organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o232-o233

Olanzapinium dipicrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 2 December 2012; accepted 7 January 2013; online 12 January 2013)

The asymmetric unit of the title salt [systematic name: 2-methyl-4-(4-methyl­piperazin-4-ium-1-yl)-10H-thieno[2,3-b][1,5]benzodiazepinium bis­(2,4,6-trinitro­phenolate)], C17H22N4S2+·2C6H2N3O7, consists of a diprotonated olanzapinium cation and two independent picrate anions. In the cation, the piperazine ring adopts a distorted chair conformation and contains a positively charged N atom with quaternary character and the N atom in the seven-membered 1,5-diazepine ring, which adopts a boat configuration, is also protonated. The dihedral angle between the benzene and thiene rings flanking the diazepine ring is 58.8 (1)°. In one of the picrate anions, a nitro group is disordered over two sets of sites in a 0.748 (5):0.252 (5) ratio, and the benzene ring has a flat envelope conformation with the O C atom displaced from the mean plane of the other five C atoms [maximum deviation 0.0151 (14) Å] by 0.1449 (14) Å. In the crystal, N—H⋯O hydrogen bonds and weak inter­molecular C—H⋯S and C—H⋯O inter­actions link the components, forming a three-dimensional network.

Related literature

For the use of olanzapine in the management of bipolar disorder, see: Narasimhan et al. (2007[Narasimhan, M., Bruce, T. O. & Masand, P. (2007). Neuropsychiatr. Dis. Treat. 3, 579-587.]) and for toxicity and fatality associated with its overdose, see: Chue & Singer (2003[Chue, P. & Singer, P. (2003). J. Psychiatr. Neurosci. 28, 253-261.]). For related structures, see: Capuano et al. (2003[Capuano, B., Crosby, I. T., Fallon, G. D., Lloyd, E. J., Yuriev, E. & Egan, S. J. (2003). Acta Cryst. E59, o1367-o1369.]); Wawrzycka-Gorczyca et al. (2004a[Wawrzycka-Gorczyca, I., Koziol, A. E., Glice, M. & Cybulski, J. (2004a). Acta Cryst. E60, o66-o68.],b[Wawrzycka-Gorczyca, I., Mazur, L. & Koziol, A. E. (2004b). Acta Cryst. E60, o69-o71.], 2006[Wawrzycka-Gorczyca, I., Borowski, P., Osypiuk-Tomasik, J., Mazur, L. & Koziol, A. E. (2006). J. Mol. Struct. 830, 188-197.]); Ravikumar et al. (2005[Ravikumar, K., Swamy, G. Y. S. K., Sridhar, B. & Roopa, S. (2005). Acta Cryst. E61, o2720-o2723.]); Thakuria & Nangia (2011a[Thakuria, R. & Nangia, A. (2011a). CrystEngComm, 13, 1759-1764.],b[Thakuria, R. & Nangia, A. (2011b). Acta Cryst. C67, o461-o463.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H22N4S2+·2C6H2N3O7

  • Mr = 770.66

  • Orthorhombic, P b c a

  • a = 22.1660 (4) Å

  • b = 12.7349 (2) Å

  • c = 23.3951 (4) Å

  • V = 6604.04 (19) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.65 mm−1

  • T = 173 K

  • 0.28 × 0.22 × 0.12 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.702, Tmax = 1.000

  • 44193 measured reflections

  • 6524 independent reflections

  • 5508 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.03

  • 6524 reflections

  • 506 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1A 0.872 (17) 1.848 (17) 2.7086 (17) 168.5 (16)
N4—H4⋯O1B 0.926 (19) 1.859 (19) 2.6612 (17) 143.6 (17)
N4—H4⋯O7B 0.926 (19) 2.449 (19) 3.1714 (19) 135.0 (15)
N1—H1⋯O5Bi 0.852 (19) 2.40 (2) 3.1395 (18) 145.9 (17)
C5B—H5B⋯S1ii 0.93 2.87 3.6225 (15) 139
C8—H8⋯O3Aiii 0.93 2.48 3.349 (2) 156
C12—H12A⋯O5Aiv 0.97 2.23 3.0970 (19) 149
C17—H17B⋯O6Aiv 0.96 2.43 3.207 (2) 138
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Olanzapine is an atypical antipsychotic currently with indications for the treatment of schizophrenia, acute mania and the prevention of relapse in bipolar disorder. Olanzapine is structurally similar to clozapine, but is classified as a thienobenzodiazepine. Reviews on olanzapine in the management of bipolar disorders (Narasimhan et al., 2007) and olanzapine associated toxicity and fatality in overdose (Chue & Singer, 2003) have been published. The crystal structures of 2-methyl-4-(4-methylpiperazin-1-yl)-10H-thieno[2,3-b][1,5] benzodiazepine methanol solvate monohydrate (Capuano et al., 2003), polymorphic form II of 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b] [1,5]benzodiazepine, (Wawrzycka-Gorczyca et al., 2004a), 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5] benzodiazepine methanol solvate (Wawrzycka-Gorczyca et al., 2004b), olazipinium nicotinate (Ravikumar et al., 2005), olanzapine and its solvates (Wawrzycka-Gorczyca et al., 2006), highly soluble olanzapinium maleate crystalline salts (Thakuria & Nangia, 2011a) and polymorphic form IV of olanzapine (Thakuria & Nangia, 2011b) have been reported. In view of the importance of olanzapine, this paper reports the crystal structure of the title salt, (I), C17H22N4S+2. 2 C6H2N3O7-.

The asymmetric unit in (I) consists of a diprotonated olanzapinium cation where one N atom in the piperazine ring and another N atom in the seven-membered 1,5-diazepine ring in a boat configuration are protonated and two independent picrate anions (A & B)(Fig. 1). The six-membered piperazine ring, N3/C12/C13/N4/C14/C15, adopts a distorted chair conformation with puckering parameters Q = 0.5641 (15)Å, θ = 177.35 (16)°, ϕ = 69 (3)° (Cremer & Pople (1975) and contains one positively charged N atom with quaternary character. The dihedral angle between the benzene and thiene rings flanking the diazepine ring is 58.7 (9)°. In picrate anion A, the benzene ring adopts a distorted screw-boat configuration with puckering parameters Q = 0.1022 (16)Å, θ = 66.9 (9)°, ϕ = 354.8 (10)°. Nitro atom O2AA is disordered [occupancy 0.748 (5):0.252 (5)]. The mean plane of the N3A-O6A-O7A group is twisted by 26.2 (3)° with that of the benzene ring. In picrate anion B the mean planes of the N1B-O2B-O3B and N3B-O6B-O7B nitro groups are twisted by 41.3 (1)° and 20.2 (4)° with that of the benzene ring. Bond lengths are in normal ranges (Allen et al., (1987). In the crystal, N—H···O intramolecular hydrogen bonds and weak N—H···O, C—H···S, C—H···O intermolecular interactions (Table 1) and ππ stacking interactions (Centroid Cg4—Centroid Cg5; 3.7378 (8)Å; Cg4 = C1A–C6A and Cg5 = C1B–C6B] are observed forming infinite 1-D chains along [010] (Fig. 2).

Related literature top

For the use of olanzapine in the management of bipolar disorder, see: Narasimhan et al. (2007) and for toxicity and fatality associated with its overdose, see: Chue & Singer (2003). For related structures, see: Capuano et al. (2003); Wawrzycka-Gorczyca et al. (2004a,b, 2006); Ravikumar et al. (2005); Thakuria & Nangia (2011a,b). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Olanzapine (3.128 g, 0.01 mol) and picric acid (2.29 g, 0.01 mol) were dissolved in 10 ml of toluene and stirred over a heating magnetic stirrer for few minutes (330 K). The mixture was kept aside for two days at room temperature. The salt formed was filtered & dried. The compound was recrystallized from (1:1) toluene & DMF by slow evaporation (m.p: 323–325 K).

Refinement top

H1, H2 and H4 were located by a difference map and refined isotropically. All the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.97Å (CH2) or 0.96å (CH3). Isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH, CH2) or 1.50 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme of the olanzapinium and picrate moieties in the asymmetric unit and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate weak N—H···O intramolecular hydrogen bonds and weak N—H···O, C—H···S, C—H···O intermolecular interactions forming infinite 1-D chains along [010]. The remaining H atoms have been removed for clarity.
2-Methyl-4-(4-methylpiperazin-4-ium-1-yl)-10H- thieno[2,3-b][1,5]benzodiazepinium bis(2,4,6-trinitrophenolate) top
Crystal data top
C17H22N4S2+·2C6H2N3O7F(000) = 3184
Mr = 770.66Dx = 1.550 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 14060 reflections
a = 22.1660 (4) Åθ = 3.5–72.4°
b = 12.7349 (2) ŵ = 1.65 mm1
c = 23.3951 (4) ÅT = 173 K
V = 6604.04 (19) Å3Chunk, orange
Z = 80.28 × 0.22 × 0.12 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
6524 independent reflections
Radiation source: Enhance (Cu) X-ray Source5508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.0416 pixels mm-1θmax = 72.5°, θmin = 3.8°
ω scansh = 2718
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1515
Tmin = 0.702, Tmax = 1.000l = 2828
44193 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0538P)2 + 2.5536P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6524 reflectionsΔρmax = 0.29 e Å3
506 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00018 (3)
Crystal data top
C17H22N4S2+·2C6H2N3O7V = 6604.04 (19) Å3
Mr = 770.66Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 22.1660 (4) ŵ = 1.65 mm1
b = 12.7349 (2) ÅT = 173 K
c = 23.3951 (4) Å0.28 × 0.22 × 0.12 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
6524 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
5508 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 1.000Rint = 0.041
44193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.29 e Å3
6524 reflectionsΔρmin = 0.25 e Å3
506 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.579266 (18)0.92049 (4)0.563737 (17)0.04414 (11)
N10.53681 (6)0.91960 (11)0.67285 (5)0.0387 (3)
H10.5726 (9)0.9405 (16)0.6797 (8)0.051 (5)*
N20.41626 (6)0.85066 (10)0.67800 (5)0.0348 (3)
H20.3945 (7)0.8196 (13)0.7041 (7)0.031 (4)*
N30.40406 (5)0.70712 (10)0.61938 (5)0.0331 (3)
N40.38127 (6)0.48631 (11)0.63699 (5)0.0367 (3)
H40.3563 (8)0.4761 (15)0.6057 (8)0.051 (5)*
C10.53417 (8)0.86715 (13)0.51046 (6)0.0405 (4)
C20.48250 (7)0.82924 (12)0.53276 (6)0.0360 (3)
H2A0.45220.79920.51060.043*
C30.47835 (6)0.83939 (12)0.59394 (6)0.0327 (3)
C40.52808 (7)0.88977 (12)0.61615 (6)0.0347 (3)
C50.49176 (7)0.98865 (13)0.69407 (6)0.0375 (3)
C60.50589 (9)1.08776 (14)0.71524 (7)0.0472 (4)
H60.54561.11140.71480.057*
C70.46052 (11)1.15108 (15)0.73700 (8)0.0585 (5)
H70.47011.21610.75260.070*
C80.40162 (11)1.11827 (15)0.73559 (9)0.0603 (5)
H80.37141.16180.74960.072*
C90.38688 (9)1.02055 (14)0.71346 (7)0.0487 (4)
H90.34680.99880.71230.058*
C100.43210 (7)0.95562 (12)0.69310 (6)0.0372 (3)
C110.43149 (6)0.79801 (12)0.63109 (6)0.0310 (3)
C120.34715 (6)0.67087 (13)0.64582 (6)0.0368 (3)
H12A0.31650.66360.61640.044*
H12B0.33330.72310.67300.044*
C130.35504 (7)0.56706 (14)0.67612 (6)0.0410 (4)
H13A0.38140.57640.70880.049*
H13B0.31620.54290.69000.049*
C140.43908 (6)0.52558 (13)0.61187 (6)0.0346 (3)
H14A0.45510.47360.58560.042*
H14B0.46840.53600.64210.042*
C150.42908 (6)0.62748 (12)0.58063 (6)0.0320 (3)
H15A0.46710.65230.56510.038*
H15B0.40150.61620.54910.038*
C160.39062 (9)0.38329 (15)0.66601 (8)0.0541 (5)
H16A0.40680.33370.63920.081*
H16B0.35280.35790.68040.081*
H16C0.41840.39200.69720.081*
C170.55665 (9)0.86961 (16)0.45003 (7)0.0536 (5)
H17A0.57060.93900.44100.080*
H17B0.52450.85080.42450.080*
H17C0.58920.82060.44580.080*
O1A0.35350 (6)0.77573 (10)0.76857 (5)0.0494 (3)
O2AA0.24618 (11)0.8297 (2)0.72987 (8)0.0643 (7)0.748 (5)
O2AB0.2333 (4)0.7808 (8)0.7354 (3)0.0643 (7)0.252 (5)
O3A0.17093 (6)0.82511 (12)0.79120 (5)0.0590 (4)
O4A0.20275 (6)0.83164 (10)0.98965 (5)0.0481 (3)
O5A0.29258 (7)0.83455 (13)1.02399 (5)0.0632 (4)
O6A0.46450 (6)0.80267 (14)0.90134 (6)0.0729 (4)
O7A0.45449 (6)0.86082 (14)0.81632 (6)0.0703 (4)
N1A0.22493 (7)0.81934 (12)0.77957 (6)0.0451 (3)
N2A0.25736 (7)0.83171 (10)0.98370 (5)0.0385 (3)
N3A0.43342 (7)0.82737 (12)0.86039 (6)0.0463 (3)
C1A0.33162 (7)0.80385 (11)0.81504 (6)0.0349 (3)
C2A0.26786 (7)0.81740 (11)0.82648 (6)0.0335 (3)
C3A0.24387 (7)0.82569 (11)0.88050 (6)0.0322 (3)
H3A0.20230.83000.88570.039*
C4A0.28246 (7)0.82754 (11)0.92697 (6)0.0326 (3)
C5A0.34468 (7)0.82687 (11)0.91966 (6)0.0355 (3)
H5A0.37020.83110.95120.043*
C6A0.36793 (7)0.82002 (12)0.86602 (6)0.0359 (3)
O1B0.35005 (5)0.40692 (10)0.53601 (5)0.0439 (3)
O2B0.43648 (6)0.46565 (12)0.45828 (6)0.0636 (4)
O3B0.42526 (6)0.35698 (12)0.38873 (6)0.0590 (4)
O4B0.23268 (6)0.43743 (10)0.29528 (5)0.0495 (3)
O5B0.15172 (5)0.44113 (10)0.34730 (5)0.0509 (3)
O6B0.16618 (6)0.40258 (13)0.54990 (6)0.0642 (4)
O7B0.24767 (6)0.45166 (13)0.59228 (5)0.0607 (4)
N1B0.40510 (6)0.41103 (11)0.42742 (6)0.0404 (3)
N2B0.20709 (6)0.43498 (10)0.34187 (6)0.0389 (3)
N3B0.21983 (6)0.42506 (11)0.54935 (6)0.0423 (3)
C1B0.31671 (7)0.41479 (11)0.49376 (6)0.0327 (3)
C2B0.33981 (7)0.41348 (11)0.43547 (6)0.0328 (3)
C3B0.30566 (7)0.41716 (10)0.38727 (6)0.0323 (3)
H3B0.32360.41440.35140.039*
C4B0.24333 (7)0.42513 (11)0.39268 (6)0.0323 (3)
C5B0.21633 (7)0.42567 (11)0.44617 (7)0.0331 (3)
H5B0.17450.42870.44930.040*
C6B0.25131 (7)0.42169 (11)0.49451 (6)0.0328 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0416 (2)0.0577 (2)0.03319 (19)0.01666 (18)0.00612 (15)0.00591 (17)
N10.0354 (7)0.0518 (8)0.0288 (6)0.0032 (6)0.0028 (5)0.0044 (6)
N20.0365 (6)0.0401 (7)0.0279 (6)0.0006 (5)0.0053 (5)0.0001 (5)
N30.0261 (6)0.0449 (7)0.0284 (6)0.0014 (5)0.0050 (5)0.0049 (5)
N40.0336 (6)0.0504 (7)0.0261 (6)0.0097 (6)0.0026 (5)0.0029 (5)
C10.0472 (9)0.0447 (8)0.0296 (7)0.0103 (7)0.0022 (6)0.0017 (6)
C20.0404 (8)0.0406 (8)0.0269 (7)0.0048 (6)0.0004 (6)0.0003 (6)
C30.0322 (7)0.0381 (7)0.0278 (7)0.0014 (6)0.0003 (6)0.0004 (6)
C40.0352 (7)0.0415 (8)0.0275 (7)0.0009 (6)0.0013 (6)0.0007 (6)
C50.0479 (9)0.0413 (8)0.0232 (7)0.0005 (7)0.0022 (6)0.0017 (6)
C60.0662 (11)0.0441 (9)0.0312 (8)0.0058 (8)0.0053 (8)0.0003 (7)
C70.0919 (15)0.0391 (9)0.0446 (10)0.0011 (9)0.0001 (10)0.0036 (8)
C80.0820 (14)0.0447 (10)0.0541 (11)0.0180 (10)0.0118 (10)0.0040 (8)
C90.0531 (10)0.0491 (10)0.0438 (9)0.0109 (8)0.0071 (8)0.0005 (8)
C100.0465 (8)0.0386 (8)0.0264 (7)0.0045 (7)0.0019 (6)0.0002 (6)
C110.0271 (6)0.0403 (8)0.0256 (6)0.0047 (6)0.0017 (5)0.0009 (6)
C120.0237 (6)0.0583 (9)0.0284 (7)0.0046 (6)0.0028 (5)0.0101 (7)
C130.0333 (7)0.0660 (10)0.0238 (7)0.0108 (7)0.0051 (6)0.0042 (7)
C140.0276 (7)0.0458 (8)0.0304 (7)0.0043 (6)0.0031 (6)0.0002 (6)
C150.0272 (6)0.0424 (8)0.0264 (7)0.0025 (6)0.0054 (5)0.0033 (6)
C160.0580 (11)0.0583 (11)0.0458 (10)0.0085 (9)0.0077 (8)0.0159 (8)
C170.0638 (11)0.0657 (11)0.0314 (8)0.0231 (9)0.0097 (8)0.0027 (8)
O1A0.0613 (7)0.0564 (7)0.0306 (6)0.0125 (6)0.0103 (5)0.0060 (5)
O2AA0.0631 (12)0.106 (2)0.0235 (7)0.0052 (13)0.0053 (7)0.0046 (10)
O2AB0.0631 (12)0.106 (2)0.0235 (7)0.0052 (13)0.0053 (7)0.0046 (10)
O3A0.0481 (7)0.0840 (10)0.0447 (7)0.0176 (7)0.0127 (6)0.0023 (6)
O4A0.0556 (7)0.0495 (7)0.0391 (6)0.0013 (5)0.0091 (5)0.0018 (5)
O5A0.0711 (9)0.0933 (11)0.0253 (6)0.0010 (8)0.0083 (6)0.0001 (6)
O6A0.0511 (8)0.1067 (12)0.0609 (9)0.0217 (8)0.0123 (7)0.0111 (8)
O7A0.0458 (7)0.1042 (12)0.0608 (9)0.0024 (8)0.0038 (6)0.0181 (8)
N1A0.0582 (9)0.0472 (8)0.0299 (7)0.0005 (7)0.0116 (6)0.0024 (6)
N2A0.0566 (8)0.0317 (6)0.0271 (6)0.0002 (6)0.0013 (6)0.0008 (5)
N3A0.0446 (8)0.0480 (8)0.0464 (8)0.0113 (6)0.0022 (6)0.0015 (6)
C1A0.0499 (9)0.0279 (7)0.0270 (7)0.0042 (6)0.0019 (6)0.0008 (5)
C2A0.0473 (8)0.0275 (7)0.0259 (7)0.0025 (6)0.0068 (6)0.0017 (5)
C3A0.0431 (8)0.0228 (6)0.0308 (7)0.0015 (6)0.0028 (6)0.0010 (5)
C4A0.0494 (8)0.0231 (6)0.0251 (7)0.0008 (6)0.0019 (6)0.0009 (5)
C5A0.0483 (8)0.0288 (7)0.0294 (7)0.0067 (6)0.0087 (6)0.0000 (6)
C6A0.0422 (8)0.0304 (7)0.0349 (8)0.0043 (6)0.0022 (6)0.0010 (6)
O1B0.0393 (6)0.0569 (7)0.0357 (6)0.0006 (5)0.0067 (5)0.0067 (5)
O2B0.0372 (6)0.0820 (9)0.0716 (9)0.0158 (6)0.0051 (6)0.0263 (8)
O3B0.0432 (6)0.0829 (10)0.0509 (7)0.0141 (6)0.0049 (6)0.0162 (7)
O4B0.0610 (7)0.0525 (7)0.0350 (6)0.0002 (6)0.0071 (5)0.0003 (5)
O5B0.0428 (6)0.0530 (7)0.0569 (7)0.0108 (5)0.0142 (5)0.0093 (6)
O6B0.0421 (7)0.0905 (10)0.0601 (8)0.0069 (7)0.0161 (6)0.0031 (7)
O7B0.0554 (7)0.0927 (10)0.0340 (6)0.0016 (7)0.0070 (6)0.0038 (7)
N1B0.0343 (6)0.0458 (7)0.0409 (7)0.0008 (6)0.0028 (6)0.0014 (6)
N2B0.0466 (7)0.0274 (6)0.0426 (7)0.0033 (5)0.0101 (6)0.0039 (5)
N3B0.0397 (7)0.0468 (8)0.0405 (7)0.0033 (6)0.0083 (6)0.0042 (6)
C1B0.0346 (7)0.0293 (7)0.0343 (7)0.0022 (6)0.0002 (6)0.0027 (6)
C2B0.0308 (7)0.0295 (7)0.0382 (8)0.0015 (6)0.0020 (6)0.0019 (6)
C3B0.0400 (8)0.0246 (6)0.0323 (7)0.0007 (6)0.0026 (6)0.0013 (5)
C4B0.0389 (7)0.0225 (6)0.0356 (7)0.0001 (5)0.0051 (6)0.0007 (5)
C5B0.0309 (7)0.0246 (7)0.0439 (8)0.0007 (5)0.0004 (6)0.0008 (6)
C6B0.0348 (7)0.0292 (7)0.0343 (7)0.0003 (6)0.0037 (6)0.0004 (6)
Geometric parameters (Å, º) top
S1—C41.7157 (15)C16—H16B0.9600
S1—C11.7362 (16)C16—H16C0.9600
N1—C41.3935 (19)C17—H17A0.9600
N1—C51.420 (2)C17—H17B0.9600
N1—H10.852 (19)C17—H17C0.9600
N2—C111.3295 (19)O1A—C1A1.2432 (18)
N2—C101.426 (2)O2AA—N1A1.261 (2)
N2—H20.872 (17)O2AB—N1A1.158 (7)
N3—C111.336 (2)O3A—N1A1.230 (2)
N3—C151.4690 (18)O4A—N2A1.2184 (18)
N3—C121.4788 (18)O5A—N2A1.2244 (18)
N4—C161.492 (2)O6A—N3A1.2212 (19)
N4—C131.494 (2)O7A—N3A1.209 (2)
N4—C141.4958 (18)N1A—C2A1.4528 (19)
N4—H40.926 (19)N2A—C4A1.4401 (19)
C1—C21.348 (2)N3A—C6A1.461 (2)
C1—C171.499 (2)C1A—C2A1.449 (2)
C2—C31.440 (2)C1A—C6A1.453 (2)
C2—H2A0.9300C2A—C3A1.375 (2)
C3—C41.377 (2)C3A—C4A1.384 (2)
C3—C111.453 (2)C3A—H3A0.9300
C5—C101.388 (2)C4A—C5A1.390 (2)
C5—C61.391 (2)C5A—C6A1.359 (2)
C6—C71.386 (3)C5A—H5A0.9300
C6—H60.9300O1B—C1B1.2383 (18)
C7—C81.371 (3)O2B—N1B1.2201 (19)
C7—H70.9300O3B—N1B1.2219 (18)
C8—C91.387 (3)O4B—N2B1.2291 (18)
C8—H80.9300O5B—N2B1.2363 (18)
C9—C101.384 (2)O6B—N3B1.2233 (19)
C9—H90.9300O7B—N3B1.2264 (18)
C12—C131.510 (2)N1B—C2B1.4599 (19)
C12—H12A0.9700N2B—C4B1.4401 (19)
C12—H12B0.9700N3B—C6B1.4613 (19)
C13—H13A0.9700C1B—C6B1.452 (2)
C13—H13B0.9700C1B—C2B1.457 (2)
C14—C151.506 (2)C2B—C3B1.359 (2)
C14—H14A0.9700C3B—C4B1.391 (2)
C14—H14B0.9700C3B—H3B0.9300
C15—H15A0.9700C4B—C5B1.387 (2)
C15—H15B0.9700C5B—C6B1.372 (2)
C16—H16A0.9600C5B—H5B0.9300
C4—S1—C192.47 (7)C14—C15—H15B109.5
C4—N1—C5113.83 (13)H15A—C15—H15B108.1
C4—N1—H1113.2 (13)N4—C16—H16A109.5
C5—N1—H1113.3 (14)N4—C16—H16B109.5
C11—N2—C10127.92 (13)H16A—C16—H16B109.5
C11—N2—H2119.2 (11)N4—C16—H16C109.5
C10—N2—H2112.8 (11)H16A—C16—H16C109.5
C11—N3—C15123.57 (12)H16B—C16—H16C109.5
C11—N3—C12124.95 (12)C1—C17—H17A109.5
C15—N3—C12111.39 (12)C1—C17—H17B109.5
C16—N4—C13112.37 (13)H17A—C17—H17B109.5
C16—N4—C14110.72 (13)C1—C17—H17C109.5
C13—N4—C14110.11 (12)H17A—C17—H17C109.5
C16—N4—H4108.6 (12)H17B—C17—H17C109.5
C13—N4—H4110.4 (12)O2AB—N1A—O3A112.2 (4)
C14—N4—H4104.4 (12)O3A—N1A—O2AA124.15 (16)
C2—C1—C17130.90 (15)O2AB—N1A—C2A124.2 (4)
C2—C1—S1110.58 (11)O3A—N1A—C2A118.11 (13)
C17—C1—S1118.52 (12)O2AA—N1A—C2A116.98 (16)
C1—C2—C3113.99 (14)O4A—N2A—O5A123.05 (14)
C1—C2—H2A123.0O4A—N2A—C4A119.28 (13)
C3—C2—H2A123.0O5A—N2A—C4A117.66 (14)
C4—C3—C2111.45 (13)O7A—N3A—O6A122.79 (16)
C4—C3—C11121.03 (13)O7A—N3A—C6A118.90 (14)
C2—C3—C11127.40 (13)O6A—N3A—C6A118.27 (15)
C3—C4—N1126.67 (14)O1A—C1A—C2A125.21 (14)
C3—C4—S1111.47 (11)O1A—C1A—C6A122.84 (15)
N1—C4—S1121.76 (12)C2A—C1A—C6A111.82 (13)
C10—C5—C6119.69 (16)C3A—C2A—C1A123.79 (13)
C10—C5—N1118.46 (14)C3A—C2A—N1A116.09 (14)
C6—C5—N1121.85 (16)C1A—C2A—N1A120.09 (13)
C7—C6—C5119.68 (18)C2A—C3A—C4A118.97 (14)
C7—C6—H6120.2C2A—C3A—H3A120.5
C5—C6—H6120.2C4A—C3A—H3A120.5
C8—C7—C6120.31 (18)C3A—C4A—C5A121.11 (14)
C8—C7—H7119.8C3A—C4A—N2A119.07 (14)
C6—C7—H7119.8C5A—C4A—N2A119.81 (13)
C7—C8—C9120.45 (18)C6A—C5A—C4A119.35 (14)
C7—C8—H8119.8C6A—C5A—H5A120.3
C9—C8—H8119.8C4A—C5A—H5A120.3
C10—C9—C8119.60 (18)C5A—C6A—C1A123.83 (15)
C10—C9—H9120.2C5A—C6A—N3A117.11 (14)
C8—C9—H9120.2C1A—C6A—N3A119.05 (14)
C9—C10—C5120.22 (16)O2B—N1B—O3B123.44 (14)
C9—C10—N2117.83 (15)O2B—N1B—C2B118.47 (13)
C5—C10—N2121.51 (14)O3B—N1B—C2B118.04 (13)
N2—C11—N3119.39 (13)O4B—N2B—O5B123.21 (14)
N2—C11—C3119.48 (14)O4B—N2B—C4B118.47 (13)
N3—C11—C3121.12 (13)O5B—N2B—C4B118.32 (13)
N3—C12—C13111.76 (12)O6B—N3B—O7B123.05 (15)
N3—C12—H12A109.3O6B—N3B—C6B117.82 (14)
C13—C12—H12A109.3O7B—N3B—C6B119.13 (13)
N3—C12—H12B109.3O1B—C1B—C6B126.23 (14)
C13—C12—H12B109.3O1B—C1B—C2B122.46 (13)
H12A—C12—H12B107.9C6B—C1B—C2B111.27 (13)
N4—C13—C12111.10 (12)C3B—C2B—C1B125.50 (13)
N4—C13—H13A109.4C3B—C2B—N1B116.48 (13)
C12—C13—H13A109.4C1B—C2B—N1B117.99 (13)
N4—C13—H13B109.4C2B—C3B—C4B118.70 (14)
C12—C13—H13B109.4C2B—C3B—H3B120.6
H13A—C13—H13B108.0C4B—C3B—H3B120.6
N4—C14—C15110.66 (12)C5B—C4B—C3B120.72 (13)
N4—C14—H14A109.5C5B—C4B—N2B120.24 (14)
C15—C14—H14A109.5C3B—C4B—N2B119.03 (13)
N4—C14—H14B109.5C6B—C5B—C4B119.97 (14)
C15—C14—H14B109.5C6B—C5B—H5B120.0
H14A—C14—H14B108.1C4B—C5B—H5B120.0
N3—C15—C14110.55 (12)C5B—C6B—C1B123.80 (14)
N3—C15—H15A109.5C5B—C6B—N3B116.92 (13)
C14—C15—H15A109.5C1B—C6B—N3B119.28 (13)
N3—C15—H15B109.5
C4—S1—C1—C20.61 (14)O3A—N1A—C2A—C3A2.0 (2)
C4—S1—C1—C17179.44 (15)O2AA—N1A—C2A—C3A168.4 (2)
C17—C1—C2—C3178.40 (18)O2AB—N1A—C2A—C1A24.2 (6)
S1—C1—C2—C31.65 (19)O3A—N1A—C2A—C1A176.02 (14)
C1—C2—C3—C42.1 (2)O2AA—N1A—C2A—C1A13.6 (3)
C1—C2—C3—C11173.89 (15)C1A—C2A—C3A—C4A4.0 (2)
C2—C3—C4—N1174.83 (15)N1A—C2A—C3A—C4A178.08 (13)
C11—C3—C4—N18.8 (2)C2A—C3A—C4A—C5A3.5 (2)
C2—C3—C4—S11.61 (17)C2A—C3A—C4A—N2A177.38 (12)
C11—C3—C4—S1174.72 (11)O4A—N2A—C4A—C3A1.3 (2)
C5—N1—C4—C358.5 (2)O5A—N2A—C4A—C3A179.14 (14)
C5—N1—C4—S1117.65 (14)O4A—N2A—C4A—C5A179.57 (13)
C1—S1—C4—C30.61 (13)O5A—N2A—C4A—C5A0.0 (2)
C1—S1—C4—N1176.03 (14)C3A—C4A—C5A—C6A2.7 (2)
C4—N1—C5—C1058.27 (18)N2A—C4A—C5A—C6A178.21 (13)
C4—N1—C5—C6121.34 (16)C4A—C5A—C6A—C1A5.7 (2)
C10—C5—C6—C72.3 (2)C4A—C5A—C6A—N3A175.64 (13)
N1—C5—C6—C7178.14 (15)O1A—C1A—C6A—C5A164.27 (15)
C5—C6—C7—C82.7 (3)C2A—C1A—C6A—C5A11.8 (2)
C6—C7—C8—C91.3 (3)O1A—C1A—C6A—N3A14.4 (2)
C7—C8—C9—C100.5 (3)C2A—C1A—C6A—N3A169.53 (13)
C8—C9—C10—C50.9 (2)O7A—N3A—C6A—C5A152.39 (16)
C8—C9—C10—N2171.61 (16)O6A—N3A—C6A—C5A25.2 (2)
C6—C5—C10—C90.5 (2)O7A—N3A—C6A—C1A28.9 (2)
N1—C5—C10—C9179.92 (14)O6A—N3A—C6A—C1A153.59 (16)
C6—C5—C10—N2172.70 (14)O1B—C1B—C2B—C3B176.98 (14)
N1—C5—C10—N27.7 (2)C6B—C1B—C2B—C3B0.6 (2)
C11—N2—C10—C9133.74 (16)O1B—C1B—C2B—N1B4.9 (2)
C11—N2—C10—C553.9 (2)C6B—C1B—C2B—N1B177.57 (12)
C10—N2—C11—N3168.35 (14)O2B—N1B—C2B—C3B137.08 (16)
C10—N2—C11—C312.7 (2)O3B—N1B—C2B—C3B40.4 (2)
C15—N3—C11—N2159.95 (13)O2B—N1B—C2B—C1B41.2 (2)
C12—N3—C11—N216.3 (2)O3B—N1B—C2B—C1B141.27 (15)
C15—N3—C11—C319.0 (2)C1B—C2B—C3B—C4B1.5 (2)
C12—N3—C11—C3164.74 (13)N1B—C2B—C3B—C4B176.69 (12)
C4—C3—C11—N236.9 (2)C2B—C3B—C4B—C5B2.2 (2)
C2—C3—C11—N2147.44 (15)C2B—C3B—C4B—N2B176.57 (12)
C4—C3—C11—N3142.10 (15)O4B—N2B—C4B—C5B177.81 (13)
C2—C3—C11—N333.6 (2)O5B—N2B—C4B—C5B1.8 (2)
C11—N3—C12—C13121.45 (15)O4B—N2B—C4B—C3B0.97 (19)
C15—N3—C12—C1355.18 (15)O5B—N2B—C4B—C3B179.42 (13)
C16—N4—C13—C12178.99 (13)C3B—C4B—C5B—C6B2.1 (2)
C14—N4—C13—C1255.07 (16)N2B—C4B—C5B—C6B176.65 (13)
N3—C12—C13—N454.21 (16)C4B—C5B—C6B—C1B1.2 (2)
C16—N4—C14—C15177.80 (13)C4B—C5B—C6B—N3B178.58 (13)
C13—N4—C14—C1557.33 (15)O1B—C1B—C6B—C5B177.01 (14)
C11—N3—C15—C14119.67 (14)C2B—C1B—C6B—C5B0.4 (2)
C12—N3—C15—C1457.02 (15)O1B—C1B—C6B—N3B3.2 (2)
N4—C14—C15—N358.41 (15)C2B—C1B—C6B—N3B179.37 (12)
O1A—C1A—C2A—C3A165.04 (15)O6B—N3B—C6B—C5B19.5 (2)
C6A—C1A—C2A—C3A10.9 (2)O7B—N3B—C6B—C5B159.31 (15)
O1A—C1A—C2A—N1A12.8 (2)O6B—N3B—C6B—C1B160.69 (15)
C6A—C1A—C2A—N1A171.21 (13)O7B—N3B—C6B—C1B20.5 (2)
O2AB—N1A—C2A—C3A153.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1A0.872 (17)1.848 (17)2.7086 (17)168.5 (16)
N4—H4···O1B0.926 (19)1.859 (19)2.6612 (17)143.6 (17)
N4—H4···O7B0.926 (19)2.449 (19)3.1714 (19)135.0 (15)
N1—H1···O5Bi0.852 (19)2.40 (2)3.1395 (18)145.9 (17)
C5B—H5B···S1ii0.932.873.6225 (15)139
C8—H8···O3Aiii0.932.483.349 (2)156
C12—H12A···O5Aiv0.972.233.0970 (19)149
C17—H17B···O6Aiv0.962.433.207 (2)138
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H22N4S2+·2C6H2N3O7
Mr770.66
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)22.1660 (4), 12.7349 (2), 23.3951 (4)
V3)6604.04 (19)
Z8
Radiation typeCu Kα
µ (mm1)1.65
Crystal size (mm)0.28 × 0.22 × 0.12
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.702, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
44193, 6524, 5508
Rint0.041
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.03
No. of reflections6524
No. of parameters506
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.25

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1A0.872 (17)1.848 (17)2.7086 (17)168.5 (16)
N4—H4···O1B0.926 (19)1.859 (19)2.6612 (17)143.6 (17)
N4—H4···O7B0.926 (19)2.449 (19)3.1714 (19)135.0 (15)
N1—H1···O5Bi0.852 (19)2.40 (2)3.1395 (18)145.9 (17)
C5B—H5B···S1ii0.932.873.6225 (15)138.8
C8—H8···O3Aiii0.932.483.349 (2)155.6
C12—H12A···O5Aiv0.972.233.0970 (19)148.6
C17—H17B···O6Aiv0.962.433.207 (2)138.4
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x, y+3/2, z1/2.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCapuano, B., Crosby, I. T., Fallon, G. D., Lloyd, E. J., Yuriev, E. & Egan, S. J. (2003). Acta Cryst. E59, o1367–o1369.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChue, P. & Singer, P. (2003). J. Psychiatr. Neurosci. 28, 253–261.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationNarasimhan, M., Bruce, T. O. & Masand, P. (2007). Neuropsychiatr. Dis. Treat. 3, 579–587.  PubMed CAS Google Scholar
First citationRavikumar, K., Swamy, G. Y. S. K., Sridhar, B. & Roopa, S. (2005). Acta Cryst. E61, o2720–o2723.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakuria, R. & Nangia, A. (2011a). CrystEngComm, 13, 1759–1764.  Web of Science CSD CrossRef CAS Google Scholar
First citationThakuria, R. & Nangia, A. (2011b). Acta Cryst. C67, o461–o463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWawrzycka-Gorczyca, I., Borowski, P., Osypiuk-Tomasik, J., Mazur, L. & Koziol, A. E. (2006). J. Mol. Struct. 830, 188–197.  Google Scholar
First citationWawrzycka-Gorczyca, I., Koziol, A. E., Glice, M. & Cybulski, J. (2004a). Acta Cryst. E60, o66–o68.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWawrzycka-Gorczyca, I., Mazur, L. & Koziol, A. E. (2004b). Acta Cryst. E60, o69–o71.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o232-o233
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds