organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The charge-transfer complex 1-amino­anthra­quinone–7,7′,8,8′-tetra­cyano­quinodi­methane (1/1)

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil, and bInstitut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
*Correspondence e-mail: adriano@daad-alumni.de

(Received 21 January 2013; accepted 22 January 2013; online 26 January 2013)

The reaction of 1-amino­anthraquinone with 7,7′,8,8′-tetra­cyano­quinodimethane yielded the title charge-transfer complex, C14H9NO2·C12H4N4. The mol­ecules have maximum deviations from the mean planes through the non-H atoms of 0.0769 (14) Å for an oxo O atom and 0.1175 (17) Å for a cyano N atom, respectively. The dihedral angle between the two planes is 3.55 (3)°. In the crystal, mol­ecules are stacked into columns along the a-axis direction. Pairs of N—H⋯N and N—H⋯O inter­actions connect the mol­ecules perpendicular to the stacking direction. Additionally, an intra­molecular N—H⋯O hydrogen-bond inter­action is observed for 1-amino­anthraquinone.

Related literature

For a revised structure of 1-amino­anthraquinone, see: Milić et al. (2012[Milić, D., Džolić, Z., Cametti, M., Prugovečki, B. & Žinić, M. (2012). J. Mol. Struct. 920, 178-182.]). For charge-transfer complexes of aromatic derivatives with 7,7′,8,8′-tetra­cyano­quinodimethane, see: Press et al. (2012[Press, D. J., Back, T. G. & Sutherland, T. C. (2012). Tetrahedron Lett. 53, 1603-1605.]). For the conductivity of organic salts, see: Jérome (2004[Jérome, D. (2004). Chem. Rev. 104, 5565-5591.]). For the coordination chemistry of 7,7′,8,8′-tetra­cyano­quinodimethane, see: Kaim & Moscherosch (1994[Kaim, W. & Moscherosch, M. (1994). Coord. Chem. Rev. 129, 157-193.]).

[Scheme 1]

Experimental

Crystal data
  • C12H4N4·C14H9NO2

  • Mr = 427.41

  • Monoclinic, P 21 /c

  • a = 7.4916 (2) Å

  • b = 9.4321 (3) Å

  • c = 28.8093 (8) Å

  • β = 95.8785 (15)°

  • V = 2025.00 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.29 × 0.05 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (Alcock, 1970[Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.]) Tmin = 0.974, Tmax = 0.996

  • 19055 measured reflections

  • 3972 independent reflections

  • 2324 reflections with I > 2σ(I)

  • Rint = 0.147

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.135

  • S = 1.01

  • 3972 reflections

  • 350 parameters

  • All H-atom parameters refined

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O2 0.93 (3) 1.96 (3) 2.654 (3) 130 (2)
N1—HN1⋯O2i 0.93 (3) 2.25 (3) 3.019 (3) 139 (2)
N1—HN2⋯N3ii 1.02 (3) 2.22 (3) 3.229 (3) 171 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Charge transfer compounds with 7,7',8,8'-tetracyanoquinodimethane (TCNQ) as the acceptor component have a wide range of properties, such as paramagnetism, cooperative magnetism or electrical conductivity. TCNQ can be easily reduced to the anionic form. The single unpaired electron occupies the lowest unoccupied molecular orbitals, that are mainly located at the terminal dicyanomethylene fragments. When the TCNQ units stack and the intermolecular spacings are shorter than the van der Waals distances for carbon, the π orbitals will contribute to electrical conductivity (Jérome, 2004). Additionally, TCNQ compounds have a very interesting coordination chemistry (Kaim & Moscherosch, 1994). As part of our study of charge transfer complex structures, we report herein the synthesis and the crystal structure of a new TCNQ-acceptor compound with 1-aminoanthraquinone-donor (Milić et al., 2012).

In the title compound, the molecular structure unit matches the asymmetric unit (Fig. 1). Both molecules show only a slight deviation from planarity. The maximal deviation from the least squares plane through all non-hydrogen atoms for the 1-aminoanthraquinone and the 7,7',8,8'-tetracyanoquinodimethane molecule amount to 0.0769 (14) Å for O2 and 0.1175 (17) Å for N5, respectively, and the dihedral angle between the two planes is 3.55 (03)°. The bond angles suggest sp2 hybridization for the C atoms and explain the planarity of both molecules. The structure is built from mixed stacks of donor and acceptor molecules. The stacks run the crystallographic a axis (Fig. 3). The mean distance between the molecules within the stack amounts to one half of the length of the a axis, i.e. 3.7456 (2) Å. This explains the low electrical conductivity of the compound. Above room temperature, however, a detectable electrical conductivity was observed, which reaches 4.4 × 10-8 S/cm at 370 K. In the temperature range between 2 K and 300 K the title compound turned out as diamagnetic. The bond lengths within the dicyanomethylene groups suggest that the TCNQ units are neutral, comparing with crystal and infrared literature data (Kaim & Moscherosch, 1994). However, a small charge transfer is apparently present, since the electrical resistivity falls with increasing temperature indicating semiconducting characteristics. From the resistivity data, an Arrhenius development –ln(1/R) versus. 1/T gives a mainly linear behaviour, from which a small barrier for the thermally activated transport of 1.25 eV can be derived, according with dark brown colour of the crystals.

The crystal packing is stabilized by intermolecular hydrogen interactions. The molecules are connected by pairs of centrosymmetrical N—H···O and N—H···N hydrogen interactions, building dimers (Table 1; N1—HN1···O2i; N1—HN2···N3ii and Fig. 2). Additionally, an intramolecular N—H···O hydrogen interaction is observed for the 1-aminoanthraquinone (Table 1; N1—HN1···O2 and Fig. 2).

Related literature top

For a revised structure of 1-aminoanthraquinone, see: Milić et al. (2012). For charge-transfer complexes of aromatic derivatives with 7,7',8,8'-tetracyanoquinodimethane, see: Press et al. (2012). For the conductivity of organic salts, see: Jérome (2004). For the coordination chemistry of 7,7',8,8'-tetracyanoquinodimethane, see: Kaim & Moscherosch (1994).

Experimental top

Starting materials were commercially available and were used without further purification. 1-Aminoanthraquinone and 7,7',8,8'-tetracyanoquinodimethane were dissolved in CH2Cl2 separately at room temperature and equimolar concentrations. The solutions were combined and maintained for 4 h under continuous stirring. Dark brown crystals, suitable for X-ray analysis, were obtained by the slow evaporation of the solvent. Elemental analysis: Calc. 73.1 C, 3.1 H, 16.4 N; found 72.8 C, 3.4 H, 16.6 N. The melting point was determined by differential scanning calorimetry to 520 K. Exothermic decomposition occurs at 555 K.

Refinement top

All hydrogen atoms were localized in a difference density Fourier map. Their positions and isotropic displacement parameters were refined.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. : Crystal structure of the title compound showing the dimeric arrangement. Intermolecular and Intramolecular hydrogen interactions are indicated as dashed lines. Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y, -z; (iii) x, 1 + y, z.
[Figure 3] Fig. 3. : Crystal structure of the title compound showing the mixed stacks of donor and acceptor molecules. The stacks run the crystallographic a axis. The graphical representation is simplified for clarity.
1-Aminoanthraquinone–2-[4-(dicyanomethylidene)cyclohexa-2,5-dien-1-ylidene]propanedinitrile (1/1) top
Crystal data top
C12H4N4·C14H9NO2F(000) = 880
Mr = 427.41Dx = 1.402 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14532 reflections
a = 7.4916 (2) Åθ = 2.9–27.5°
b = 9.4321 (3) ŵ = 0.09 mm1
c = 28.8093 (8) ÅT = 293 K
β = 95.8785 (15)°Needle, dark brown
V = 2025.00 (10) Å30.29 × 0.05 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3972 independent reflections
Radiation source: fine-focus sealed tube2324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.147
Detector resolution: 9 pixels mm-1θmax = 26.0°, θmin = 3.0°
CCD rotation images, thick slices scansh = 99
Absorption correction: analytical
(Alcock, 1970)
k = 1111
Tmin = 0.974, Tmax = 0.996l = 3235
19055 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.1436P]
where P = (Fo2 + 2Fc2)/3
3972 reflections(Δ/σ)max < 0.001
350 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C12H4N4·C14H9NO2V = 2025.00 (10) Å3
Mr = 427.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4916 (2) ŵ = 0.09 mm1
b = 9.4321 (3) ÅT = 293 K
c = 28.8093 (8) Å0.29 × 0.05 × 0.04 mm
β = 95.8785 (15)°
Data collection top
Nonius KappaCCD
diffractometer
3972 independent reflections
Absorption correction: analytical
(Alcock, 1970)
2324 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.996Rint = 0.147
19055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.135All H-atom parameters refined
S = 1.01Δρmax = 0.16 e Å3
3972 reflectionsΔρmin = 0.16 e Å3
350 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6301 (3)0.2662 (3)0.00915 (7)0.0621 (6)
HN10.586 (3)0.358 (3)0.0048 (9)0.086 (9)*
HN20.625 (3)0.195 (3)0.0176 (11)0.110 (10)*
N20.0775 (3)0.2756 (2)0.02511 (7)0.0705 (6)
N30.3548 (3)0.0224 (2)0.06905 (7)0.0707 (6)
N40.4265 (3)0.6007 (2)0.28057 (7)0.0688 (6)
N50.1954 (3)0.9047 (2)0.17933 (8)0.0739 (6)
O10.9414 (2)0.33407 (19)0.20941 (6)0.0763 (5)
O20.58619 (19)0.51563 (15)0.04905 (5)0.0586 (4)
C10.7206 (2)0.2324 (2)0.05065 (7)0.0438 (5)
C20.7953 (3)0.0950 (2)0.05632 (8)0.0513 (6)
H20.776 (3)0.028 (2)0.0292 (8)0.070 (7)*
C30.8834 (3)0.0533 (3)0.09792 (8)0.0525 (6)
H30.936 (3)0.040 (3)0.1011 (8)0.066 (7)*
C40.9037 (3)0.1446 (2)0.13595 (8)0.0485 (6)
H40.971 (3)0.122 (2)0.1661 (9)0.069 (7)*
C50.8342 (2)0.2799 (2)0.13162 (7)0.0407 (5)
C60.7425 (2)0.3273 (2)0.08894 (7)0.0376 (5)
C70.8617 (2)0.3753 (2)0.17276 (7)0.0473 (5)
C80.6729 (2)0.4722 (2)0.08494 (7)0.0397 (5)
C90.7950 (2)0.5229 (2)0.16781 (7)0.0413 (5)
C100.8227 (3)0.6157 (3)0.20549 (8)0.0524 (6)
H100.895 (2)0.5807 (18)0.2367 (7)0.039 (5)*
C110.7634 (3)0.7541 (3)0.20053 (9)0.0574 (6)
H110.785 (3)0.822 (2)0.2272 (9)0.072 (7)*
C120.6755 (3)0.8007 (3)0.15876 (9)0.0536 (6)
H120.631 (3)0.900 (2)0.1552 (7)0.061 (6)*
C130.6477 (3)0.7089 (2)0.12139 (8)0.0486 (5)
H130.591 (3)0.740 (2)0.0917 (8)0.052 (6)*
C140.7067 (2)0.5693 (2)0.12546 (7)0.0393 (5)
C150.2500 (2)0.3339 (2)0.09187 (7)0.0412 (5)
C160.3302 (3)0.3018 (2)0.13811 (7)0.0443 (5)
C170.3431 (3)0.4023 (2)0.17152 (8)0.0429 (5)
C180.2788 (2)0.5444 (2)0.16208 (7)0.0402 (5)
C190.1987 (3)0.5751 (2)0.11561 (7)0.0461 (5)
C200.1842 (3)0.4753 (2)0.08236 (8)0.0472 (5)
C210.2352 (2)0.2327 (2)0.05729 (7)0.0450 (5)
C220.1486 (3)0.2588 (2)0.01153 (8)0.0507 (6)
C230.3026 (3)0.0910 (3)0.06488 (7)0.0510 (6)
C240.2928 (2)0.6472 (2)0.19600 (7)0.0420 (5)
C250.3679 (3)0.6194 (2)0.24281 (8)0.0491 (5)
C260.2367 (3)0.7900 (3)0.18669 (8)0.0502 (5)
H160.375 (2)0.208 (2)0.1455 (7)0.053 (6)*
H170.400 (3)0.380 (2)0.2023 (8)0.055 (6)*
H190.152 (3)0.668 (2)0.1072 (7)0.059 (6)*
H200.128 (3)0.496 (2)0.0507 (7)0.054 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0828 (14)0.0546 (14)0.0455 (12)0.0161 (11)0.0105 (10)0.0057 (11)
N20.0853 (14)0.0770 (15)0.0468 (12)0.0103 (11)0.0045 (11)0.0014 (11)
N30.0914 (14)0.0511 (13)0.0672 (14)0.0174 (12)0.0032 (11)0.0074 (11)
N40.0893 (14)0.0639 (14)0.0503 (13)0.0007 (11)0.0069 (11)0.0034 (10)
N50.0883 (14)0.0552 (14)0.0758 (16)0.0161 (12)0.0025 (12)0.0010 (12)
O10.0967 (12)0.0819 (13)0.0449 (10)0.0278 (10)0.0190 (9)0.0017 (9)
O20.0776 (10)0.0491 (10)0.0442 (9)0.0158 (8)0.0171 (8)0.0003 (7)
C10.0457 (11)0.0459 (13)0.0391 (12)0.0034 (10)0.0006 (9)0.0000 (10)
C20.0595 (13)0.0401 (14)0.0534 (14)0.0049 (10)0.0016 (11)0.0044 (12)
C30.0567 (13)0.0410 (14)0.0598 (16)0.0089 (11)0.0060 (11)0.0048 (12)
C40.0493 (12)0.0493 (14)0.0466 (13)0.0059 (10)0.0030 (10)0.0084 (11)
C50.0384 (10)0.0451 (13)0.0383 (12)0.0035 (9)0.0029 (9)0.0038 (10)
C60.0379 (10)0.0387 (12)0.0361 (11)0.0022 (8)0.0032 (9)0.0009 (9)
C70.0444 (11)0.0601 (15)0.0363 (12)0.0043 (10)0.0014 (9)0.0034 (11)
C80.0396 (10)0.0426 (12)0.0363 (11)0.0019 (9)0.0006 (9)0.0014 (10)
C90.0365 (10)0.0484 (13)0.0389 (12)0.0020 (9)0.0040 (9)0.0044 (10)
C100.0470 (12)0.0660 (17)0.0432 (13)0.0014 (11)0.0004 (10)0.0101 (12)
C110.0544 (13)0.0640 (17)0.0546 (15)0.0077 (12)0.0082 (12)0.0193 (14)
C120.0574 (13)0.0459 (15)0.0588 (16)0.0040 (11)0.0119 (12)0.0095 (12)
C130.0533 (12)0.0455 (14)0.0469 (14)0.0005 (10)0.0042 (11)0.0012 (11)
C140.0372 (10)0.0422 (13)0.0386 (11)0.0023 (9)0.0039 (9)0.0011 (9)
C150.0412 (10)0.0406 (12)0.0415 (12)0.0033 (9)0.0024 (9)0.0020 (10)
C160.0485 (12)0.0387 (13)0.0447 (13)0.0048 (10)0.0000 (10)0.0025 (11)
C170.0456 (11)0.0413 (13)0.0406 (12)0.0030 (9)0.0011 (10)0.0041 (11)
C180.0390 (10)0.0396 (12)0.0422 (12)0.0006 (9)0.0054 (9)0.0006 (10)
C190.0511 (12)0.0402 (13)0.0460 (13)0.0069 (10)0.0005 (10)0.0047 (11)
C200.0520 (12)0.0484 (14)0.0394 (12)0.0052 (10)0.0047 (10)0.0020 (11)
C210.0460 (11)0.0444 (13)0.0439 (12)0.0036 (10)0.0013 (9)0.0019 (10)
C220.0588 (13)0.0481 (14)0.0454 (14)0.0050 (11)0.0059 (11)0.0020 (11)
C230.0585 (13)0.0515 (15)0.0417 (12)0.0050 (11)0.0016 (10)0.0072 (11)
C240.0418 (11)0.0397 (12)0.0441 (12)0.0028 (9)0.0021 (9)0.0011 (10)
C250.0563 (13)0.0400 (13)0.0504 (14)0.0011 (10)0.0028 (11)0.0045 (11)
C260.0533 (12)0.0491 (15)0.0473 (13)0.0052 (11)0.0013 (10)0.0023 (11)
Geometric parameters (Å, º) top
N1—C11.351 (3)C10—C111.381 (3)
N1—HN10.93 (3)C10—H101.055 (19)
N1—HN21.02 (3)C11—C121.383 (3)
N2—C221.144 (3)C11—H111.00 (2)
N3—C231.141 (3)C12—C131.380 (3)
N4—C251.144 (3)C12—H121.00 (2)
N5—C261.140 (3)C13—C141.390 (3)
O1—C71.222 (2)C13—H130.96 (2)
O2—C81.234 (2)C15—C211.376 (3)
C1—C21.414 (3)C15—C161.436 (3)
C1—C61.417 (3)C15—C201.438 (3)
C2—C31.366 (3)C16—C171.347 (3)
C2—H21.00 (2)C16—H160.96 (2)
C3—C41.390 (3)C17—C181.441 (3)
C3—H30.97 (2)C17—H170.97 (2)
C4—C51.379 (3)C18—C241.373 (3)
C4—H40.98 (2)C18—C191.439 (3)
C5—C61.418 (3)C19—C201.340 (3)
C5—C71.485 (3)C19—H190.96 (2)
C6—C81.463 (3)C20—H200.98 (2)
C7—C91.481 (3)C21—C221.430 (3)
C8—O21.234 (2)C21—C231.437 (3)
C8—C141.485 (3)C24—C261.428 (3)
C9—C101.393 (3)C24—C251.431 (3)
C9—C141.398 (3)
C1—N1—HN1118.7 (17)C13—C12—C11120.0 (2)
C1—N1—HN2119.4 (17)C13—C12—H12119.2 (13)
HN1—N1—HN2121 (2)C11—C12—H12120.8 (13)
N1—C1—C2118.4 (2)C12—C13—C14120.5 (2)
N1—C1—C6123.2 (2)C12—C13—H13121.5 (12)
C2—C1—C6118.42 (19)C14—C13—H13118.0 (12)
C3—C2—C1121.0 (2)C13—C14—C9119.24 (19)
C3—C2—H2121.3 (13)C13—C14—C8119.39 (18)
C1—C2—H2117.6 (13)C9—C14—C8121.37 (18)
C2—C3—C4121.2 (2)C21—C15—C16121.35 (19)
C2—C3—H3120.2 (13)C21—C15—C20120.32 (19)
C4—C3—H3118.6 (13)C16—C15—C20118.33 (19)
C5—C4—C3119.5 (2)C17—C16—C15120.5 (2)
C5—C4—H4115.9 (13)C17—C16—H16119.3 (12)
C3—C4—H4124.6 (13)C15—C16—H16120.2 (12)
C4—C5—C6120.99 (19)C16—C17—C18121.4 (2)
C4—C5—C7117.90 (18)C16—C17—H17119.6 (12)
C6—C5—C7121.10 (18)C18—C17—H17118.9 (12)
C1—C6—C5118.88 (18)C24—C18—C19120.93 (19)
C1—C6—C8121.13 (17)C24—C18—C17121.53 (19)
C5—C6—C8119.99 (18)C19—C18—C17117.54 (19)
O1—C7—C9120.8 (2)C20—C19—C18121.3 (2)
O1—C7—C5120.8 (2)C20—C19—H19117.4 (13)
C9—C7—C5118.33 (17)C18—C19—H19121.4 (13)
O2—C8—C6121.95 (18)C19—C20—C15121.0 (2)
O2—C8—C6121.95 (18)C19—C20—H20121.3 (12)
O2—C8—C14119.13 (18)C15—C20—H20117.7 (12)
O2—C8—C14119.13 (18)C15—C21—C22122.92 (19)
C6—C8—C14118.91 (17)C15—C21—C23122.28 (19)
C10—C9—C14120.2 (2)C22—C21—C23114.79 (19)
C10—C9—C7119.60 (19)N2—C22—C21178.0 (2)
C14—C9—C7120.23 (18)N3—C23—C21177.3 (2)
C11—C10—C9119.5 (2)C18—C24—C26122.18 (19)
C11—C10—H10121.0 (10)C18—C24—C25122.36 (18)
C9—C10—H10119.4 (10)C26—C24—C25115.45 (18)
C10—C11—C12120.6 (2)N4—C25—C24178.2 (2)
C10—C11—H11120.1 (13)N5—C26—C24178.6 (2)
C12—C11—H11119.2 (13)
N1—C1—C2—C3178.0 (2)C10—C11—C12—C130.6 (3)
C6—C1—C2—C31.3 (3)C11—C12—C13—C140.3 (3)
C1—C2—C3—C40.4 (3)C12—C13—C14—C90.2 (3)
C2—C3—C4—C50.2 (3)C12—C13—C14—C8179.16 (18)
C3—C4—C5—C60.0 (3)C10—C9—C14—C130.3 (3)
C3—C4—C5—C7178.83 (19)C7—C9—C14—C13179.00 (17)
N1—C1—C6—C5177.71 (19)C10—C9—C14—C8179.07 (17)
C2—C1—C6—C51.5 (3)C7—C9—C14—C81.7 (3)
N1—C1—C6—C82.6 (3)O2—C8—C14—C133.1 (3)
C2—C1—C6—C8178.24 (17)O2—C8—C14—C133.1 (3)
C4—C5—C6—C10.9 (3)C6—C8—C14—C13177.34 (16)
C7—C5—C6—C1179.67 (17)O2—C8—C14—C9176.20 (17)
C4—C5—C6—C8178.84 (17)O2—C8—C14—C9176.20 (17)
C7—C5—C6—C80.1 (3)C6—C8—C14—C93.3 (3)
C4—C5—C7—O10.9 (3)C21—C15—C16—C17179.88 (19)
C6—C5—C7—O1179.75 (19)C20—C15—C16—C170.1 (3)
C4—C5—C7—C9177.21 (16)C15—C16—C17—C180.4 (3)
C6—C5—C7—C91.6 (3)C16—C17—C18—C24179.60 (19)
O2—O2—C8—C60.00 (9)C16—C17—C18—C190.4 (3)
O2—O2—C8—C140.00 (10)C24—C18—C19—C20179.88 (19)
C1—C6—C8—O23.2 (3)C17—C18—C19—C200.1 (3)
C5—C6—C8—O2177.04 (18)C18—C19—C20—C150.6 (3)
C1—C6—C8—O23.2 (3)C21—C15—C20—C19179.6 (2)
C5—C6—C8—O2177.04 (18)C16—C15—C20—C190.6 (3)
C1—C6—C8—C14177.26 (17)C16—C15—C21—C22176.89 (18)
C5—C6—C8—C142.5 (3)C20—C15—C21—C222.9 (3)
O1—C7—C9—C100.3 (3)C16—C15—C21—C231.7 (3)
C5—C7—C9—C10178.49 (17)C20—C15—C21—C23178.58 (18)
O1—C7—C9—C14178.94 (19)C19—C18—C24—C262.7 (3)
C5—C7—C9—C140.8 (3)C17—C18—C24—C26177.26 (18)
C14—C9—C10—C110.5 (3)C19—C18—C24—C25178.53 (18)
C7—C9—C10—C11178.78 (18)C17—C18—C24—C251.5 (3)
C9—C10—C11—C120.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O20.93 (3)1.96 (3)2.654 (3)130 (2)
N1—HN1···O2i0.93 (3)2.25 (3)3.019 (3)139 (2)
N1—HN2···N3ii1.02 (3)2.22 (3)3.229 (3)171 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H4N4·C14H9NO2
Mr427.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.4916 (2), 9.4321 (3), 28.8093 (8)
β (°) 95.8785 (15)
V3)2025.00 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.29 × 0.05 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(Alcock, 1970)
Tmin, Tmax0.974, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
19055, 3972, 2324
Rint0.147
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.135, 1.01
No. of reflections3972
No. of parameters350
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O20.93 (3)1.96 (3)2.654 (3)130 (2)
N1—HN1···O2i0.93 (3)2.25 (3)3.019 (3)139 (2)
N1—HN2···N3ii1.02 (3)2.22 (3)3.229 (3)171 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support by the German Research Foundation (DFG) through the Collaborative Research Center SFB 813, Chemistry at Spin Centers, and by FAPITEC/SE/FUNTEC/CNPq through the PPP Program 04/2011. JNS also acknowledges CAPES for the award of a scholarship.

References

First citationAlcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJérome, D. (2004). Chem. Rev. 104, 5565–5591.  Web of Science PubMed Google Scholar
First citationKaim, W. & Moscherosch, M. (1994). Coord. Chem. Rev. 129, 157–193.  CrossRef CAS Web of Science Google Scholar
First citationMilić, D., Džolić, Z., Cametti, M., Prugovečki, B. & Žinić, M. (2012). J. Mol. Struct. 920, 178–182.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPress, D. J., Back, T. G. & Sutherland, T. C. (2012). Tetrahedron Lett. 53, 1603–1605.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds