1—C11—C12 | 119.7 (10) | C5—C6—H6A | 119.8 |
C4—C11—C12 | 118.4 (10) | C7—C6—H6A | 119.8 |
C2—C3—C4 | 121.4 (11) | C8—C9—C10 | 119.3 (11) |
C2—C3—H3A | 119.3 | C8—C9—H9A | 120.3 |
C4—C3—H3A | 119.3 | C10—C9—H9A | 120.3 |
C9—C8—C7 | 121.5 (11) | C1—C13—H13A | 109.5 |
C9—C8—H8A | 119.3 | C1—C13—H13B | 109.5 |
C7—C8—H8A | 119.3 | H13A—C13—H13B | 109.5 |
N2—C12—C7 | 123.7 (10) | C1—C13—H13C | 109.5 |
N2—C12—C11 | 117.1 (9) | H13A—C13—H13C | 109.5 |
C7—C12—C11 | 119.1 (10) | H13B—C13—H13C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [HgCl2(C14H12N2)] |
Mr | 479.75 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.5732 (13), 10.3733 (16), 18.673 (2) |
β (°) | 94.308 (12) |
V (Å3) | 1462.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 10.87 |
Crystal size (mm) | 0.22 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.106, 0.140 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5483, 2564, 1758 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.128, 0.99 |
No. of reflections | 2564 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.81, −1.83 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).
Acknowledgements
The project was supported by King Saud University (KSA) and Hashemite University (Jordan). The X-ray structural work was done at Hamdi Mango Center for Scientific Research at The University of Jordan, Amman 11942, Jordan.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Alizadeh, R. (2009). Acta Cryst. E65, m817–m818. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484. Web of Science CSD CrossRef IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Canty, A. J. & Lee, C. V. (1982). Organometallics, 1, 1063–1066. CrossRef CAS Web of Science Google Scholar
Canty, A. J. & Maker, A. (1976). Inorg. Chem. 15, 425–430. CrossRef CAS Web of Science Google Scholar
Mahjoub, A., Morsali, A. & Nejad, R. (2004). Z. Naturforsch. Teil B, 59, 1109–1113. CAS Google Scholar
Ramazani, A., Morsali, A., Dolatyari, L. & Ganjeie, B. (2005). Z. Naturforsch. Teil B, 60, 289–293. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156. Web of Science CSD CrossRef IUCr Journals Google Scholar
Warad, I., Boshaala, A., Al-Resayes, S. I., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1650. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of mercury(II) with N-donor ligands is of interest due to applications as solid-state materials (Ramazani et al., 2005; Mahjoub et al., 2004). Hg(II) complexes with bidentate ligands have been obtained in which Hg(II) adopts higher coordination numbers such as complexes of 1,10-phenanthroline (Canty & Maker, 1976) and N-substituted pyrazole (Canty & Lee, 1982). The molecular structure of [HgCl2(C14H12N2)], along with the numbering scheme is shown in Fig. 1. HgCl2 is chelated by the bidentate phenanthroline molecule and that the coordination of the nitrogen and chlorine atoms about the Hg atom is essentially a distorted tetrahedral environment (Fig. 1).