organic compounds
P,P-Bis[4-(dimethylamino)phenyl]-N,N-bis(propan-2-yl)phosphinic amide
aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: bwilliams@uj.ac.za
The molecular structure of the title compound, C22H34N3OP, adopts a distorted tetrahedral geometry at the P atom, with the most noticeable distortion being for the O—P—N angle [117.53 (10)°]. An effective cone angle of 187° was calculated for the compound. In the crystal, weak C—H⋯O interactions create infinite chains along [100], whereas C—H⋯π interactions propagating in [001] generate a herringbone motif.
Related literature
For the synthesis of ligands derived from phosphinic et al. (2009). For background to DoM technology, see: Snieckus (1990). For cone angles, see: Tolman (1977); Otto (2001).
see: WilliamsExperimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536812050398/bt6869sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812050398/bt6869Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812050398/bt6869Isup3.cml
Diisopropyl amine (1.55 ml, 5.53 mmol) was added to a solution of PCl3 (241 µL, 2.77 mmol) in toluene (250 ml) at 0 °C. The mixture was allowed to stir for 2 h at room temperature. In a separate flask p-bromo-N,N-dimethylaniline (1.728 g, 8.63 mmol) in THF (5 ml) was added to magnesium turnings (200 mg, 8.22 mmol) in THF (5 ml) and heated to 65 °C. The reaction was initiated with a crystal of iodine and the suspension allowed to stir for 3 h at that temperature. Once the magnesium had fully reacted the two solutions were combined and the salts were removed by filtration through a pad of celite under argon.
The solution was cooled to 0 °C and hydrogen peroxide (30%, 15 ml) was added over 20 minutes. The mixture was allowed to stir for a further 1 h. The product was extracted with EtOAc and H2O and the solvent removed in vacuo. The product was isolated by flash
(EtOAc).Crystals were grown by dissolving in a minimal amount of DCM and layering an excess of hexane on top and allowing to stand in a refrigerator until the crystals were formed.
Yield: 60% (yellow solid). 1H NMR: (300 MHz, CDCl3) δH 7.58 (t, 4H, H2, H2`, H6 and H6`, J = 9.9 Hz), 6.61 (d, 4H, H3, H3`, H5 and H5`, J = 7.2 Hz), 3.41 (sept, 2H, NCH(CH3)2, J = 6.9 Hz), 2.90 (s, 12H, NCH(CH3)2), 1.12 (d, 12H, NCH(CH3)2, J = 6.9 Hz). 13C NMR: (75 MHz, CDCl3) δC 151.6 (d, 2 C, C4 and C4`, J = 2.3 Hz), 133.4 (d, 4 C, C2, C2`, C6 and C6`, J = 10.6 Hz), 120.3 (d, 2 C, C1 and C1`, J = 135.3 Hz), 110.7 (d, 4 C, C3, C3`, C5 and C5`, J = 13.0 Hz), 46.5 (d, 2 C. NCH(CH3), J = 4.3 Hz), 398 (s, 4 C, NCH(CH3)2, 32.1 (d, 4 C, NCH(CH3)2, J = 2.6 Hz). 31P NMR: (121 MHz, CDCl3) δP 31.1(S,1P). ElMS: m/z 387 [(M), 10%], 344 [(M—C3H7), 12%], 287 [(M—C6H14N), 100%]. IR: ν (CHCl3) 2980, 1262, 1172. HRMS: Calculated: 387.2440 C22H34N3OP Obtained: 387.2445
The aromatic, methine and methyl atoms were placed in geometrically idealized positions (C—H = 0.95–1.0 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for the aromatic and methine H and Uiso(H) = 1.5Ueq(C) for the methyl H respectively. The
refined to 0.11 (10).Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).Fig. 1. A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids. | |
Fig. 2. Packing diagram showing only the C—H···O interactions (indicated by dashed lines) creating infinitely long chains along the [100] direction. | |
Fig. 3. Packing diagram showing only the C—H···π interactions (indicated by dashed lines) propagating along the [001] direction. | |
Fig. 4. Packing diagram showing the generated herring-bone motif from the interactions. |
C22H34N3OP | F(000) = 840 |
Mr = 387.49 | Dx = 1.232 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3113 reflections |
a = 6.2960 (4) Å | θ = 2.4–25.9° |
b = 16.6389 (8) Å | µ = 0.15 mm−1 |
c = 19.9475 (11) Å | T = 100 K |
V = 2089.7 (2) Å3 | Prism, colourless |
Z = 4 | 0.13 × 0.11 × 0.1 mm |
Bruker X8 APEXII 4K KappaCCD diffractometer | 3840 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
ϕ and ω scans | θmax = 28.3°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −4→8 |
Tmin = 0.981, Tmax = 0.985 | k = −19→22 |
18896 measured reflections | l = −26→26 |
5212 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0467P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
5212 reflections | Δρmax = 0.30 e Å−3 |
252 parameters | Δρmin = −0.35 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 2224 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.11 (10) |
C22H34N3OP | V = 2089.7 (2) Å3 |
Mr = 387.49 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.2960 (4) Å | µ = 0.15 mm−1 |
b = 16.6389 (8) Å | T = 100 K |
c = 19.9475 (11) Å | 0.13 × 0.11 × 0.1 mm |
Bruker X8 APEXII 4K KappaCCD diffractometer | 5212 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3840 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.985 | Rint = 0.074 |
18896 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.110 | Δρmax = 0.30 e Å−3 |
S = 1.04 | Δρmin = −0.35 e Å−3 |
5212 reflections | Absolute structure: Flack (1983), 2224 Friedel pairs |
252 parameters | Absolute structure parameter: 0.11 (10) |
0 restraints |
Experimental. The intensity data was collected on a Bruker X8 APEXII 4 K KappaCCD diffractometer using an exposure time of 20 s/frame. A total of 1010 frames were collected with a frame width of 0.5° covering up to θ = 28.33° with 99.9% completeness accomplished. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C11 | 0.7556 (4) | −0.08285 (14) | 0.92323 (10) | 0.0145 (5) | |
C12 | 0.9663 (4) | −0.10305 (14) | 0.91217 (10) | 0.0161 (5) | |
H12 | 1.0688 | −0.0615 | 0.9079 | 0.019* | |
C13 | 1.0314 (4) | −0.18282 (14) | 0.90711 (11) | 0.0161 (5) | |
H13 | 1.1769 | −0.1948 | 0.8994 | 0.019* | |
C14 | 0.8830 (4) | −0.24597 (13) | 0.91337 (10) | 0.0162 (5) | |
C15 | 0.6722 (4) | −0.22578 (13) | 0.92635 (11) | 0.0166 (5) | |
H15 | 0.5697 | −0.2671 | 0.9322 | 0.02* | |
C16 | 0.6103 (4) | −0.14573 (14) | 0.93076 (11) | 0.0164 (5) | |
H16 | 0.4654 | −0.1334 | 0.9391 | 0.02* | |
C17 | 0.7881 (4) | −0.38862 (14) | 0.91197 (13) | 0.0247 (6) | |
H17A | 0.6801 | −0.382 | 0.877 | 0.037* | |
H17B | 0.7206 | −0.386 | 0.9562 | 0.037* | |
H17C | 0.858 | −0.4409 | 0.9065 | 0.037* | |
C18 | 1.1650 (5) | −0.34575 (14) | 0.89615 (11) | 0.0208 (6) | |
H18A | 1.2488 | −0.328 | 0.9348 | 0.031* | |
H18B | 1.218 | −0.3195 | 0.8555 | 0.031* | |
H18C | 1.1775 | −0.4042 | 0.8913 | 0.031* | |
C21 | 0.7295 (4) | 0.05075 (13) | 1.01511 (11) | 0.0145 (5) | |
C22 | 0.9324 (4) | 0.04153 (13) | 1.04203 (11) | 0.0152 (5) | |
H22 | 1.0411 | 0.0179 | 1.0155 | 0.018* | |
C23 | 0.9787 (4) | 0.06615 (14) | 1.10679 (10) | 0.0177 (5) | |
H23 | 1.1183 | 0.059 | 1.1239 | 0.021* | |
C24 | 0.8226 (4) | 0.10145 (13) | 1.14755 (11) | 0.0171 (5) | |
C25 | 0.6184 (4) | 0.10968 (14) | 1.12077 (11) | 0.0181 (6) | |
H25 | 0.5091 | 0.1328 | 1.1474 | 0.022* | |
C26 | 0.5730 (4) | 0.08471 (13) | 1.05623 (11) | 0.0166 (5) | |
H26 | 0.4328 | 0.0907 | 1.0394 | 0.02* | |
C27 | 0.7173 (5) | 0.17979 (17) | 1.24584 (12) | 0.0276 (7) | |
H27A | 0.5815 | 0.1519 | 1.2517 | 0.041* | |
H27B | 0.6955 | 0.2282 | 1.2187 | 0.041* | |
H27C | 0.7739 | 0.1949 | 1.2898 | 0.041* | |
C28 | 1.0833 (4) | 0.12767 (16) | 1.23701 (12) | 0.0253 (6) | |
H28A | 1.163 | 0.1708 | 1.2149 | 0.038* | |
H28B | 1.1508 | 0.0759 | 1.2273 | 0.038* | |
H28C | 1.0826 | 0.1368 | 1.2855 | 0.038* | |
C31 | 0.8422 (4) | 0.15896 (13) | 0.88452 (11) | 0.0178 (5) | |
H31 | 0.8743 | 0.1784 | 0.8382 | 0.021* | |
C32 | 0.6577 (5) | 0.21017 (14) | 0.90928 (13) | 0.0262 (6) | |
H32A | 0.6189 | 0.1936 | 0.9548 | 0.039* | |
H32B | 0.5355 | 0.203 | 0.8794 | 0.039* | |
H32C | 0.6999 | 0.2669 | 0.9095 | 0.039* | |
C33 | 1.0435 (5) | 0.17255 (15) | 0.92493 (13) | 0.0276 (6) | |
H33A | 1.151 | 0.133 | 0.9117 | 0.041* | |
H33B | 1.0121 | 0.1665 | 0.9728 | 0.041* | |
H33C | 1.0973 | 0.2269 | 0.9164 | 0.041* | |
C34 | 0.7688 (4) | 0.04290 (14) | 0.80697 (11) | 0.0187 (6) | |
H34 | 0.7268 | −0.015 | 0.8093 | 0.022* | |
C35 | 0.5943 (4) | 0.08600 (16) | 0.76836 (12) | 0.0248 (6) | |
H35A | 0.6317 | 0.1428 | 0.7633 | 0.037* | |
H35B | 0.46 | 0.0815 | 0.7929 | 0.037* | |
H35C | 0.5786 | 0.0614 | 0.724 | 0.037* | |
C36 | 0.9802 (4) | 0.04601 (15) | 0.77057 (12) | 0.0244 (6) | |
H36A | 1.0882 | 0.0181 | 0.7972 | 0.037* | |
H36B | 1.0225 | 0.1022 | 0.7642 | 0.037* | |
H36C | 0.9663 | 0.0198 | 0.7268 | 0.037* | |
N1 | 0.9457 (4) | −0.32461 (12) | 0.90623 (10) | 0.0226 (5) | |
N2 | 0.8668 (4) | 0.12702 (12) | 1.21223 (9) | 0.0207 (5) | |
N3 | 0.7898 (3) | 0.07164 (11) | 0.87759 (9) | 0.0155 (5) | |
O1 | 0.4187 (3) | 0.01727 (9) | 0.92616 (7) | 0.0194 (4) | |
P1 | 0.65325 (10) | 0.01773 (4) | 0.93260 (3) | 0.01474 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0215 (13) | 0.0097 (11) | 0.0122 (11) | −0.0013 (9) | 0.0018 (10) | −0.0008 (9) |
C12 | 0.0240 (14) | 0.0117 (12) | 0.0127 (10) | −0.0043 (11) | −0.0032 (10) | −0.0016 (9) |
C13 | 0.0190 (14) | 0.0140 (12) | 0.0154 (10) | 0.0026 (10) | −0.0004 (10) | −0.0007 (9) |
C14 | 0.0266 (16) | 0.0102 (11) | 0.0116 (9) | −0.0017 (10) | −0.0041 (10) | 0.0009 (8) |
C15 | 0.0230 (14) | 0.0112 (11) | 0.0155 (11) | −0.0054 (11) | −0.0008 (11) | 0.0017 (9) |
C16 | 0.0186 (14) | 0.0163 (12) | 0.0142 (10) | −0.0017 (10) | 0.0001 (11) | −0.0004 (9) |
C17 | 0.0333 (17) | 0.0087 (12) | 0.0322 (14) | −0.0014 (11) | −0.0030 (12) | −0.0009 (11) |
C18 | 0.0296 (16) | 0.0118 (12) | 0.0209 (12) | 0.0017 (12) | −0.0001 (12) | −0.0014 (9) |
C21 | 0.0254 (15) | 0.0054 (12) | 0.0126 (10) | −0.0044 (10) | 0.0026 (10) | 0.0009 (8) |
C22 | 0.0206 (14) | 0.0071 (11) | 0.0179 (11) | 0.0009 (10) | 0.0039 (10) | −0.0003 (8) |
C23 | 0.0223 (15) | 0.0129 (12) | 0.0179 (11) | 0.0005 (11) | −0.0009 (10) | 0.0030 (9) |
C24 | 0.0287 (16) | 0.0089 (11) | 0.0136 (10) | −0.0022 (11) | 0.0018 (10) | 0.0017 (8) |
C25 | 0.0249 (16) | 0.0132 (12) | 0.0163 (11) | 0.0000 (11) | 0.0057 (11) | 0.0028 (9) |
C26 | 0.0208 (14) | 0.0109 (12) | 0.0180 (11) | 0.0002 (10) | 0.0003 (10) | 0.0043 (9) |
C27 | 0.0339 (19) | 0.0338 (16) | 0.0152 (12) | 0.0073 (13) | −0.0013 (11) | −0.0078 (11) |
C28 | 0.0310 (18) | 0.0296 (16) | 0.0153 (11) | 0.0006 (12) | −0.0012 (11) | −0.0011 (10) |
C31 | 0.0291 (15) | 0.0079 (11) | 0.0165 (10) | −0.0023 (11) | 0.0022 (11) | 0.0011 (8) |
C32 | 0.0367 (17) | 0.0144 (13) | 0.0275 (12) | 0.0034 (13) | 0.0108 (13) | 0.0031 (10) |
C33 | 0.0352 (17) | 0.0160 (13) | 0.0317 (14) | −0.0079 (12) | −0.0089 (14) | 0.0037 (11) |
C34 | 0.0268 (15) | 0.0137 (13) | 0.0157 (11) | −0.0002 (11) | −0.0012 (11) | −0.0018 (9) |
C35 | 0.0324 (17) | 0.0232 (15) | 0.0187 (12) | −0.0005 (12) | −0.0038 (11) | 0.0011 (10) |
C36 | 0.0325 (17) | 0.0218 (14) | 0.0189 (12) | −0.0001 (12) | 0.0047 (12) | −0.0028 (10) |
N1 | 0.0260 (13) | 0.0086 (10) | 0.0331 (11) | −0.0005 (9) | −0.0009 (10) | −0.0024 (9) |
N2 | 0.0266 (13) | 0.0231 (12) | 0.0124 (9) | 0.0042 (10) | 0.0003 (9) | −0.0037 (8) |
N3 | 0.0267 (13) | 0.0081 (10) | 0.0118 (9) | −0.0036 (9) | 0.0004 (8) | −0.0021 (8) |
O1 | 0.0211 (10) | 0.0136 (8) | 0.0235 (8) | 0.0005 (7) | −0.0008 (7) | −0.0014 (7) |
P1 | 0.0209 (3) | 0.0094 (3) | 0.0140 (3) | 0.0000 (3) | −0.0002 (3) | −0.0005 (2) |
C11—C12 | 1.386 (3) | C26—H26 | 0.95 |
C11—C16 | 1.398 (3) | C27—N2 | 1.451 (3) |
C11—P1 | 1.803 (2) | C27—H27A | 0.98 |
C12—C13 | 1.393 (3) | C27—H27B | 0.98 |
C12—H12 | 0.95 | C27—H27C | 0.98 |
C13—C14 | 1.412 (3) | C28—N2 | 1.450 (3) |
C13—H13 | 0.95 | C28—H28A | 0.98 |
C14—N1 | 1.374 (3) | C28—H28B | 0.98 |
C14—C15 | 1.393 (3) | C28—H28C | 0.98 |
C15—C16 | 1.391 (3) | C31—N3 | 1.496 (3) |
C15—H15 | 0.95 | C31—C33 | 1.519 (4) |
C16—H16 | 0.95 | C31—C32 | 1.523 (4) |
C17—N1 | 1.460 (3) | C31—H31 | 1 |
C17—H17A | 0.98 | C32—H32A | 0.98 |
C17—H17B | 0.98 | C32—H32B | 0.98 |
C17—H17C | 0.98 | C32—H32C | 0.98 |
C18—N1 | 1.439 (3) | C33—H33A | 0.98 |
C18—H18A | 0.98 | C33—H33B | 0.98 |
C18—H18B | 0.98 | C33—H33C | 0.98 |
C18—H18C | 0.98 | C34—N3 | 1.493 (3) |
C21—C22 | 1.395 (3) | C34—C36 | 1.517 (4) |
C21—C26 | 1.401 (3) | C34—C35 | 1.521 (3) |
C21—P1 | 1.800 (2) | C34—H34 | 1 |
C22—C23 | 1.386 (3) | C35—H35A | 0.98 |
C22—H22 | 0.95 | C35—H35B | 0.98 |
C23—C24 | 1.404 (3) | C35—H35C | 0.98 |
C23—H23 | 0.95 | C36—H36A | 0.98 |
C24—N2 | 1.387 (3) | C36—H36B | 0.98 |
C24—C25 | 1.399 (3) | C36—H36C | 0.98 |
C25—C26 | 1.383 (3) | N3—P1 | 1.658 (2) |
C25—H25 | 0.95 | O1—P1 | 1.4825 (17) |
C12—C11—C16 | 117.5 (2) | H28A—C28—H28B | 109.5 |
C12—C11—P1 | 125.71 (18) | N2—C28—H28C | 109.5 |
C16—C11—P1 | 116.71 (19) | H28A—C28—H28C | 109.5 |
C11—C12—C13 | 121.6 (2) | H28B—C28—H28C | 109.5 |
C11—C12—H12 | 119.2 | N3—C31—C33 | 112.16 (19) |
C13—C12—H12 | 119.2 | N3—C31—C32 | 113.9 (2) |
C12—C13—C14 | 120.5 (2) | C33—C31—C32 | 112.4 (2) |
C12—C13—H13 | 119.7 | N3—C31—H31 | 105.9 |
C14—C13—H13 | 119.7 | C33—C31—H31 | 105.9 |
N1—C14—C15 | 121.5 (2) | C32—C31—H31 | 105.9 |
N1—C14—C13 | 120.6 (2) | C31—C32—H32A | 109.5 |
C15—C14—C13 | 117.9 (2) | C31—C32—H32B | 109.5 |
C16—C15—C14 | 120.6 (2) | H32A—C32—H32B | 109.5 |
C16—C15—H15 | 119.7 | C31—C32—H32C | 109.5 |
C14—C15—H15 | 119.7 | H32A—C32—H32C | 109.5 |
C15—C16—C11 | 121.8 (2) | H32B—C32—H32C | 109.5 |
C15—C16—H16 | 119.1 | C31—C33—H33A | 109.5 |
C11—C16—H16 | 119.1 | C31—C33—H33B | 109.5 |
N1—C17—H17A | 109.5 | H33A—C33—H33B | 109.5 |
N1—C17—H17B | 109.5 | C31—C33—H33C | 109.5 |
H17A—C17—H17B | 109.5 | H33A—C33—H33C | 109.5 |
N1—C17—H17C | 109.5 | H33B—C33—H33C | 109.5 |
H17A—C17—H17C | 109.5 | N3—C34—C36 | 111.3 (2) |
H17B—C17—H17C | 109.5 | N3—C34—C35 | 113.0 (2) |
N1—C18—H18A | 109.5 | C36—C34—C35 | 112.0 (2) |
N1—C18—H18B | 109.5 | N3—C34—H34 | 106.7 |
H18A—C18—H18B | 109.5 | C36—C34—H34 | 106.7 |
N1—C18—H18C | 109.5 | C35—C34—H34 | 106.7 |
H18A—C18—H18C | 109.5 | C34—C35—H35A | 109.5 |
H18B—C18—H18C | 109.5 | C34—C35—H35B | 109.5 |
C22—C21—C26 | 117.6 (2) | H35A—C35—H35B | 109.5 |
C22—C21—P1 | 124.24 (18) | C34—C35—H35C | 109.5 |
C26—C21—P1 | 118.10 (19) | H35A—C35—H35C | 109.5 |
C23—C22—C21 | 121.2 (2) | H35B—C35—H35C | 109.5 |
C23—C22—H22 | 119.4 | C34—C36—H36A | 109.5 |
C21—C22—H22 | 119.4 | C34—C36—H36B | 109.5 |
C22—C23—C24 | 121.1 (2) | H36A—C36—H36B | 109.5 |
C22—C23—H23 | 119.5 | C34—C36—H36C | 109.5 |
C24—C23—H23 | 119.5 | H36A—C36—H36C | 109.5 |
N2—C24—C25 | 120.6 (2) | H36B—C36—H36C | 109.5 |
N2—C24—C23 | 121.8 (2) | C14—N1—C18 | 121.5 (2) |
C25—C24—C23 | 117.6 (2) | C14—N1—C17 | 119.4 (2) |
C26—C25—C24 | 121.0 (2) | C18—N1—C17 | 119.0 (2) |
C26—C25—H25 | 119.5 | C24—N2—C28 | 120.5 (2) |
C24—C25—H25 | 119.5 | C24—N2—C27 | 119.1 (2) |
C25—C26—C21 | 121.4 (2) | C28—N2—C27 | 116.6 (2) |
C25—C26—H26 | 119.3 | C34—N3—C31 | 114.68 (17) |
C21—C26—H26 | 119.3 | C34—N3—P1 | 113.89 (16) |
N2—C27—H27A | 109.5 | C31—N3—P1 | 125.34 (15) |
N2—C27—H27B | 109.5 | O1—P1—N3 | 117.53 (10) |
H27A—C27—H27B | 109.5 | O1—P1—C21 | 110.27 (11) |
N2—C27—H27C | 109.5 | N3—P1—C21 | 107.57 (11) |
H27A—C27—H27C | 109.5 | O1—P1—C11 | 110.03 (11) |
H27B—C27—H27C | 109.5 | N3—P1—C11 | 104.36 (11) |
N2—C28—H28A | 109.5 | C21—P1—C11 | 106.42 (11) |
N2—C28—H28B | 109.5 | ||
C16—C11—C12—C13 | 1.5 (3) | C23—C24—N2—C27 | 165.3 (2) |
P1—C11—C12—C13 | 178.49 (16) | C36—C34—N3—C31 | 66.8 (3) |
C11—C12—C13—C14 | −0.2 (3) | C35—C34—N3—C31 | −60.2 (3) |
C12—C13—C14—N1 | 177.9 (2) | C36—C34—N3—P1 | −139.05 (18) |
C12—C13—C14—C15 | −1.6 (3) | C35—C34—N3—P1 | 93.9 (2) |
N1—C14—C15—C16 | −177.4 (2) | C33—C31—N3—C34 | −123.5 (2) |
C13—C14—C15—C16 | 2.0 (3) | C32—C31—N3—C34 | 107.4 (2) |
C14—C15—C16—C11 | −0.8 (3) | C33—C31—N3—P1 | 85.7 (3) |
C12—C11—C16—C15 | −1.0 (3) | C32—C31—N3—P1 | −43.4 (3) |
P1—C11—C16—C15 | −178.30 (17) | C34—N3—P1—O1 | −63.71 (19) |
C26—C21—C22—C23 | −0.9 (3) | C31—N3—P1—O1 | 87.2 (2) |
P1—C21—C22—C23 | −177.98 (17) | C34—N3—P1—C21 | 171.21 (16) |
C21—C22—C23—C24 | −0.2 (3) | C31—N3—P1—C21 | −37.9 (2) |
C22—C23—C24—N2 | −179.4 (2) | C34—N3—P1—C11 | 58.44 (18) |
C22—C23—C24—C25 | 1.0 (3) | C31—N3—P1—C11 | −150.6 (2) |
N2—C24—C25—C26 | 179.7 (2) | C22—C21—P1—O1 | 165.50 (18) |
C23—C24—C25—C26 | −0.7 (3) | C26—C21—P1—O1 | −11.5 (2) |
C24—C25—C26—C21 | −0.4 (3) | C22—C21—P1—N3 | −65.2 (2) |
C22—C21—C26—C25 | 1.2 (3) | C26—C21—P1—N3 | 117.78 (18) |
P1—C21—C26—C25 | 178.44 (17) | C22—C21—P1—C11 | 46.2 (2) |
C15—C14—N1—C18 | −176.9 (2) | C26—C21—P1—C11 | −130.84 (18) |
C13—C14—N1—C18 | 3.7 (3) | C12—C11—P1—O1 | 165.47 (17) |
C15—C14—N1—C17 | 0.3 (3) | C16—C11—P1—O1 | −17.5 (2) |
C13—C14—N1—C17 | −179.1 (2) | C12—C11—P1—N3 | 38.5 (2) |
C25—C24—N2—C28 | −172.3 (2) | C16—C11—P1—N3 | −144.44 (17) |
C23—C24—N2—C28 | 8.1 (3) | C12—C11—P1—C21 | −75.1 (2) |
C25—C24—N2—C27 | −15.2 (3) | C16—C11—P1—C21 | 101.96 (19) |
Cg1 and Cg2 are the centroids of the C11—C16 and C21—C26 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1i | 0.95 | 2.59 | 3.493 (3) | 159 |
C33—H33A···O1i | 0.98 | 2.58 | 3.501 (3) | 158 |
C18—H18A···Cg1ii | 0.98 | 2.96 | 3.821 (2) | 148 |
C18—H18C···Cg2ii | 0.98 | 2.97 | 3.915 (3) | 162 |
C27—H27C···Cg1iii | 0.98 | 2.69 | 3.468 (3) | 137 |
Symmetry codes: (i) x+1, y, z; (ii) −x, y+3/2, −z+1/2; (iii) −x+1/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C22H34N3OP |
Mr | 387.49 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 6.2960 (4), 16.6389 (8), 19.9475 (11) |
V (Å3) | 2089.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.13 × 0.11 × 0.1 |
Data collection | |
Diffractometer | Bruker X8 APEXII 4K KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.981, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18896, 5212, 3840 |
Rint | 0.074 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.110, 1.04 |
No. of reflections | 5212 |
No. of parameters | 252 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.35 |
Absolute structure | Flack (1983), 2224 Friedel pairs |
Absolute structure parameter | 0.11 (10) |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).
Cg1 and Cg2 are the centroids of the C11—C16 and C21—C26 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1i | 0.95 | 2.59 | 3.493 (3) | 159.1 |
C33—H33A···O1i | 0.98 | 2.58 | 3.501 (3) | 157.5 |
C18—H18A···Cg1ii | 0.98 | 2.96 | 3.821 (2) | 148 |
C18—H18C···Cg2ii | 0.98 | 2.97 | 3.915 (3) | 162 |
C27—H27C···Cg1iii | 0.98 | 2.69 | 3.468 (3) | 137 |
Symmetry codes: (i) x+1, y, z; (ii) −x, y+3/2, −z+1/2; (iii) −x+1/2, −y+1, z−1/2. |
Footnotes
‡Industrial Research Limited, 69 Gracefield Rd, Lower Hutt, Wellington, New Zealand.
Acknowledgements
The University of the Free State is thanked for the use of their diffractometer. Financial assistance from Sasol, THRIP and the Research Fund of the University of Johannesburg is gratefully acknowledged.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Otto, S. (2001). Acta Cryst. C57, 793–795. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Snieckus, V. (1990). Chem. Rev. 90, 879–933. CrossRef CAS Web of Science Google Scholar
Tolman, C. A. (1977). Chem. Rev. 77, 313–348. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Williams, D. B. G., Evans, S. J., De Bod, H., Mokhadinyana, M. S. & Hughes, T. (2009). Synthesis, 18, 3106–3112. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
An expedient rapid synthesis of ligands derived from phosphinic amides that were found to be suitable for the Suzuki-Miyaura reactions at low palladium catalyst loadings was developed (Williams et al., 2009). The brief practical synthesis affords arylphosphine ligands resistant to oxidation and hydrolysis while maintaining high catalyst activity. The synthesis rests strongly on DoM technology (Snieckus, 1990) making use of a directing group that is highly underrepresented in this type of chemistry. We envisioned that the use of phosphinic amides as directing groups, together with phosphinous chloride (Cy2PCl) electrophiles would allow the synthesis of sterically hindered phosphines that are stable to hydrolysis and oxidation. Manipulating the phosphinic amide functionality has been shown to influence the catalytic performance of the resulting alkyl phosphine ligands and the structure reported here is one of the substrates for further ligand studies.
The title compound (see Fig. 1) crystallizes in the orthorhombic space group P212121 (Z=4) with its molecules adopting a distorted tetrahedral arrangement about the phosphorus atom. The O3—P1—N3 angle of 117.53 (10)° shows this distorted arrangement the most prominent, and it is further exemplified by the twisted orientation of the bulky amide substituent to fit into the coordination sphere of the phosphorus atom (seen from the torsion angles C34—N3—P1—O1 = -63.71 (19)° and C31—N3—P1—O1 = 87.2 (2)° respectively). The most common method used for determining the steric behaviour of a phosphane ligand is the Tolman cone angle (Tolman, 1977). We used the geometry from the title compound and adjusted the P═O distance to 2.28 Å (the average Ni—P distance used in the original Tolman model) to cancel the bias this may have on the calculated cone angle value. In this way we obtain the effective cone angle (Otto, 2001) value of 187°. Several weak C—H···O interactions are observed in the crystal lattice creating infinitely long chains along the [100] direction (Fig. 2). Additional C—H···π interactions are also observed which propagates along the [001] direction in the crystal lattice (Fig. 3). These interactions (summarized in Table 1) generate a herring-bone packing motif (Fig. 4).