organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Phenyl-2-[4-(tri­fluoro­meth­yl)phen­yl]-1H-benzimidazole

aAnnamalai University, Chidambaram, Tamilnadu, India, bShri Angalamman College of Engineering And Technology, Siruganoor, Tiruchirappalli, Tamilnadu 621 105, India, and cUrumu Dhanalakshmi College, Tiruchirappalli, Tamilnadu 620 019, India
*Correspondence e-mail: sakthi2udc@yahoo.com

(Received 5 January 2013; accepted 9 January 2013; online 16 January 2013)

In the title mol­ecule, C20H13F3N2, the benzimidazole unit is close to being planar [maximum deviation = 0.012 (1) Å] and forms dihedral angles of 31.43 (7) and 61.45 (9)° with the 4-(trifluoromethyl)phenyl and 1-phenyl rings, respectively; the dihedral angle between these rings is 60.94 (10)°. In the crystal, C—H⋯F hydrogen bonds link the mol­ecules into chains along the c-axis direction. The CF3 group is rotationally disordered with an occupancy ratio of 0.557 (8):0.443 (8) for the F atoms.

Related literature

For the properties of related compounds, see: Bu et al. (1996[Bu, X. R., Li, H., Derveer, D. V. & Mintz, E. A. (1996). Tetrahedron Lett. 37, 7331-7334.]); Cross et al. (1995[Cross, E. M., White, K. M., Moshrefzadeh, R. S. & Francis, C. V. (1995). Macromolecules, 28, 2526-2532.]); Fu et al. (2011[Fu, D. W., Zhang, W., Cai, H. L., Zhang, Y., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2011). J. Am. Chem. Soc. 133, 12780-12786.]); Zhang et al. (2010[Zhang, W., Chen, L. Z., Gou, M., Li, Y. H., Fu, D. W. & Xiong, R. G. (2010). Cryst. Growth Des. 10, 1025-1027.]). For bond lengths and angles in related structures, see: Yoon et al. (2011[Yoon, Y. K., Ali, M. A., Choon, T. S., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1215.]); Kassim et al. (2012[Kassim, K., Hashim, N. Z. N., Fadzil, A. H. & Yusof, M. S. M. (2012). Acta Cryst. E68, o799.]).

[Scheme 1]

Experimental

Crystal data
  • C20H13F3N2

  • Mr = 338.32

  • Triclinic, [P \overline 1]

  • a = 8.7179 (4) Å

  • b = 9.6796 (5) Å

  • c = 11.3612 (6) Å

  • α = 67.654 (2)°

  • β = 68.123 (2)°

  • γ = 85.013 (2)°

  • V = 821.20 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker,2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.986

  • 16592 measured reflections

  • 2889 independent reflections

  • 2338 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.03

  • 2889 reflections

  • 255 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯F3i 0.93 2.54 3.429 (6) 160
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Recently much attention has been given by the researchers to crystals containing organic and inorganic ions due to their special structural features and their ferro electric properties (Fu et al., 2011; Zhang et al., 2010).

The imidazole ring can be easily accommodated with functional groups which allows the covalent incorporation of the NLO chromophores into polyimides leading to NLO side chain polymers (Bu et al., 1996).

The NLO property of benzimidazole and its thermal stability in guest host systems have drawn our attention towards this chromophore (Cross et al., 1995).

The asymmetric unit contains the title compound C20H13F3N2 in the space group P-1. The benzimidazole ring system in the molecule N1/N2/C8—C14 is essentially planar with maximum deviations of 0.012 (1) for N1. In the molecules the benzimidazole ring N1/N2/C8—C14 makes dihedral angles of 61.45 (9)° and 31.43 (7)° respectively with the phenyl ring C15—C20 and the trifluoromethyl substituted phenyl ring C2—C7.

The torsional angles of C1/C2/C3/C4 and C3/C4/C5/C8 are 178.14° and 179.82° respectively. The molecules are linked into chains by C—H···F hydrogen bond interactions along the c axis.

Bond lengths and bond angles are within normal range and are comparable to related structures (Yoon et al., 2011; Kassim et al., 2012)

Related literature top

For the properties of related compounds, see: Bu et al. (1996); Cross et al. (1995); Fu et al. (2011); Zhang et al. (2010). For bond lengths and angles in related structures, see: Yoon et al. (2011); Kassim et al. (2012).

Experimental top

To pure N-phenyl-o-phenylenediamine(17 mmol,3.128 g) in ethanol (10 ml) was added 4-(trifluoromethyl)-benzaldehyde (17 mmol, 2.38 ml) and ammonium acetate (3 g) were added while the temperature was maintained at 80°C. The reaction mixture was refluxed for 48 h and the reaction completion was monitored by TLC and finally it was extracted with dichloromethane. The separated solid was purified by column chromatography using petroleum ether as the eluent. Yield: 2.87 g (50%). Single crystals were grown in ethanol as solvent within a period of one week.

Refinement top

All the hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms with C—H = 0.93 - 0.96 Å, and Uiso = 1.5eq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

The disordered trifluoromethyl was modelled with restrained bonds and angles based on the average values found for the non-disordered trifluoromethyl group with initial positions being derived from a difference map. In the final stages of refinement the group was refined as a riding and rotating group as for a methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and labelling scheme for (I) with displacement ellipsoids for non-H atoms are drawn at the 30% probability level (major component only).
[Figure 2] Fig. 2. A packing diagram for (I) is drawn. Dashed lines indicate the intermolecular hydrogen bonding interactions.
1-Phenyl-2-[4-(trifluoromethyl)phenyl]-1H-benzimidazole top
Crystal data top
C20H13F3N2Z = 2
Mr = 338.32F(000) = 348
Triclinic, P1Dx = 1.368 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7179 (4) ÅCell parameters from 7057 reflections
b = 9.6796 (5) Åθ = 2.3–27.1°
c = 11.3612 (6) ŵ = 0.11 mm1
α = 67.654 (2)°T = 293 K
β = 68.123 (2)°Block, colourless
γ = 85.013 (2)°0.30 × 0.20 × 0.20 mm
V = 821.20 (7) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
2889 independent reflections
Radiation source: fine focus sealed tube2338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 18.4 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω and ϕ scanh = 1010
Absorption correction: multi-scan
(SADABS; Bruker,2008)
k = 1111
Tmin = 0.960, Tmax = 0.986l = 1313
16592 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.1406P]
where P = (Fo2 + 2Fc2)/3
2889 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.15 e Å3
36 restraintsΔρmin = 0.14 e Å3
Crystal data top
C20H13F3N2γ = 85.013 (2)°
Mr = 338.32V = 821.20 (7) Å3
Triclinic, P1Z = 2
a = 8.7179 (4) ÅMo Kα radiation
b = 9.6796 (5) ŵ = 0.11 mm1
c = 11.3612 (6) ÅT = 293 K
α = 67.654 (2)°0.30 × 0.20 × 0.20 mm
β = 68.123 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
2889 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker,2008)
2338 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.986Rint = 0.032
16592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03836 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
2889 reflectionsΔρmin = 0.14 e Å3
255 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1427 (3)0.2068 (3)1.5614 (2)0.0834 (5)
C20.04295 (19)0.28680 (17)1.41364 (16)0.0618 (4)
C30.0815 (2)0.39161 (19)1.37506 (17)0.0672 (4)
H30.10050.41401.44140.081*
C40.17792 (19)0.46346 (18)1.23902 (17)0.0614 (4)
H40.26120.53461.21390.074*
C50.15171 (17)0.43049 (15)1.13943 (15)0.0523 (4)
C60.02360 (19)0.32742 (17)1.17905 (16)0.0590 (4)
H60.00270.30611.11300.071*
C70.0730 (2)0.25634 (18)1.31517 (17)0.0635 (4)
H70.15870.18761.34060.076*
C80.25824 (17)0.51116 (15)0.99601 (15)0.0524 (4)
C90.40857 (19)0.68454 (16)0.81207 (16)0.0575 (4)
C100.4994 (2)0.81574 (18)0.71278 (18)0.0711 (5)
H100.50860.89700.73490.085*
C110.5744 (2)0.8215 (2)0.58197 (19)0.0782 (5)
H110.63510.90860.51400.094*
C120.5625 (2)0.7008 (2)0.54771 (18)0.0774 (5)
H120.61560.70900.45730.093*
C130.4747 (2)0.56999 (19)0.64349 (17)0.0682 (5)
H130.46760.48870.62070.082*
C140.39737 (18)0.56482 (16)0.77574 (15)0.0549 (4)
C150.27055 (17)0.30532 (15)0.90658 (15)0.0539 (4)
C160.1858 (2)0.28353 (19)0.83389 (17)0.0663 (4)
H160.14560.36450.77950.080*
C170.1609 (2)0.1411 (2)0.8421 (2)0.0855 (6)
H170.10550.12590.79180.103*
C180.2174 (3)0.0223 (2)0.9239 (3)0.0940 (7)
H180.19990.07380.92960.113*
C190.2999 (2)0.0440 (2)0.9977 (2)0.0926 (7)
H190.33620.03771.05470.111*
C200.3294 (2)0.18642 (18)0.9882 (2)0.0743 (5)
H200.38820.20161.03630.089*
N10.32109 (16)0.64829 (13)0.95021 (13)0.0604 (4)
N20.29987 (15)0.45366 (12)0.89494 (12)0.0530 (3)
F10.2223 (12)0.0892 (8)1.5887 (4)0.142 (3)0.557 (8)
F20.2557 (8)0.2984 (5)1.6041 (5)0.1329 (18)0.557 (8)
F30.0570 (6)0.1792 (13)1.6361 (4)0.160 (3)0.557 (8)
F1'0.2976 (8)0.1695 (15)1.5888 (7)0.155 (4)0.443 (8)
F2'0.1517 (17)0.2719 (7)1.6418 (4)0.140 (3)0.443 (8)
F3'0.0821 (14)0.0771 (8)1.6144 (5)0.160 (3)0.443 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.203 (7)0.116 (3)0.0732 (19)0.092 (4)0.010 (3)0.018 (3)
F20.122 (3)0.158 (4)0.084 (2)0.009 (3)0.007 (2)0.053 (2)
F30.141 (3)0.231 (7)0.069 (2)0.037 (4)0.056 (2)0.013 (4)
N10.0698 (8)0.0499 (7)0.0627 (8)0.0024 (6)0.0207 (6)0.0258 (6)
N20.0609 (7)0.0454 (7)0.0545 (7)0.0035 (5)0.0201 (6)0.0220 (6)
C10.0916 (14)0.0895 (15)0.0642 (12)0.0089 (12)0.0223 (11)0.0268 (11)
C20.0670 (10)0.0589 (9)0.0589 (10)0.0050 (7)0.0227 (8)0.0224 (8)
C30.0728 (10)0.0776 (11)0.0603 (10)0.0032 (8)0.0255 (8)0.0340 (9)
C40.0620 (9)0.0639 (9)0.0656 (10)0.0008 (7)0.0222 (8)0.0321 (8)
C50.0559 (8)0.0482 (8)0.0580 (9)0.0100 (6)0.0232 (7)0.0247 (7)
C60.0647 (9)0.0606 (9)0.0600 (9)0.0036 (7)0.0265 (8)0.0278 (8)
C70.0651 (9)0.0593 (9)0.0648 (10)0.0033 (7)0.0218 (8)0.0227 (8)
C80.0570 (8)0.0473 (8)0.0590 (9)0.0084 (6)0.0240 (7)0.0248 (7)
C90.0622 (9)0.0488 (8)0.0607 (9)0.0044 (7)0.0212 (7)0.0215 (7)
C100.0803 (11)0.0526 (9)0.0746 (12)0.0029 (8)0.0221 (9)0.0227 (8)
C110.0835 (12)0.0625 (10)0.0695 (12)0.0103 (9)0.0175 (9)0.0122 (9)
C120.0835 (12)0.0795 (12)0.0583 (10)0.0090 (10)0.0138 (9)0.0236 (9)
C130.0758 (10)0.0674 (10)0.0616 (10)0.0032 (8)0.0189 (8)0.0293 (9)
C140.0579 (8)0.0492 (8)0.0578 (9)0.0039 (6)0.0209 (7)0.0206 (7)
C150.0528 (8)0.0470 (8)0.0604 (9)0.0042 (6)0.0135 (7)0.0259 (7)
C160.0696 (10)0.0668 (10)0.0642 (10)0.0043 (8)0.0179 (8)0.0313 (8)
C170.0841 (12)0.0859 (14)0.0873 (14)0.0208 (11)0.0080 (10)0.0510 (12)
C180.0763 (12)0.0638 (12)0.1207 (18)0.0121 (10)0.0082 (12)0.0525 (13)
C190.0771 (12)0.0520 (10)0.1213 (18)0.0141 (9)0.0182 (12)0.0242 (11)
C200.0694 (10)0.0558 (10)0.0954 (13)0.0136 (8)0.0318 (10)0.0268 (9)
F3'0.229 (7)0.098 (4)0.084 (3)0.048 (4)0.030 (4)0.003 (2)
F2'0.226 (8)0.108 (4)0.063 (2)0.050 (4)0.005 (4)0.042 (3)
F1'0.107 (4)0.209 (9)0.089 (3)0.058 (4)0.023 (2)0.008 (5)
Geometric parameters (Å, º) top
F1—C11.258 (9)C11—C121.387 (3)
F1'—C11.319 (8)C12—C131.369 (3)
F2—C11.346 (7)C13—C141.382 (2)
F2'—C11.270 (8)C15—C201.374 (2)
F3—C11.271 (6)C15—C161.373 (2)
F3'—C11.328 (9)C16—C171.377 (3)
N1—C81.312 (2)C17—C181.363 (4)
N1—C91.380 (2)C18—C191.369 (4)
N2—C81.3785 (19)C19—C201.381 (3)
N2—C141.381 (2)C3—H30.9300
N2—C151.428 (2)C4—H40.9300
C1—C21.488 (3)C6—H60.9300
C2—C31.377 (3)C7—H70.9300
C2—C71.375 (2)C10—H100.9300
C3—C41.377 (2)C11—H110.9300
C4—C51.384 (2)C12—H120.9300
C5—C81.469 (2)C13—H130.9300
C5—C61.387 (2)C16—H160.9300
C6—C71.377 (2)C17—H170.9300
C9—C141.392 (2)C18—H180.9300
C9—C101.390 (2)C19—H190.9300
C10—C111.363 (3)C20—H200.9300
C8—N1—C9105.22 (13)N2—C14—C13131.82 (16)
C8—N2—C14106.09 (12)C9—C14—C13122.50 (15)
C8—N2—C15129.34 (12)N2—C15—C16119.38 (15)
C14—N2—C15124.15 (12)N2—C15—C20119.91 (15)
F1—C1—F2106.3 (5)C16—C15—C20120.70 (16)
F1—C1—F3109.8 (6)C15—C16—C17119.60 (18)
F1—C1—C2114.8 (3)C16—C17—C18120.1 (2)
F2—C1—F3104.2 (6)C17—C18—C19120.2 (2)
F2—C1—C2108.4 (3)C18—C19—C20120.4 (2)
F3—C1—C2112.5 (3)C15—C20—C19118.9 (2)
F1'—C1—C2114.9 (3)C2—C3—H3120.00
F2'—C1—C2117.1 (4)C4—C3—H3120.00
F3'—C1—C2112.0 (4)C3—C4—H4120.00
F1'—C1—F2'104.8 (8)C5—C4—H4120.00
F1'—C1—F3'103.7 (8)C5—C6—H6120.00
F2'—C1—F3'102.8 (6)C7—C6—H6120.00
C1—C2—C3119.76 (17)C2—C7—H7120.00
C1—C2—C7120.63 (18)C6—C7—H7120.00
C3—C2—C7119.62 (15)C9—C10—H10121.00
C2—C3—C4120.44 (16)C11—C10—H10121.00
C3—C4—C5120.38 (17)C10—C11—H11119.00
C4—C5—C6118.73 (14)C12—C11—H11119.00
C4—C5—C8117.86 (14)C11—C12—H12119.00
C6—C5—C8123.37 (14)C13—C12—H12119.00
C5—C6—C7120.67 (16)C12—C13—H13122.00
C2—C7—C6120.13 (17)C14—C13—H13122.00
N1—C8—N2112.81 (13)C15—C16—H16120.00
N1—C8—C5122.94 (14)C17—C16—H16120.00
N2—C8—C5124.24 (14)C16—C17—H17120.00
N1—C9—C10130.14 (16)C18—C17—H17120.00
N1—C9—C14110.21 (14)C17—C18—H18120.00
C10—C9—C14119.65 (15)C19—C18—H18120.00
C9—C10—C11117.88 (17)C18—C19—H19120.00
C10—C11—C12121.69 (18)C20—C19—H19120.00
C11—C12—C13121.68 (17)C15—C20—H20121.00
C12—C13—C14116.59 (17)C19—C20—H20121.00
N2—C14—C9105.68 (13)
C9—N1—C8—C5178.47 (15)C3—C4—C5—C8179.82 (16)
C8—N1—C9—C10179.79 (19)C6—C5—C8—N1147.01 (17)
C9—N1—C8—N20.13 (19)C4—C5—C8—N2150.81 (16)
C8—N1—C9—C140.27 (19)C8—C5—C6—C7179.41 (16)
C8—N2—C14—C90.22 (18)C4—C5—C6—C71.7 (3)
C15—N2—C14—C9173.36 (15)C4—C5—C8—N130.8 (2)
C14—N2—C15—C20114.16 (19)C6—C5—C8—N231.4 (3)
C14—N2—C8—N10.06 (19)C5—C6—C7—C20.2 (3)
C15—N2—C8—C58.7 (3)N1—C9—C10—C11179.91 (19)
C8—N2—C14—C13179.45 (19)C14—C9—C10—C110.2 (3)
C14—N2—C8—C5178.63 (15)N1—C9—C14—N20.31 (19)
C8—N2—C15—C2057.3 (2)C10—C9—C14—N2179.74 (16)
C15—N2—C8—N1172.71 (15)C10—C9—C14—C130.6 (3)
C14—N2—C15—C1664.8 (2)N1—C9—C14—C13179.40 (16)
C8—N2—C15—C16123.79 (18)C9—C10—C11—C120.5 (3)
C15—N2—C14—C136.3 (3)C10—C11—C12—C130.1 (3)
F1—C1—C2—C3162.7 (5)C11—C12—C13—C140.6 (3)
F1—C1—C2—C716.9 (6)C12—C13—C14—N2179.49 (18)
F3—C1—C2—C336.2 (7)C12—C13—C14—C90.9 (3)
F2—C1—C2—C378.6 (4)N2—C15—C16—C17178.39 (17)
F2—C1—C2—C7101.9 (4)C20—C15—C16—C170.5 (3)
F3—C1—C2—C7143.4 (6)N2—C15—C20—C19179.86 (19)
C7—C2—C3—C41.4 (3)C16—C15—C20—C191.0 (3)
C3—C2—C7—C61.7 (3)C15—C16—C17—C181.2 (3)
C1—C2—C3—C4178.2 (2)C16—C17—C18—C190.3 (4)
C1—C2—C7—C6177.9 (2)C17—C18—C19—C201.2 (4)
C2—C3—C4—C50.5 (3)C18—C19—C20—C151.8 (4)
C3—C4—C5—C62.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···F3i0.932.543.429 (6)160
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC20H13F3N2
Mr338.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7179 (4), 9.6796 (5), 11.3612 (6)
α, β, γ (°)67.654 (2), 68.123 (2), 85.013 (2)
V3)821.20 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker,2008)
Tmin, Tmax0.960, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
16592, 2889, 2338
Rint0.032
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.03
No. of reflections2889
No. of parameters255
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: APEX2 (Bruker, 2008), APEX2 and SAINT (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···F3i0.93002.54003.429 (6)160.00
Symmetry code: (i) x, y, z1.
 

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, X. R., Li, H., Derveer, D. V. & Mintz, E. A. (1996). Tetrahedron Lett. 37, 7331–7334.  CSD CrossRef CAS Web of Science Google Scholar
First citationCross, E. M., White, K. M., Moshrefzadeh, R. S. & Francis, C. V. (1995). Macromolecules, 28, 2526–2532.  CrossRef CAS Web of Science Google Scholar
First citationFu, D. W., Zhang, W., Cai, H. L., Zhang, Y., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2011). J. Am. Chem. Soc. 133, 12780–12786.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKassim, K., Hashim, N. Z. N., Fadzil, A. H. & Yusof, M. S. M. (2012). Acta Cryst. E68, o799.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoon, Y. K., Ali, M. A., Choon, T. S., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Gou, M., Li, Y. H., Fu, D. W. & Xiong, R. G. (2010). Cryst. Growth Des. 10, 1025–1027.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds