organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 2,3,4,6-tetra-O-acetyl-β-D-gluco­pyran­oside

aBAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany
*Correspondence e-mail: franziska.emmerling@bam.de

(Received 26 November 2012; accepted 20 December 2012; online 4 January 2013)

The title compound, C17H26O10, was formed by a Koenigs–Knorr reaction of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and propan-2-ol. The central ring adopts a chair conformation. The crystal does not contain any significant inter­molecular inter­actions.

Related literature

Metabolites of alcohol are important markers for previous alcohol consumption, see: Joya et al. (2012[Joya, X., Friguls, B., Papaseit, E., Martínez, S. E., Manich, A., Garcia-Algar, O., Pacifici, R. & Pichini, S. (2012). J. Pharm. Biomed. Anal. 69, 209-222.]); Helander et al. (2012[Helander, A., Péter, O. & Zheng, Y. (2012). Alcohol Alcohol. 47, 552-557.]). For investigation of the short-chain alkyl alcohol content in alcoholic beverages, see: Lachenmeier & Musshoff (2004[Lachenmeier, D. W. & Musshoff, F. (2004). Rechtsmedizin, 14, 454-462.]). For the relevance of short-chain alkyl alcohol glucuronides as alcohol markers, see; Sticht & Käferstein (1999[Sticht, G. & Käferstein, H. (1999). Rechtsmedizin, 9, 184-189.]). For related synthesis, see: Baer & Abbas (1979[Baer, H. H. & Abbas, S. A. (1979). Carbohydr. Res. 77, 117-129.]).

[Scheme 1]

Experimental

Crystal data
  • C17H26O10

  • Mr = 390.38

  • Monoclinic, P 21

  • a = 9.4225 (12) Å

  • b = 9.9313 (12) Å

  • c = 11.3641 (15) Å

  • β = 98.482 (9)°

  • V = 1051.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.28 × 0.12 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.221, Tmax = 0.364

  • 11225 measured reflections

  • 2274 independent reflections

  • 1411 reflections with I > 2σ(I)

  • Rint = 0.107

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.151

  • S = 1.07

  • 2274 reflections

  • 244 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years the determination of alcohol metabolites gained importance for screening previous alcohol consumption (Joya et al., Helander et al., 2012). Beside ethanol several short-chain alkyl alcohols, e.g. i-propanol, are found in alcoholic beverages as a result of the fermentation process (Lachenmeier & Musshoff, 2004). The glucuronides of these so-called fusel alcohols are interesting markers for the consumption of alcohol (Sticht & Käferstein, 1999). Hence, the analysis of these glucuronic metabolites, including their synthesis and full characterization is mandatory.

The title compound was formed by a Koenigs-Knorr-reaction of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and propan-2-ol (related synthesis Baer & Abbas, 1979) as an intermediate product towards synthesis of n-propyl-glucuronide.

The central ring has a chair conformation (Fig 1). The absolute configuration could not be defined confidently based on the single-crystal diffraction data. The isomeric purity of the title compound was confirmed by 1H-NMR.

Related literature top

Metabolites of alcohol are important markers for previous alcohol consumption, see: Joya et al. (2012); Helander et al. (2012). For investigation of the short-chain alkyl alcohol content in alcoholic beverages, see: Lachenmeier & Musshoff (2004). For the relevance of short-chain alkyl alcohol glucuronides as alcohol markers, see; Sticht & Käferstein (1999). For related synthesis, see: Baer & Abbas (1979).

Experimental top

i-Propyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside was synthesized by a Koenigs-Knorr-reaction of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and propan-2-ol. In order to obtain crystals suitable for single-crystal analysis, about 10 mg of the compound were dissolved in 2 ml propan-2-ol. Colourless crystals of the title compound were formed after 4 days of slow solvent evaporation at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 hydrogen atoms. In the absence of significant anomalous dispersion effects Friedel pairs were merged. The absolute configuration has not been determined by anomalous-dispersion effects in diffraction measurements of the crystal. The conformation has been assigned due to an unchanging chiral centre in the synthetic procedure.

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson,1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP representation of the title compound with atomic labeling shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the unit cell of the title compound along the b axis.
Isopropyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside top
Crystal data top
C17H26O10F(000) = 416
Mr = 390.38Dx = 1.233 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.4225 (12) ÅCell parameters from 1344 reflections
b = 9.9313 (12) Åθ = 2.6–19.8°
c = 11.3641 (15) ŵ = 0.10 mm1
β = 98.482 (9)°T = 296 K
V = 1051.8 (2) Å3Block, colourless
Z = 20.28 × 0.12 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2274 independent reflections
Radiation source: fine-focus sealed tube1411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
ϕ and ω scansθmax = 26.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.221, Tmax = 0.364k = 1211
11225 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0659P)2]
where P = (Fo2 + 2Fc2)/3
2274 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C17H26O10V = 1051.8 (2) Å3
Mr = 390.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.4225 (12) ŵ = 0.10 mm1
b = 9.9313 (12) ÅT = 296 K
c = 11.3641 (15) Å0.28 × 0.12 × 0.11 mm
β = 98.482 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
2274 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1411 reflections with I > 2σ(I)
Tmin = 0.221, Tmax = 0.364Rint = 0.107
11225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.151H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
2274 reflectionsΔρmin = 0.13 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5370 (3)0.1530 (3)0.2024 (3)0.0679 (9)
O20.4905 (5)0.3603 (4)0.1307 (4)0.1009 (14)
O30.7120 (3)0.2202 (3)0.4275 (3)0.0599 (8)
O40.8668 (4)0.0492 (4)0.4350 (5)0.1119 (16)
O50.6214 (3)0.0547 (3)0.6176 (3)0.0608 (8)
O60.6978 (6)0.2424 (5)0.7143 (4)0.1298 (19)
O70.2892 (3)0.1260 (3)0.4196 (3)0.0651 (8)
O80.2399 (3)0.1684 (3)0.2197 (3)0.0696 (9)
O90.3094 (4)0.1908 (3)0.6722 (3)0.0752 (10)
O100.1637 (7)0.1219 (6)0.7944 (5)0.149 (2)
C10.5300 (6)0.2489 (6)0.1162 (5)0.0727 (14)
C20.5743 (7)0.1902 (8)0.0060 (5)0.108 (2)
H2A0.56970.25840.05420.161*
H2B0.51090.11760.02200.161*
H2C0.67070.15680.02350.161*
C30.4811 (4)0.1820 (4)0.3120 (4)0.0542 (11)
H3A0.46690.27920.31970.065*
C40.5889 (4)0.1315 (4)0.4138 (4)0.0514 (10)
H4A0.61930.04040.39590.062*
C50.8464 (5)0.1663 (6)0.4401 (5)0.0709 (14)
C60.9581 (6)0.2722 (6)0.4646 (7)0.104 (2)
H6A1.05140.23140.47280.156*
H6B0.94680.31830.53680.156*
H6C0.94830.33530.39990.156*
C70.5271 (4)0.1297 (4)0.5294 (4)0.0526 (10)
H7A0.51720.22210.55720.063*
C80.7049 (6)0.1238 (7)0.7044 (5)0.0780 (15)
C90.8026 (6)0.0292 (7)0.7811 (5)0.095 (2)
H9A0.86130.07940.84200.143*
H9B0.86260.01720.73310.143*
H9C0.74620.03500.81710.143*
C100.3795 (5)0.0587 (5)0.5137 (4)0.0574 (11)
H10A0.39260.03450.48920.069*
C110.3396 (5)0.1088 (5)0.3077 (4)0.0580 (11)
H11A0.35090.01300.29070.070*
C120.1157 (6)0.0848 (6)0.1770 (5)0.0838 (17)
H12A0.08440.03730.24430.101*
C130.0007 (7)0.1795 (8)0.1244 (7)0.133 (3)
H13A0.02100.24090.18460.199*
H13B0.08390.12950.09380.199*
H13C0.03310.22930.06100.199*
C140.1516 (9)0.0151 (8)0.0883 (7)0.132 (3)
H14A0.22360.07580.12590.198*
H14B0.18740.03120.02450.198*
H14C0.06710.06490.05720.198*
C150.3091 (6)0.0569 (5)0.6241 (5)0.0708 (14)
H15A0.21130.02460.60510.085*
H15B0.36090.00340.68250.085*
C160.2309 (6)0.2104 (7)0.7598 (5)0.0852 (17)
C170.2438 (9)0.3493 (7)0.8081 (6)0.119 (3)
H17A0.18490.35840.86980.178*
H17B0.21270.41240.74560.178*
H17C0.34200.36710.84030.178*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.071 (2)0.073 (2)0.0601 (19)0.0155 (19)0.0089 (16)0.0013 (19)
O20.137 (4)0.075 (3)0.093 (3)0.009 (3)0.025 (3)0.022 (2)
O30.0504 (17)0.0541 (18)0.075 (2)0.0007 (15)0.0081 (15)0.0020 (16)
O40.069 (2)0.069 (3)0.197 (5)0.014 (2)0.016 (3)0.005 (3)
O50.0677 (18)0.0512 (17)0.060 (2)0.0004 (16)0.0015 (17)0.0015 (17)
O60.190 (5)0.077 (3)0.104 (4)0.003 (3)0.039 (3)0.021 (3)
O70.0547 (17)0.0625 (19)0.077 (2)0.0016 (16)0.0072 (16)0.0041 (19)
O80.0603 (18)0.061 (2)0.081 (2)0.0050 (16)0.0111 (17)0.0118 (18)
O90.084 (2)0.064 (2)0.084 (2)0.0017 (19)0.035 (2)0.006 (2)
O100.176 (5)0.149 (4)0.144 (5)0.045 (4)0.099 (4)0.011 (4)
C10.071 (3)0.080 (4)0.067 (4)0.001 (3)0.009 (3)0.010 (3)
C20.117 (5)0.133 (6)0.077 (4)0.017 (5)0.027 (4)0.005 (4)
C30.059 (2)0.050 (2)0.054 (3)0.006 (2)0.009 (2)0.000 (2)
C40.053 (2)0.044 (2)0.057 (3)0.001 (2)0.008 (2)0.001 (2)
C50.056 (3)0.074 (4)0.083 (4)0.013 (3)0.010 (3)0.000 (3)
C60.055 (3)0.084 (4)0.170 (7)0.003 (3)0.003 (4)0.007 (4)
C70.056 (2)0.041 (2)0.059 (3)0.006 (2)0.000 (2)0.002 (2)
C80.086 (4)0.076 (4)0.069 (4)0.009 (3)0.000 (3)0.004 (3)
C90.080 (4)0.125 (5)0.074 (4)0.006 (4)0.013 (3)0.013 (4)
C100.059 (3)0.042 (2)0.070 (3)0.000 (2)0.007 (2)0.009 (2)
C110.063 (3)0.046 (2)0.063 (3)0.001 (2)0.001 (2)0.003 (2)
C120.076 (3)0.083 (4)0.082 (4)0.020 (3)0.022 (3)0.017 (3)
C130.078 (4)0.155 (7)0.148 (7)0.014 (5)0.043 (4)0.015 (6)
C140.167 (8)0.108 (5)0.104 (6)0.009 (5)0.034 (5)0.016 (5)
C150.070 (3)0.064 (3)0.080 (4)0.005 (3)0.018 (3)0.010 (3)
C160.081 (4)0.099 (5)0.078 (4)0.004 (4)0.022 (3)0.013 (4)
C170.163 (7)0.098 (5)0.104 (5)0.029 (5)0.049 (5)0.005 (4)
Geometric parameters (Å, º) top
O1—C11.361 (6)C6—H6B0.9600
O1—C31.451 (5)C6—H6C0.9600
O2—C11.187 (6)C7—C101.546 (6)
O3—C51.363 (6)C7—H7A0.9800
O3—C41.446 (5)C8—C91.500 (8)
O4—C51.181 (6)C9—H9A0.9600
O5—C81.354 (6)C9—H9B0.9600
O5—C71.445 (5)C9—H9C0.9600
O6—C81.187 (7)C10—C151.503 (6)
O7—C101.431 (5)C10—H10A0.9800
O7—C111.432 (5)C11—H11A0.9800
O8—C111.398 (5)C12—C141.489 (9)
O8—C121.459 (6)C12—C131.491 (8)
O9—C161.339 (6)C12—H12A0.9800
O9—C151.438 (6)C13—H13A0.9600
O10—C161.184 (7)C13—H13B0.9600
C1—C21.495 (8)C13—H13C0.9600
C2—H2A0.9600C14—H14A0.9600
C2—H2B0.9600C14—H14B0.9600
C2—H2C0.9600C14—H14C0.9600
C3—C41.508 (6)C15—H15A0.9700
C3—C111.514 (6)C15—H15B0.9700
C3—H3A0.9800C16—C171.484 (9)
C4—C71.513 (6)C17—H17A0.9600
C4—H4A0.9800C17—H17B0.9600
C5—C61.485 (8)C17—H17C0.9600
C6—H6A0.9600
C1—O1—C3119.6 (4)C8—C9—H9C109.5
C5—O3—C4119.4 (4)H9A—C9—H9C109.5
C8—O5—C7118.5 (4)H9B—C9—H9C109.5
C10—O7—C11111.7 (3)O7—C10—C15110.1 (4)
C11—O8—C12114.8 (3)O7—C10—C7107.4 (3)
C16—O9—C15116.5 (4)C15—C10—C7114.2 (4)
O2—C1—O1122.4 (5)O7—C10—H10A108.4
O2—C1—C2127.7 (6)C15—C10—H10A108.4
O1—C1—C2109.9 (5)C7—C10—H10A108.4
C1—C2—H2A109.5O8—C11—O7108.0 (4)
C1—C2—H2B109.5O8—C11—C3108.4 (3)
H2A—C2—H2B109.5O7—C11—C3108.6 (3)
C1—C2—H2C109.5O8—C11—H11A110.6
H2A—C2—H2C109.5O7—C11—H11A110.6
H2B—C2—H2C109.5C3—C11—H11A110.6
O1—C3—C4107.7 (3)O8—C12—C14110.7 (5)
O1—C3—C11107.8 (3)O8—C12—C13105.9 (5)
C4—C3—C11110.9 (3)C14—C12—C13111.9 (6)
O1—C3—H3A110.1O8—C12—H12A109.4
C4—C3—H3A110.1C14—C12—H12A109.4
C11—C3—H3A110.1C13—C12—H12A109.4
O3—C4—C3108.6 (3)C12—C13—H13A109.5
O3—C4—C7108.6 (3)C12—C13—H13B109.5
C3—C4—C7111.6 (3)H13A—C13—H13B109.5
O3—C4—H4A109.3C12—C13—H13C109.5
C3—C4—H4A109.3H13A—C13—H13C109.5
C7—C4—H4A109.3H13B—C13—H13C109.5
O4—C5—O3122.4 (5)C12—C14—H14A109.5
O4—C5—C6126.2 (5)C12—C14—H14B109.5
O3—C5—C6111.3 (5)H14A—C14—H14B109.5
C5—C6—H6A109.5C12—C14—H14C109.5
C5—C6—H6B109.5H14A—C14—H14C109.5
H6A—C6—H6B109.5H14B—C14—H14C109.5
C5—C6—H6C109.5O9—C15—C10109.2 (4)
H6A—C6—H6C109.5O9—C15—H15A109.8
H6B—C6—H6C109.5C10—C15—H15A109.8
O5—C7—C4109.4 (3)O9—C15—H15B109.8
O5—C7—C10107.2 (3)C10—C15—H15B109.8
C4—C7—C10111.1 (3)H15A—C15—H15B108.3
O5—C7—H7A109.7O10—C16—O9121.4 (6)
C4—C7—H7A109.7O10—C16—C17125.9 (6)
C10—C7—H7A109.7O9—C16—C17112.7 (6)
O6—C8—O5122.5 (6)C16—C17—H17A109.5
O6—C8—C9127.2 (6)C16—C17—H17B109.5
O5—C8—C9110.3 (5)H17A—C17—H17B109.5
C8—C9—H9A109.5C16—C17—H17C109.5
C8—C9—H9B109.5H17A—C17—H17C109.5
H9A—C9—H9B109.5H17B—C17—H17C109.5

Experimental details

Crystal data
Chemical formulaC17H26O10
Mr390.38
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)9.4225 (12), 9.9313 (12), 11.3641 (15)
β (°) 98.482 (9)
V3)1051.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.12 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.221, 0.364
No. of measured, independent and
observed [I > 2σ(I)] reflections
11225, 2274, 1411
Rint0.107
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.151, 1.07
No. of reflections2274
No. of parameters244
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson,1996), SHELXTL (Sheldrick, 2008).

 

References

First citationBaer, H. H. & Abbas, S. A. (1979). Carbohydr. Res. 77, 117–129.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHelander, A., Péter, O. & Zheng, Y. (2012). Alcohol Alcohol. 47, 552–557.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJoya, X., Friguls, B., Papaseit, E., Martínez, S. E., Manich, A., Garcia-Algar, O., Pacifici, R. & Pichini, S. (2012). J. Pharm. Biomed. Anal. 69, 209–222.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLachenmeier, D. W. & Musshoff, F. (2004). Rechtsmedizin, 14, 454–462.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSticht, G. & Käferstein, H. (1999). Rechtsmedizin, 9, 184–189.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds