organic compounds
Glycine–D-tartaric acid (1/1)
aDepartment of Physics, Shri Angalamman College of Engineering and Technology, Siruganoor, Tiruchirappalli 621 105, India, bCentre for Photonics and Nanotechnology, Sona College of Technology, Salem, Tamilnadu, India, and cDepartment of Physics, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India
*Correspondence e-mail: sakthi2udc@gmail.com
In the title 2H5NO2·C4H6O6, the gylcine molecule is present in the zwitterion form. In the tartaric acid molecule there is a short intramolecular O—H⋯O contact. In the crystal, the tartaric acid molecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers. These dimers are linked via a number of O—H⋯O and N—H⋯O hydrogen bonds involving the two components, forming a three-dimensional network.
CRelated literature
For related structures, see: Kvick et al. (1980). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT-NT (Bruker, 2004); data reduction: SAINT-NT and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813000822/bv2215sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813000822/bv2215Isup2.hkl
Colourless single crystals were grown as transparent needles by slow evaporation method from a saturated aqueous solution containing glycine and D-tartaric acid in a 1:1 stoichiometric ratio.
All the hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms with C—H = 0.97and 0.98 Å, and Uiso = 1.2eq(C). Hydrogen atoms attached to O and N were refined isotropically.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT-NT (Bruker, 2004); data reduction: SAINT-NT and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular structure and labelling scheme for (I) with displacement ellipsoid of non-H atoms are drawn at the 30% probability level. | |
Fig. 2. A packing diagram for (I) is shown. Dashed line indicates intra and inter molecular N—H..O and O—H..O hydrogen bonding interactions |
C2H5NO2·C4H6O6 | F(000) = 472 |
Mr = 225.16 | Dx = 1.661 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1585 reflections |
a = 4.8387 (2) Å | θ = 2.0–25.0° |
b = 9.2913 (4) Å | µ = 0.16 mm−1 |
c = 20.0273 (8) Å | T = 293 K |
β = 90.171 (1)° | Prism, colorless |
V = 900.38 (6) Å3 | 0.30 × 0.20 × 0.20 mm |
Z = 4 |
Bruker Kappa APEXII diffractometer | 2685 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.033 |
Graphite monochromator | θmax = 35.0°, θmin = 2.0° |
ω and ϕ scan | h = −7→7 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | k = −14→12 |
Tmin = 0.954, Tmax = 0.969 | l = −27→29 |
12500 measured reflections | 2 standard reflections every 100 reflections |
3282 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0603P)2 + 0.1264P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3282 reflections | Δρmax = 0.49 e Å−3 |
165 parameters | Δρmin = −0.22 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.074 (5) |
C2H5NO2·C4H6O6 | V = 900.38 (6) Å3 |
Mr = 225.16 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 4.8387 (2) Å | µ = 0.16 mm−1 |
b = 9.2913 (4) Å | T = 293 K |
c = 20.0273 (8) Å | 0.30 × 0.20 × 0.20 mm |
β = 90.171 (1)° |
Bruker Kappa APEXII diffractometer | 2685 reflections with I > 2σ(I) |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | Rint = 0.033 |
Tmin = 0.954, Tmax = 0.969 | 2 standard reflections every 100 reflections |
12500 measured reflections | intensity decay: none |
3282 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.49 e Å−3 |
3282 reflections | Δρmin = −0.22 e Å−3 |
165 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.44851 (16) | 0.24734 (9) | 0.61943 (4) | 0.02360 (17) | |
C2 | 0.64567 (15) | 0.25044 (9) | 0.56018 (4) | 0.02271 (17) | |
H2 | 0.7688 | 0.1668 | 0.5624 | 0.027* | |
C3 | 0.47689 (16) | 0.24434 (9) | 0.49514 (4) | 0.02364 (17) | |
H3 | 0.3788 | 0.1521 | 0.4936 | 0.028* | |
C4 | 0.66706 (17) | 0.25298 (9) | 0.43493 (4) | 0.02490 (18) | |
C5 | 1.19172 (16) | 0.03299 (10) | 0.29340 (4) | 0.02399 (18) | |
C6 | 1.42473 (16) | 0.05011 (10) | 0.24364 (4) | 0.02740 (19) | |
H6A | 1.4296 | 0.1487 | 0.2278 | 0.033* | |
H6B | 1.5996 | 0.0297 | 0.2655 | 0.033* | |
N1 | 1.38776 (19) | −0.04805 (10) | 0.18645 (4) | 0.03233 (19) | |
O1 | 0.44118 (15) | 0.33804 (9) | 0.66214 (4) | 0.03694 (19) | |
O2 | 0.29078 (17) | 0.13348 (8) | 0.61631 (4) | 0.0395 (2) | |
O3 | 0.80456 (13) | 0.37788 (7) | 0.56436 (3) | 0.02782 (16) | |
O4 | 0.28015 (13) | 0.35571 (8) | 0.49377 (4) | 0.03210 (17) | |
O5 | 0.83917 (16) | 0.14540 (8) | 0.43321 (4) | 0.03596 (18) | |
O6 | 0.65303 (16) | 0.35172 (9) | 0.39549 (4) | 0.03701 (19) | |
O7 | 1.15307 (17) | 0.13761 (9) | 0.33148 (4) | 0.0417 (2) | |
O8 | 1.06398 (15) | −0.08344 (8) | 0.29288 (4) | 0.03465 (18) | |
H1A | 1.257 (4) | −0.008 (2) | 0.1562 (10) | 0.074 (5)* | |
H1B | 1.548 (3) | −0.0609 (17) | 0.1637 (8) | 0.054 (4)* | |
H1C | 1.320 (3) | −0.1370 (19) | 0.1966 (8) | 0.054 (4)* | |
H2A | 0.179 (4) | 0.122 (2) | 0.6533 (10) | 0.084 (6)* | |
H3A | 0.962 (4) | 0.3630 (18) | 0.5444 (8) | 0.060 (5)* | |
H4A | 0.323 (4) | 0.419 (2) | 0.4681 (9) | 0.070 (5)* | |
H5 | 0.938 (4) | 0.148 (2) | 0.3926 (10) | 0.072 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0228 (3) | 0.0263 (4) | 0.0218 (4) | −0.0020 (3) | 0.0057 (3) | 0.0023 (3) |
C2 | 0.0223 (3) | 0.0226 (4) | 0.0233 (4) | −0.0009 (3) | 0.0083 (3) | 0.0002 (3) |
C3 | 0.0237 (3) | 0.0245 (4) | 0.0228 (4) | −0.0023 (3) | 0.0076 (3) | −0.0001 (3) |
C4 | 0.0267 (3) | 0.0266 (4) | 0.0214 (4) | −0.0040 (3) | 0.0066 (3) | −0.0039 (3) |
C5 | 0.0221 (3) | 0.0284 (4) | 0.0215 (4) | 0.0024 (3) | 0.0093 (3) | 0.0027 (3) |
C6 | 0.0225 (3) | 0.0333 (4) | 0.0265 (4) | 0.0000 (3) | 0.0109 (3) | 0.0026 (3) |
N1 | 0.0387 (4) | 0.0315 (4) | 0.0269 (4) | 0.0084 (3) | 0.0162 (3) | 0.0021 (3) |
O1 | 0.0369 (3) | 0.0426 (4) | 0.0314 (4) | −0.0110 (3) | 0.0154 (3) | −0.0113 (3) |
O2 | 0.0484 (4) | 0.0366 (4) | 0.0335 (4) | −0.0202 (3) | 0.0196 (3) | −0.0046 (3) |
O3 | 0.0226 (3) | 0.0297 (3) | 0.0313 (3) | −0.0064 (2) | 0.0107 (2) | −0.0030 (2) |
O4 | 0.0259 (3) | 0.0358 (4) | 0.0347 (4) | 0.0050 (2) | 0.0120 (3) | 0.0079 (3) |
O5 | 0.0447 (4) | 0.0324 (4) | 0.0309 (4) | 0.0075 (3) | 0.0155 (3) | −0.0028 (3) |
O6 | 0.0398 (4) | 0.0399 (4) | 0.0314 (4) | 0.0031 (3) | 0.0145 (3) | 0.0089 (3) |
O7 | 0.0490 (4) | 0.0382 (4) | 0.0380 (4) | −0.0039 (3) | 0.0231 (3) | −0.0107 (3) |
O8 | 0.0368 (3) | 0.0314 (4) | 0.0358 (4) | −0.0059 (3) | 0.0189 (3) | 0.0019 (3) |
C1—O1 | 1.2014 (11) | C5—O7 | 1.2499 (11) |
C1—O2 | 1.3058 (10) | C5—C6 | 1.5153 (10) |
C1—C2 | 1.5250 (10) | C6—N1 | 1.4746 (13) |
C2—O3 | 1.4141 (10) | C6—H6A | 0.9700 |
C2—C3 | 1.5364 (13) | C6—H6B | 0.9700 |
C2—H2 | 0.9800 | N1—H1A | 0.953 (19) |
C3—O4 | 1.4063 (11) | N1—H1B | 0.909 (16) |
C3—C4 | 1.5212 (10) | N1—H1C | 0.914 (18) |
C3—H3 | 0.9800 | O2—H2A | 0.93 (2) |
C4—O6 | 1.2124 (11) | O3—H3A | 0.870 (18) |
C4—O5 | 1.3015 (11) | O4—H4A | 0.81 (2) |
C5—O8 | 1.2460 (11) | O5—H5 | 0.944 (19) |
O1—C1—O2 | 125.71 (7) | O8—C5—C6 | 117.12 (7) |
O1—C1—C2 | 124.10 (7) | O7—C5—C6 | 115.63 (8) |
O2—C1—C2 | 110.19 (7) | N1—C6—C5 | 110.92 (7) |
O3—C2—C1 | 108.12 (7) | N1—C6—H6A | 109.5 |
O3—C2—C3 | 111.63 (7) | C5—C6—H6A | 109.5 |
C1—C2—C3 | 109.07 (6) | N1—C6—H6B | 109.5 |
O3—C2—H2 | 109.3 | C5—C6—H6B | 109.5 |
C1—C2—H2 | 109.3 | H6A—C6—H6B | 108.0 |
C3—C2—H2 | 109.3 | C6—N1—H1A | 109.2 (12) |
O4—C3—C4 | 110.90 (7) | C6—N1—H1B | 111.6 (10) |
O4—C3—C2 | 110.33 (7) | H1A—N1—H1B | 107.6 (15) |
C4—C3—C2 | 110.42 (6) | C6—N1—H1C | 115.4 (10) |
O4—C3—H3 | 108.4 | H1A—N1—H1C | 105.0 (16) |
C4—C3—H3 | 108.4 | H1B—N1—H1C | 107.6 (14) |
C2—C3—H3 | 108.4 | C1—O2—H2A | 113.3 (13) |
O6—C4—O5 | 126.76 (7) | C2—O3—H3A | 108.3 (11) |
O6—C4—C3 | 121.57 (8) | C3—O4—H4A | 111.9 (14) |
O5—C4—C3 | 111.66 (7) | C4—O5—H5 | 109.4 (11) |
O8—C5—O7 | 127.24 (7) | ||
O1—C1—C2—O3 | −1.72 (12) | C1—C2—C3—C4 | 177.86 (7) |
O2—C1—C2—O3 | 177.86 (8) | O4—C3—C4—O6 | 4.99 (12) |
O1—C1—C2—C3 | −123.29 (10) | C2—C3—C4—O6 | −117.63 (9) |
O2—C1—C2—C3 | 56.29 (9) | O4—C3—C4—O5 | −175.95 (8) |
O3—C2—C3—O4 | −64.51 (8) | C2—C3—C4—O5 | 61.43 (9) |
C1—C2—C3—O4 | 54.91 (8) | O8—C5—C6—N1 | 23.03 (11) |
O3—C2—C3—C4 | 58.45 (8) | O7—C5—C6—N1 | −158.29 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.953 (19) | 2.20 (2) | 2.9509 (11) | 135.2 (16) |
N1—H1A···O3i | 0.953 (19) | 2.21 (2) | 2.9386 (11) | 132.2 (15) |
N1—H1B···O6ii | 0.909 (16) | 2.041 (16) | 2.9188 (10) | 162.0 (14) |
N1—H1C···O7ii | 0.914 (18) | 2.172 (17) | 2.9492 (13) | 142.4 (14) |
O2—H2A···O8iii | 0.93 (2) | 1.64 (2) | 2.5473 (8) | 167 (2) |
O3—H3A···O4iv | 0.870 (18) | 1.849 (18) | 2.7122 (8) | 171.0 (16) |
O4—H4A···O3v | 0.81 (2) | 2.09 (2) | 2.7654 (10) | 141.1 (18) |
O4—H4A···O6 | 0.81 (2) | 2.251 (18) | 2.6743 (9) | 112.9 (16) |
O5—H5···O7 | 0.944 (19) | 1.612 (19) | 2.5459 (9) | 169.2 (18) |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+5/2, y−1/2, −z+1/2; (iii) −x+1, −y, −z+1; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C2H5NO2·C4H6O6 |
Mr | 225.16 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 4.8387 (2), 9.2913 (4), 20.0273 (8) |
β (°) | 90.171 (1) |
V (Å3) | 900.38 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.16 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.954, 0.969 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12500, 3282, 2685 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.806 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.112, 1.07 |
No. of reflections | 3282 |
No. of parameters | 165 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.49, −0.22 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-NT (Bruker, 2004), SAINT-NT and XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 2012), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.953 (19) | 2.20 (2) | 2.9509 (11) | 135.2 (16) |
N1—H1A···O3i | 0.953 (19) | 2.21 (2) | 2.9386 (11) | 132.2 (15) |
N1—H1B···O6ii | 0.909 (16) | 2.041 (16) | 2.9188 (10) | 162.0 (14) |
N1—H1C···O7ii | 0.914 (18) | 2.172 (17) | 2.9492 (13) | 142.4 (14) |
O2—H2A···O8iii | 0.93 (2) | 1.64 (2) | 2.5473 (8) | 167 (2) |
O3—H3A···O4iv | 0.870 (18) | 1.849 (18) | 2.7122 (8) | 171.0 (16) |
O4—H4A···O3v | 0.81 (2) | 2.09 (2) | 2.7654 (10) | 141.1 (18) |
O4—H4A···O6 | 0.81 (2) | 2.251 (18) | 2.6743 (9) | 112.9 (16) |
O5—H5···O7 | 0.944 (19) | 1.612 (19) | 2.5459 (9) | 169.2 (18) |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) −x+5/2, y−1/2, −z+1/2; (iii) −x+1, −y, −z+1; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank Sona Engineering College, Salem, for providing the sample to carry out the X-ray study.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2003). SADABS, SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kvick, Å., Canning, W. M., Koetzle, T. F. & Williams, G. J. B. (1980). Acta Cryst. B36, 115–120. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Glycine is the simplest aminoacid that is not optically active. It is essential for biosynthesis of nucleic acids as well as the biosynthesis of bile acids, creatine phosphate and other amino acids. Its geometric features of non covalent interactions at atomic resolution are important in the structural assembly and functions of proteins.
In the title compound(I), glycine is in the zwitterionic form. The tartaric acid molecule is in the un-ionized state. The angle between the planes of the half molecules O1/O2/C1/C2/O3 and O5/O6/C4/C3/O4 is 62.74 (3)°, which is closer to the value of 54.6° found in the structure of tartaric acid.
Atoms C5,C6,O7,N1 are planar with the N1 atom is slightly displaced out of this plane by -0.518 (1)°.
The relevant torsion angles are O7—C5—C6—N1 of -158.33 (3)° and O8—C5—C6—N1 of 23.08 (3)°. These can be compared with the corresponding values in pure Γ glycine 167.1 (1)° and -15.4 (1)°, respectively (Kvick et al., (1980), which is more distorted from planarity.
The molecular structure of (I) is shown in the (Fig.1) and selected geometric parameters listed in Table 1. The bond lengths for C=N, C=O, C—C are within normal ranges (Allen 2002). The dihedral angle between planes of D-tartaric acid and glycine is 51.14 (9)°. The molecules related by the 21 screw along b axis are linked by intermolecular O—H···O hydrogen bond generating a supramolecular chain.
The carbon skeleton of tartaric molecule is non-planar with a C1—C2—C3—C4 torsion angle of 177.8 (1)°. Fig.2 shows the packing diagram in which there are a large number of N—H···O and O—H···O hydrogen bonds.