organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Glycine–D-tartaric acid (1/1)

aDepartment of Physics, Shri Angalamman College of Engineering and Technology, Siruganoor, Tiruchirappalli 621 105, India, bCentre for Photonics and Nanotechnology, Sona College of Technology, Salem, Tamilnadu, India, and cDepartment of Physics, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India
*Correspondence e-mail: sakthi2udc@gmail.com

(Received 31 October 2012; accepted 9 January 2013; online 16 January 2013)

In the title co-crystal, C2H5NO2·C4H6O6, the gylcine mol­ecule is present in the zwitterion form. In the tartaric acid mol­ecule there is a short intra­molecular O—H⋯O contact. In the crystal, the tartaric acid mol­ecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers. These dimers are linked via a number of O—H⋯O and N—H⋯O hydrogen bonds involving the two components, forming a three-dimensional network.

Related literature

For related structures, see: Kvick et al. (1980[Kvick, Å., Canning, W. M., Koetzle, T. F. & Williams, G. J. B. (1980). Acta Cryst. B36, 115-120.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C2H5NO2·C4H6O6

  • Mr = 225.16

  • Monoclinic, P 21 /n

  • a = 4.8387 (2) Å

  • b = 9.2913 (4) Å

  • c = 20.0273 (8) Å

  • β = 90.171 (1)°

  • V = 900.38 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.969

  • 12500 measured reflections

  • 3282 independent reflections

  • 2685 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.112

  • S = 1.07

  • 3282 reflections

  • 165 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.953 (19) 2.20 (2) 2.9509 (11) 135.2 (16)
N1—H1A⋯O3i 0.953 (19) 2.21 (2) 2.9386 (11) 132.2 (15)
N1—H1B⋯O6ii 0.909 (16) 2.041 (16) 2.9188 (10) 162.0 (14)
N1—H1C⋯O7ii 0.914 (18) 2.172 (17) 2.9492 (13) 142.4 (14)
O2—H2A⋯O8iii 0.93 (2) 1.64 (2) 2.5473 (8) 167 (2)
O3—H3A⋯O4iv 0.870 (18) 1.849 (18) 2.7122 (8) 171.0 (16)
O4—H4A⋯O3v 0.81 (2) 2.09 (2) 2.7654 (10) 141.1 (18)
O4—H4A⋯O6 0.81 (2) 2.251 (18) 2.6743 (9) 112.9 (16)
O5—H5⋯O7 0.944 (19) 1.612 (19) 2.5459 (9) 169.2 (18)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) x+1, y, z; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-NT (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT and XPREP (Bruker, 2003[Bruker (2003). SADABS, SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Glycine is the simplest aminoacid that is not optically active. It is essential for biosynthesis of nucleic acids as well as the biosynthesis of bile acids, creatine phosphate and other amino acids. Its geometric features of non covalent interactions at atomic resolution are important in the structural assembly and functions of proteins.

In the title compound(I), glycine is in the zwitterionic form. The tartaric acid molecule is in the un-ionized state. The angle between the planes of the half molecules O1/O2/C1/C2/O3 and O5/O6/C4/C3/O4 is 62.74 (3)°, which is closer to the value of 54.6° found in the structure of tartaric acid.

Atoms C5,C6,O7,N1 are planar with the N1 atom is slightly displaced out of this plane by -0.518 (1)°.

The relevant torsion angles are O7—C5—C6—N1 of -158.33 (3)° and O8—C5—C6—N1 of 23.08 (3)°. These can be compared with the corresponding values in pure Γ glycine 167.1 (1)° and -15.4 (1)°, respectively (Kvick et al., (1980), which is more distorted from planarity.

The molecular structure of (I) is shown in the (Fig.1) and selected geometric parameters listed in Table 1. The bond lengths for C=N, C=O, C—C are within normal ranges (Allen 2002). The dihedral angle between planes of D-tartaric acid and glycine is 51.14 (9)°. The molecules related by the 21 screw along b axis are linked by intermolecular O—H···O hydrogen bond generating a supramolecular chain.

The carbon skeleton of tartaric molecule is non-planar with a C1—C2—C3—C4 torsion angle of 177.8 (1)°. Fig.2 shows the packing diagram in which there are a large number of N—H···O and O—H···O hydrogen bonds.

Related literature top

For related structures, see: Kvick et al. (1980). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Colourless single crystals were grown as transparent needles by slow evaporation method from a saturated aqueous solution containing glycine and D-tartaric acid in a 1:1 stoichiometric ratio.

Refinement top

All the hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms with C—H = 0.97and 0.98 Å, and Uiso = 1.2eq(C). Hydrogen atoms attached to O and N were refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-NT (Bruker, 2004); data reduction: SAINT-NT and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and labelling scheme for (I) with displacement ellipsoid of non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I) is shown. Dashed line indicates intra and inter molecular N—H..O and O—H..O hydrogen bonding interactions
Glycine–D-tartaric acid (1/1) top
Crystal data top
C2H5NO2·C4H6O6F(000) = 472
Mr = 225.16Dx = 1.661 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1585 reflections
a = 4.8387 (2) Åθ = 2.0–25.0°
b = 9.2913 (4) ŵ = 0.16 mm1
c = 20.0273 (8) ÅT = 293 K
β = 90.171 (1)°Prism, colorless
V = 900.38 (6) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
2685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 35.0°, θmin = 2.0°
ω and ϕ scanh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
k = 1412
Tmin = 0.954, Tmax = 0.969l = 2729
12500 measured reflections2 standard reflections every 100 reflections
3282 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.1264P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3282 reflectionsΔρmax = 0.49 e Å3
165 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.074 (5)
Crystal data top
C2H5NO2·C4H6O6V = 900.38 (6) Å3
Mr = 225.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8387 (2) ŵ = 0.16 mm1
b = 9.2913 (4) ÅT = 293 K
c = 20.0273 (8) Å0.30 × 0.20 × 0.20 mm
β = 90.171 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
2685 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
Rint = 0.033
Tmin = 0.954, Tmax = 0.9692 standard reflections every 100 reflections
12500 measured reflections intensity decay: none
3282 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.49 e Å3
3282 reflectionsΔρmin = 0.22 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44851 (16)0.24734 (9)0.61943 (4)0.02360 (17)
C20.64567 (15)0.25044 (9)0.56018 (4)0.02271 (17)
H20.76880.16680.56240.027*
C30.47689 (16)0.24434 (9)0.49514 (4)0.02364 (17)
H30.37880.15210.49360.028*
C40.66706 (17)0.25298 (9)0.43493 (4)0.02490 (18)
C51.19172 (16)0.03299 (10)0.29340 (4)0.02399 (18)
C61.42473 (16)0.05011 (10)0.24364 (4)0.02740 (19)
H6A1.42960.14870.22780.033*
H6B1.59960.02970.26550.033*
N11.38776 (19)0.04805 (10)0.18645 (4)0.03233 (19)
O10.44118 (15)0.33804 (9)0.66214 (4)0.03694 (19)
O20.29078 (17)0.13348 (8)0.61631 (4)0.0395 (2)
O30.80456 (13)0.37788 (7)0.56436 (3)0.02782 (16)
O40.28015 (13)0.35571 (8)0.49377 (4)0.03210 (17)
O50.83917 (16)0.14540 (8)0.43321 (4)0.03596 (18)
O60.65303 (16)0.35172 (9)0.39549 (4)0.03701 (19)
O71.15307 (17)0.13761 (9)0.33148 (4)0.0417 (2)
O81.06398 (15)0.08344 (8)0.29288 (4)0.03465 (18)
H1A1.257 (4)0.008 (2)0.1562 (10)0.074 (5)*
H1B1.548 (3)0.0609 (17)0.1637 (8)0.054 (4)*
H1C1.320 (3)0.1370 (19)0.1966 (8)0.054 (4)*
H2A0.179 (4)0.122 (2)0.6533 (10)0.084 (6)*
H3A0.962 (4)0.3630 (18)0.5444 (8)0.060 (5)*
H4A0.323 (4)0.419 (2)0.4681 (9)0.070 (5)*
H50.938 (4)0.148 (2)0.3926 (10)0.072 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0228 (3)0.0263 (4)0.0218 (4)0.0020 (3)0.0057 (3)0.0023 (3)
C20.0223 (3)0.0226 (4)0.0233 (4)0.0009 (3)0.0083 (3)0.0002 (3)
C30.0237 (3)0.0245 (4)0.0228 (4)0.0023 (3)0.0076 (3)0.0001 (3)
C40.0267 (3)0.0266 (4)0.0214 (4)0.0040 (3)0.0066 (3)0.0039 (3)
C50.0221 (3)0.0284 (4)0.0215 (4)0.0024 (3)0.0093 (3)0.0027 (3)
C60.0225 (3)0.0333 (4)0.0265 (4)0.0000 (3)0.0109 (3)0.0026 (3)
N10.0387 (4)0.0315 (4)0.0269 (4)0.0084 (3)0.0162 (3)0.0021 (3)
O10.0369 (3)0.0426 (4)0.0314 (4)0.0110 (3)0.0154 (3)0.0113 (3)
O20.0484 (4)0.0366 (4)0.0335 (4)0.0202 (3)0.0196 (3)0.0046 (3)
O30.0226 (3)0.0297 (3)0.0313 (3)0.0064 (2)0.0107 (2)0.0030 (2)
O40.0259 (3)0.0358 (4)0.0347 (4)0.0050 (2)0.0120 (3)0.0079 (3)
O50.0447 (4)0.0324 (4)0.0309 (4)0.0075 (3)0.0155 (3)0.0028 (3)
O60.0398 (4)0.0399 (4)0.0314 (4)0.0031 (3)0.0145 (3)0.0089 (3)
O70.0490 (4)0.0382 (4)0.0380 (4)0.0039 (3)0.0231 (3)0.0107 (3)
O80.0368 (3)0.0314 (4)0.0358 (4)0.0059 (3)0.0189 (3)0.0019 (3)
Geometric parameters (Å, º) top
C1—O11.2014 (11)C5—O71.2499 (11)
C1—O21.3058 (10)C5—C61.5153 (10)
C1—C21.5250 (10)C6—N11.4746 (13)
C2—O31.4141 (10)C6—H6A0.9700
C2—C31.5364 (13)C6—H6B0.9700
C2—H20.9800N1—H1A0.953 (19)
C3—O41.4063 (11)N1—H1B0.909 (16)
C3—C41.5212 (10)N1—H1C0.914 (18)
C3—H30.9800O2—H2A0.93 (2)
C4—O61.2124 (11)O3—H3A0.870 (18)
C4—O51.3015 (11)O4—H4A0.81 (2)
C5—O81.2460 (11)O5—H50.944 (19)
O1—C1—O2125.71 (7)O8—C5—C6117.12 (7)
O1—C1—C2124.10 (7)O7—C5—C6115.63 (8)
O2—C1—C2110.19 (7)N1—C6—C5110.92 (7)
O3—C2—C1108.12 (7)N1—C6—H6A109.5
O3—C2—C3111.63 (7)C5—C6—H6A109.5
C1—C2—C3109.07 (6)N1—C6—H6B109.5
O3—C2—H2109.3C5—C6—H6B109.5
C1—C2—H2109.3H6A—C6—H6B108.0
C3—C2—H2109.3C6—N1—H1A109.2 (12)
O4—C3—C4110.90 (7)C6—N1—H1B111.6 (10)
O4—C3—C2110.33 (7)H1A—N1—H1B107.6 (15)
C4—C3—C2110.42 (6)C6—N1—H1C115.4 (10)
O4—C3—H3108.4H1A—N1—H1C105.0 (16)
C4—C3—H3108.4H1B—N1—H1C107.6 (14)
C2—C3—H3108.4C1—O2—H2A113.3 (13)
O6—C4—O5126.76 (7)C2—O3—H3A108.3 (11)
O6—C4—C3121.57 (8)C3—O4—H4A111.9 (14)
O5—C4—C3111.66 (7)C4—O5—H5109.4 (11)
O8—C5—O7127.24 (7)
O1—C1—C2—O31.72 (12)C1—C2—C3—C4177.86 (7)
O2—C1—C2—O3177.86 (8)O4—C3—C4—O64.99 (12)
O1—C1—C2—C3123.29 (10)C2—C3—C4—O6117.63 (9)
O2—C1—C2—C356.29 (9)O4—C3—C4—O5175.95 (8)
O3—C2—C3—O464.51 (8)C2—C3—C4—O561.43 (9)
C1—C2—C3—O454.91 (8)O8—C5—C6—N123.03 (11)
O3—C2—C3—C458.45 (8)O7—C5—C6—N1158.29 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.953 (19)2.20 (2)2.9509 (11)135.2 (16)
N1—H1A···O3i0.953 (19)2.21 (2)2.9386 (11)132.2 (15)
N1—H1B···O6ii0.909 (16)2.041 (16)2.9188 (10)162.0 (14)
N1—H1C···O7ii0.914 (18)2.172 (17)2.9492 (13)142.4 (14)
O2—H2A···O8iii0.93 (2)1.64 (2)2.5473 (8)167 (2)
O3—H3A···O4iv0.870 (18)1.849 (18)2.7122 (8)171.0 (16)
O4—H4A···O3v0.81 (2)2.09 (2)2.7654 (10)141.1 (18)
O4—H4A···O60.81 (2)2.251 (18)2.6743 (9)112.9 (16)
O5—H5···O70.944 (19)1.612 (19)2.5459 (9)169.2 (18)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+5/2, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC2H5NO2·C4H6O6
Mr225.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.8387 (2), 9.2913 (4), 20.0273 (8)
β (°) 90.171 (1)
V3)900.38 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.954, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
12500, 3282, 2685
Rint0.033
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.112, 1.07
No. of reflections3282
No. of parameters165
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.22

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-NT (Bruker, 2004), SAINT-NT and XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.953 (19)2.20 (2)2.9509 (11)135.2 (16)
N1—H1A···O3i0.953 (19)2.21 (2)2.9386 (11)132.2 (15)
N1—H1B···O6ii0.909 (16)2.041 (16)2.9188 (10)162.0 (14)
N1—H1C···O7ii0.914 (18)2.172 (17)2.9492 (13)142.4 (14)
O2—H2A···O8iii0.93 (2)1.64 (2)2.5473 (8)167 (2)
O3—H3A···O4iv0.870 (18)1.849 (18)2.7122 (8)171.0 (16)
O4—H4A···O3v0.81 (2)2.09 (2)2.7654 (10)141.1 (18)
O4—H4A···O60.81 (2)2.251 (18)2.6743 (9)112.9 (16)
O5—H5···O70.944 (19)1.612 (19)2.5459 (9)169.2 (18)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+5/2, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Sona Engineering College, Salem, for providing the sample to carry out the X-ray study.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2003). SADABS, SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKvick, Å., Canning, W. M., Koetzle, T. F. & Williams, G. J. B. (1980). Acta Cryst. B36, 115–120.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds