organic compounds
5,11-Dimethyl-6,12-dimethoxyindolo[3,2-b]carbazole
aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and bLaboratoire de Chimie Moléculaire et Thio-organique, UMR 6507, ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen, France
*Correspondence e-mail: detert@uni-mainz.de
The title compound, C22H20N2O2, was prepared in a twofold Cadogan followed by double N-methylation. The is characterized by a zigzag arrangement of centrosymmetric molecules. The indolocarbazole framework is essentially planar [maximum deviation = 0.028 (2) Å] and the methoxy groups are orthogonal to this plane [C—C—O—C torsion angle = −88.2 (2)°]. The lengths of the C—N bonds are nearly identical and all C—C bonds of the pyrrole subunit are significantly longer than the C—C bonds in the benzene rings.
Related literature
For the synthesis of starting material see: Wrobel et al. (2012). For the Cadogan reaction, see: Cadogan (1962); Peng et al. (2011). For other approaches to indolocarbazoles, see: Knölker & Reddy (2002); Katritzky et al. (1995). For the structure of N-unsubstituted indolocarbazole, see: Wrobel et al. (2013). For electronic properties of indolocarbazoles, see: Hu et al. (1999); Wakim et al. (2004); Nemkovich et al. (2009). For heteroanalogous carbazoles, see: Dassonneville et al. (2011); Letessier & Detert (2012); Nissen & Detert (2011); Letessier et al. (2012). For conjugated oligomers, see: Detert et al. (2010).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536813001463/bt6882sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813001463/bt6882Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813001463/bt6882Isup3.cml
5,11-Dimethyl-6,12-dimethoxyindolo[3,2-b]carbazole was prepared from 1,4-dimethoxy-2,5-bis(2-nitrophenyl)benzene (prepared analogous to Wrobel et al. 2012) via Cadogan
In a microwave reactor tube 300 mg of the dinitro-compound were mixed with triethyl phosphite (3 ml) and irradiated (300 W, 483 K) for 15 min. The cooled mixture was dissolved in ethyl acetate (50 ml), and the same amount of hydrochloric acid (6 N) was added and the mixture heated for 3 h to reflux. After dilution with water, the product was extracted with dichloromethane (3x), the pooled organic solutions were washed with brine, dried (MgSO4), and concentrated. Purification by (SiO2, petroleum ether/ethyl acetate = 3/1 (v/v), Rf = 0.69). Yield: 664 mg (97%) of a brownish solid with m.p. = 530–531 K. Single crystals were grown by recrystallization from dichloromethane/propanol-2.Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: i = 1 - x, 1 - y, 1 - z. |
C22H20N2O2 | F(000) = 364 |
Mr = 344.40 | Dx = 1.346 Mg m−3 |
Monoclinic, P21/c | Melting point: 530 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54178 Å |
a = 11.229 (4) Å | Cell parameters from 25 reflections |
b = 7.8561 (7) Å | θ = 30–44° |
c = 9.668 (3) Å | µ = 0.69 mm−1 |
β = 94.790 (17)° | T = 193 K |
V = 849.9 (4) Å3 | Plate, colourless |
Z = 2 | 0.30 × 0.30 × 0.18 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.029 |
Radiation source: rotating anode | θmax = 70.0°, θmin = 4.0° |
Graphite monochromator | h = −13→13 |
ω/2θ scans | k = −9→0 |
1716 measured reflections | l = −11→0 |
1612 independent reflections | 3 standard reflections every 60 min |
1410 reflections with I > 2σ(I) | intensity decay: 4% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.152 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0969P)2 + 0.1743P] where P = (Fo2 + 2Fc2)/3 |
1612 reflections | (Δ/σ)max < 0.001 |
120 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C22H20N2O2 | V = 849.9 (4) Å3 |
Mr = 344.40 | Z = 2 |
Monoclinic, P21/c | Cu Kα radiation |
a = 11.229 (4) Å | µ = 0.69 mm−1 |
b = 7.8561 (7) Å | T = 193 K |
c = 9.668 (3) Å | 0.30 × 0.30 × 0.18 mm |
β = 94.790 (17)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.029 |
1716 measured reflections | 3 standard reflections every 60 min |
1612 independent reflections | intensity decay: 4% |
1410 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.152 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.25 e Å−3 |
1612 reflections | Δρmin = −0.27 e Å−3 |
120 parameters |
Experimental. H-NMR (400 MHz, CDCl3): 8.25 (d, J = 7.7 Hz, 2 H), 7.58 (d, J = 7.7 Hz, 2 H), 7.50 (dt, J = 7.7 Hz, J= 1.0 Hz, 2 H), 7.26 - 7.22 (m, 2 H), 4.17 (s, 6 H, CH3), 4.15 (s, CH3). C-NMR (75 MHz, CDCl3): 145.2 (s), 136.4 (s), 128.5 (s), 125.6 (d), 122.7 (d), 121.5 (s), 118.7 (d), 117.8 (s), 108.0 (d), 61.8 (q), 31.2 (q). IR (ATR) 3043, 2926, 2850, 2828, 1733, 1608, 1530, 1465, 1438, 1390, 1324, 1289, 1247, 1200, 1154, 1117, 1078, 1006, 933 cm-1. MS (EI): 344 (100%) [M]+. ESI-HRMS: C22H21N2O2 calcd.: 345.1603, found 345.1580. UV-Vis (dichloromethane): λ = 393 nm, λmax = 412 nm; Fluorescence: λmax = 428 nm (dichloromethane). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.25894 (13) | 0.42605 (18) | 0.48867 (15) | 0.0346 (4) | |
C2 | 0.21698 (16) | 0.4933 (2) | 0.36211 (18) | 0.0342 (4) | |
C3 | 0.10013 (17) | 0.4953 (2) | 0.3004 (2) | 0.0416 (5) | |
H3 | 0.0365 | 0.4447 | 0.3445 | 0.050* | |
C4 | 0.08055 (19) | 0.5736 (3) | 0.1724 (2) | 0.0476 (5) | |
H4 | 0.0018 | 0.5763 | 0.1282 | 0.057* | |
C5 | 0.1729 (2) | 0.6487 (2) | 0.1064 (2) | 0.0475 (5) | |
H5 | 0.1561 | 0.7023 | 0.0188 | 0.057* | |
C6 | 0.28932 (18) | 0.6459 (2) | 0.16765 (19) | 0.0397 (5) | |
H6 | 0.3524 | 0.6961 | 0.1223 | 0.048* | |
C7 | 0.31206 (16) | 0.56790 (19) | 0.29716 (18) | 0.0330 (4) | |
C8 | 0.41824 (15) | 0.54265 (19) | 0.38964 (17) | 0.0303 (4) | |
C9 | 0.38140 (15) | 0.45609 (19) | 0.50808 (17) | 0.0307 (4) | |
C10 | 0.18776 (17) | 0.3313 (3) | 0.5793 (2) | 0.0480 (5) | |
H10A | 0.1158 | 0.2886 | 0.5262 | 0.072* | |
H10B | 0.1648 | 0.4056 | 0.6540 | 0.072* | |
H10C | 0.2344 | 0.2351 | 0.6194 | 0.072* | |
C11 | 0.53766 (15) | 0.58538 (19) | 0.38040 (17) | 0.0306 (4) | |
O12 | 0.57194 (11) | 0.66686 (14) | 0.26343 (12) | 0.0364 (4) | |
C13 | 0.6004 (2) | 0.5500 (3) | 0.15737 (19) | 0.0480 (5) | |
H13A | 0.6734 | 0.4877 | 0.1882 | 0.072* | |
H13B | 0.6128 | 0.6130 | 0.0723 | 0.072* | |
H13C | 0.5344 | 0.4693 | 0.1391 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0362 (8) | 0.0301 (7) | 0.0376 (8) | −0.0027 (6) | 0.0035 (6) | 0.0014 (6) |
C2 | 0.0405 (9) | 0.0242 (8) | 0.0376 (9) | 0.0030 (7) | 0.0014 (7) | −0.0048 (7) |
C3 | 0.0375 (9) | 0.0346 (9) | 0.0524 (11) | 0.0047 (7) | 0.0018 (8) | −0.0054 (8) |
C4 | 0.0440 (10) | 0.0399 (10) | 0.0564 (12) | 0.0108 (8) | −0.0101 (9) | −0.0038 (9) |
C5 | 0.0569 (12) | 0.0346 (10) | 0.0486 (11) | 0.0073 (8) | −0.0107 (9) | 0.0039 (8) |
C6 | 0.0507 (11) | 0.0269 (8) | 0.0404 (10) | 0.0003 (7) | −0.0032 (8) | 0.0018 (7) |
C7 | 0.0414 (9) | 0.0209 (7) | 0.0362 (9) | −0.0002 (6) | 0.0008 (7) | −0.0032 (6) |
C8 | 0.0414 (9) | 0.0197 (7) | 0.0297 (8) | −0.0015 (6) | 0.0018 (6) | −0.0019 (6) |
C9 | 0.0381 (9) | 0.0211 (7) | 0.0332 (9) | −0.0027 (6) | 0.0044 (7) | −0.0023 (6) |
C10 | 0.0382 (10) | 0.0556 (12) | 0.0509 (12) | −0.0064 (9) | 0.0085 (8) | 0.0114 (9) |
C11 | 0.0425 (9) | 0.0202 (7) | 0.0295 (8) | −0.0030 (6) | 0.0049 (7) | 0.0001 (6) |
O12 | 0.0488 (8) | 0.0283 (6) | 0.0327 (7) | −0.0052 (5) | 0.0060 (5) | 0.0053 (5) |
C13 | 0.0740 (14) | 0.0391 (10) | 0.0323 (10) | −0.0070 (9) | 0.0123 (9) | 0.0010 (7) |
N1—C2 | 1.379 (2) | C7—C8 | 1.443 (2) |
N1—C9 | 1.392 (2) | C8—C11 | 1.392 (2) |
N1—C10 | 1.442 (2) | C8—C9 | 1.423 (2) |
C2—C3 | 1.396 (3) | C9—C11i | 1.390 (2) |
C2—C7 | 1.410 (3) | C10—H10A | 0.9800 |
C3—C4 | 1.383 (3) | C10—H10B | 0.9800 |
C3—H3 | 0.9500 | C10—H10C | 0.9800 |
C4—C5 | 1.393 (3) | C11—O12 | 1.3818 (19) |
C4—H4 | 0.9500 | C11—C9i | 1.390 (2) |
C5—C6 | 1.390 (3) | O12—C13 | 1.432 (2) |
C5—H5 | 0.9500 | C13—H13A | 0.9800 |
C6—C7 | 1.398 (2) | C13—H13B | 0.9800 |
C6—H6 | 0.9500 | C13—H13C | 0.9800 |
C2—N1—C9 | 108.36 (14) | C11—C8—C7 | 132.65 (16) |
C2—N1—C10 | 124.86 (16) | C9—C8—C7 | 106.48 (15) |
C9—N1—C10 | 126.66 (15) | C11i—C9—N1 | 129.75 (16) |
N1—C2—C3 | 128.54 (17) | C11i—C9—C8 | 121.42 (16) |
N1—C2—C7 | 109.81 (16) | N1—C9—C8 | 108.83 (15) |
C3—C2—C7 | 121.65 (17) | N1—C10—H10A | 109.5 |
C4—C3—C2 | 117.46 (19) | N1—C10—H10B | 109.5 |
C4—C3—H3 | 121.3 | H10A—C10—H10B | 109.5 |
C2—C3—H3 | 121.3 | N1—C10—H10C | 109.5 |
C3—C4—C5 | 121.99 (19) | H10A—C10—H10C | 109.5 |
C3—C4—H4 | 119.0 | H10B—C10—H10C | 109.5 |
C5—C4—H4 | 119.0 | O12—C11—C9i | 122.33 (15) |
C6—C5—C4 | 120.49 (19) | O12—C11—C8 | 119.98 (15) |
C6—C5—H5 | 119.8 | C9i—C11—C8 | 117.69 (16) |
C4—C5—H5 | 119.8 | C11—O12—C13 | 112.52 (13) |
C5—C6—C7 | 118.92 (19) | O12—C13—H13A | 109.5 |
C5—C6—H6 | 120.5 | O12—C13—H13B | 109.5 |
C7—C6—H6 | 120.5 | H13A—C13—H13B | 109.5 |
C6—C7—C2 | 119.49 (17) | O12—C13—H13C | 109.5 |
C6—C7—C8 | 134.00 (17) | H13A—C13—H13C | 109.5 |
C2—C7—C8 | 106.50 (15) | H13B—C13—H13C | 109.5 |
C11—C8—C9 | 120.87 (15) | ||
C9—N1—C2—C3 | −179.06 (16) | C6—C7—C8—C9 | 178.78 (17) |
C10—N1—C2—C3 | 4.7 (3) | C2—C7—C8—C9 | −1.05 (18) |
C9—N1—C2—C7 | 0.16 (18) | C2—N1—C9—C11i | 179.07 (16) |
C10—N1—C2—C7 | −176.07 (16) | C10—N1—C9—C11i | −4.8 (3) |
N1—C2—C3—C4 | 179.03 (17) | C2—N1—C9—C8 | −0.84 (18) |
C7—C2—C3—C4 | −0.1 (3) | C10—N1—C9—C8 | 175.30 (16) |
C2—C3—C4—C5 | −0.1 (3) | C11—C8—C9—C11i | 1.4 (3) |
C3—C4—C5—C6 | 0.5 (3) | C7—C8—C9—C11i | −178.75 (14) |
C4—C5—C6—C7 | −0.6 (3) | C11—C8—C9—N1 | −178.63 (14) |
C5—C6—C7—C2 | 0.4 (2) | C7—C8—C9—N1 | 1.17 (18) |
C5—C6—C7—C8 | −179.45 (18) | C9—C8—C11—O12 | 178.89 (13) |
N1—C2—C7—C6 | −179.29 (15) | C7—C8—C11—O12 | −0.9 (3) |
C3—C2—C7—C6 | −0.0 (2) | C9—C8—C11—C9i | −1.4 (3) |
N1—C2—C7—C8 | 0.57 (18) | C7—C8—C11—C9i | 178.86 (16) |
C3—C2—C7—C8 | 179.85 (15) | C9i—C11—O12—C13 | 92.20 (19) |
C6—C7—C8—C11 | −1.5 (3) | C8—C11—O12—C13 | −88.10 (19) |
C2—C7—C8—C11 | 178.72 (17) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C22H20N2O2 |
Mr | 344.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 11.229 (4), 7.8561 (7), 9.668 (3) |
β (°) | 94.790 (17) |
V (Å3) | 849.9 (4) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.69 |
Crystal size (mm) | 0.30 × 0.30 × 0.18 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1716, 1612, 1410 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.152, 1.10 |
No. of reflections | 1612 |
No. of parameters | 120 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.27 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Acknowledgements
The authors are grateful to Heinz Kolshorn for helpful discussions.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cadogan, J. I. G. (1962). Q. Rev. 16, 208–239. CrossRef CAS Web of Science Google Scholar
Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844. Web of Science CSD CrossRef Google Scholar
Detert, H., Lehmann, M. & Meier, H. (2010). Materials, 3, 3218–3330. Web of Science CrossRef CAS Google Scholar
Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Hu, N.-X., Xie, S., Popovic, Z., Ong, B. & Hor, A.-M. (1999). J. Am. Chem. Soc. 121, 5097–5098. Web of Science CSD CrossRef CAS Google Scholar
Katritzky, A. R., Li, J. & Stevens, C. V. (1995). J. Org. Chem. 60, 3401–3404. CrossRef CAS Web of Science Google Scholar
Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 39, 6521–6527. Google Scholar
Letessier, J. & Detert, H. (2012). Synthesis, 44, 290–296. CAS Google Scholar
Letessier, J., Detert, H., Götz, K. & Opatz, T. (2012). Synthesis, 44, 747–754. CAS Google Scholar
Nemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275–281. Web of Science CrossRef CAS Google Scholar
Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2854. Web of Science CSD CrossRef Google Scholar
Peng, H., Chen, X., Chen, Y., He, Q., Xie, Y. & Yang, C. (2011). Tetrahedron, 67, 5725–5731. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wakim, S., Bouchard, J., Simard, M., Drolet, N., Tao, Y. & Leclerc, M. (2004). Chem. Mater. 16, 4386–4388. Web of Science CSD CrossRef CAS Google Scholar
Wrobel, N., Schollmeyer, D. & Detert, H. (2012). Acta Cryst. E68, o1022. CSD CrossRef IUCr Journals Google Scholar
Wrobel, N., Witulski, B., Schollmeyer, D. & Detert, H. (2013). Acta Cryst. E69, o116–o117. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of a larger project on the synthesis of carbazoles (Letessier & Detert, 2012) and carbolines (Dassonneville et al. 2011; Nissen & Detert, 2011; Letessier et al. 2012) indolo-annulated carbazoles were prepared for optoelectronic applications. The title compound is crystallographically centrosymmetric. The pentacyclic indolocarbazole framework is essentially planar with maximum deviations of 0.028 (2) Å from the mean plane. The dihedral angle between the mean plane of the aromatic system and the adjacent O-methyl unit (C8—C11—O12—C13) is -88.2 (2)°. The lengths of the C—N bond are nearly identical (N1—C2: = 1.378 (2) Å, N1—C9 = 1.392 (2) Å) and all CC bonds of the pyrrole subunit (C2—C7 = 1.412 (3) Å, C7—C8 = 1.442 (3) Å, 1.423 (2) Å) are significantly longer than the CC bonds in the benzene rings (C2—C3 = 1.396 (3) Å, 1.382 (3) Å, C4—C5 = 1.395 (3) Å, C5—C6 = 1.391 (3) Å, C6—C7 = 1.397 (3) Å, C8—C11 = 1.393 (3) Å, C9—C11 = 1.391 (2) Å).