organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

meso-4,4′-Di­fluoro-2,2′-{[(3aR,7aS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl]bis­­(methyl­ene)}diphenol

aFacultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 24 December 2012; accepted 3 January 2013; online 12 January 2013)

In the crystal structure of the title compound, C21H24F2N2O2, there are two intra­molecular O—H⋯N hydrogen bonds involving the N atoms of the imidazolidine ring and the hy­droxy groups. The crystal studied was a meso compound obtained by the reaction of the aminal (2S,7R,11S,16R)-1,8,10,17-tetra­aza­penta­cyclo­[8.8.1.18,17.02,7.011,16]cosane with 4-fluoro­phenol. The imidazolidine ring has a twisted conformation with a CH—CH—N—CH2 torsion angle of 44.99 (14)° and, surprisingly, the lone pairs of the N atoms are disposed in a syn isomerism, making the title compound an exception to the typical `rabbit-ear effect' in 1,2-diamines. In the crystal, molecules are linked via C—H⋯F hydrogen bonds, forming chains along the c-axis direction. These chains are linked via another C—H⋯F hydrogen bond, forming a three-dimensional network.

Related literature

For a related structure, see: Rivera et al. (2011[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o1542.]). For a discussion of the `rabbit-ear effect' in 1,2-diamines, see: Hutchins et al.(1968[Hutchins, R. O., Kopp, L. D. & Eliel, E. L. (1968). J. Am. Chem. Soc. 90, 7174-7175.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24F2N2O2

  • Mr = 374.4

  • Orthorhombic, P n a 21

  • a = 15.4029 (4) Å

  • b = 18.7822 (4) Å

  • c = 6.1639 (2) Å

  • V = 1783.22 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.86 mm−1

  • T = 120 K

  • 0.31 × 0.15 × 0.11 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.222, Tmax = 1

  • 40310 measured reflections

  • 3177 independent reflections

  • 2984 reflections with I > 3σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.42

  • 3177 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 (2) 1.89 (2) 2.6540 (17) 148 (2)
O2—H2⋯N2 0.85 (2) 1.89 (2) 2.6741 (18) 152 (2)
C13—H1C13⋯F2i 0.96 2.43 3.2645 (19) 145
C17—H2C17⋯F2ii 0.96 2.54 3.356 (2) 142
Symmetry codes: (i) [-x, -y, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Typically the 1,1-diamines tend to adopt a conformation in which the arrangement of electron pairs is anti periplanar. This behavior is known as `rabbit-ears' effect (Hutchins et al., 1968), however, this effect can be avoided by restriction of the 1,2-diamine in cyclic molecules. Recently, we reported the synthesis and the crystal structure of rac-4,4'-difluoro-2,2'-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a- octahydro- 1H-1,3-benzimidazole-1,3-diyl] bis(methylene)]}diphenol (Rivera et al., 2011), which has trans stereochemistry in the 1,2-diamine moiety with the lone pairs located in anti disposition avoiding the repulsive interactions. Now we reported the synthesis and crystal structure of the meso diastereoisomer with absolute configuration (R,S) where surprisingly the lone pairs of the N atoms are located in syn disposition.

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. In the molecular structure of the title compound, the two N atoms of the heterocyclic ring interact with the H atoms of the hydroxy groups by intramolecular hydrogen bonds O—H···N, with N···O interatomic distance values around 2.66 Å, as well as the values of C—O and O—H bond lengths are 1.363 (3) Å and 0.83 (3) Å, respectively. The cyclohexane ring adopts a chair conformation while the heterocyclic ring arranged diagonally respect to the cyclohexane ring with dihedral angle between planes of 25.46 (96)°. The heterocyclic ring adopts an envelope conformation according to the value of the N2—C5—N1—C16 torsion angle of -7.91°. Bond angles around the N atoms N1 and N2 show a higher sp3 character to the N1 and N2 N atoms with pyramidalization involved in the hydrogen bond type interactions [Σ(CNC) N1 = 331.3°, Σ(CNC) N2 = 330.4°]. Moreover, the benzyl groups are located in an unexpected 1,3-diequatorial syn arrangement in the heterocyclic ring with dihedral angle between the planes containing the aromatic rings of 53.80 (30)°. The nonbonding pairs of amino groups involved in the intermolecular hydrogen bonding interactions do not suffer the `rabbit-ear effect' having a syn arrangement demonstrating that the title compound is an exception of this effect.

The stability of the crystal lattice of the title compound is related with non classical intermolecular interactions C—H···F that hold molecules linked in extended chains along the c axis. There are O—H···C and C—H···F weak interactions (table 1), the latter involve halogen group in molecular contact with an electron-deficient C—H bond of the aromatic ring of a second molecule.

Related literature top

For a related structure, see: Rivera et al. (2011). For a discussion of the `rabbit-ear effect' in 1,2-diamines, see: Hutchins et al.(1968).

Experimental top

To a stirred solution of (2S,7R,11S,16R)-1,8,10,17-tetraazapentacyclo[8.8.1.1.8,170.2,7011,16] icosane (3) (276 mg, 1.00 mmol) in dioxane (3 ml) was added slowly dropwise p-fluorophenol (2.00 mmol) in dioxane (3 ml). After stirring for 15 min at room temperature, water (4 ml) was added and the mixture was heated at 40°C during 30 h. After cooling to room temperature, the solvent was removed in vacuo and the crude product was purified by chromatography on a silica column and subjected to gradient elution with light petroleum ether:ethyl acetate (yield 20%, m.p. = 441–443 K). Single crystals of (I) were grown from a CHCl3 solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks. FT–IR (KBr) νmax: 3061, 2848, 1495, 1448, 1387, 1289, 1245, 1194, 1124, 1063, 979, 925, 814, 772, 737, 714, 692, 668 cm-1. 1H NMR (400 MHz, CDCl3) δ (p.p.m.): 1.36 (m, 2H), 1.55–1.79 (m, 6H), 3.11 (t, 2H, JH,H = 4.0 Hz), 3.39 (d, 1H,2JH,H = 6.4 Hz, NCH2N), 3.63 (d, 2H, 2JH,H = 14.0 Hz, ArCH2N), 3.84 (d, 1H, 2JH,H = 6.4 Hz, NCH2N), 4.03 (d, 2H, 2JH,H = 14.0 Hz, ArCH2N), 6.70 (dd, 2H, 3JH,F = 8.0 Hz, 4JH,H = 2.8 Hz, Ar—H), 6.76 (dd, 2H, 3JH,H = 8.0 Hz, 4JH,F = 4.8 Hz, Ar—H), 6.87 (td, 2H, 3JH,H = 8.0 Hz, 3JH,F = 8.2 Hz, 4JH,H = 3.1 Hz, Ar—H), 10.34 (s, 2H). 13C NMR (100 MHz, CDCl3) δ (p.p.m.): 21.5, 24.7, 55.0, 61.1, 73.4, 114.7 (d, 2JH,F = 23.5 Hz), 115.4 (d, 2JH,F = 22.5 Hz), 117.0 (d, 3JH,F = 6.3 Hz), 122.0 (d, 3JH,F = 6.9 Hz), 153.4 (d, 4JH,F = 2.0 Hz), 156.0 (d, 1JH,F = 236 Hz).

Refinement top

All H atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded C atoms were kept in ideal positions with C—H distance 0.96 Å during the refinement. The hydroxy H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with thermal displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for hydroxy groups and to 1.2Ueq(C) for the CH– and CH2– groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are drawn as dashed lines.
meso-4,4'-Difluoro-2,2'-{[(3aR,7aS)-2,3,3a,4,5,6,7,7a- octahydro-1H-1,3-benzimidazole-1,3-diyl]bis(methylene)}diphenol top
Crystal data top
C21H24F2N2O2F(000) = 792
Mr = 374.4Dx = 1.394 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P -2ac -2nCell parameters from 19583 reflections
a = 15.4029 (4) Åθ = 3.7–67.0°
b = 18.7822 (4) ŵ = 0.86 mm1
c = 6.1639 (2) ÅT = 120 K
V = 1783.22 (8) Å3Polygon shape, white
Z = 40.31 × 0.15 × 0.11 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3177 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2984 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.049
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 3.7°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2222
Tmin = 0.222, Tmax = 1l = 77
40310 measured reflections
Refinement top
Refinement on F291 constraints
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.42(Δ/σ)max = 0.010
3177 reflectionsΔρmax = 0.15 e Å3
250 parametersΔρmin = 0.11 e Å3
0 restraints
Crystal data top
C21H24F2N2O2V = 1783.22 (8) Å3
Mr = 374.4Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 15.4029 (4) ŵ = 0.86 mm1
b = 18.7822 (4) ÅT = 120 K
c = 6.1639 (2) Å0.31 × 0.15 × 0.11 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3177 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2984 reflections with I > 3σ(I)
Tmin = 0.222, Tmax = 1Rint = 0.049
40310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.42Δρmax = 0.15 e Å3
3177 reflectionsΔρmin = 0.11 e Å3
250 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.08421 (6)0.56542 (5)0.39265 (19)0.0421 (3)
F20.01983 (7)0.08785 (5)0.0670 (2)0.0464 (3)
O10.26711 (8)0.11965 (6)0.5638 (2)0.0355 (4)
O20.25923 (8)0.37737 (7)0.9132 (2)0.0369 (4)
N10.33271 (8)0.22874 (7)0.3446 (2)0.0231 (3)
N20.34150 (7)0.33314 (6)0.5557 (2)0.0238 (4)
C10.20351 (10)0.48809 (8)0.4427 (3)0.0283 (5)
C20.24882 (10)0.44012 (8)0.5731 (3)0.0257 (4)
C30.41911 (9)0.26109 (8)0.3064 (2)0.0230 (4)
C40.33424 (10)0.40923 (8)0.4988 (3)0.0270 (4)
C50.20680 (10)0.11405 (8)0.4035 (3)0.0274 (4)
C60.12823 (10)0.51814 (8)0.5218 (3)0.0314 (5)
C70.21420 (10)0.15102 (8)0.2071 (3)0.0254 (4)
C80.42966 (9)0.30360 (8)0.5158 (3)0.0237 (4)
C90.49248 (9)0.20825 (8)0.2612 (3)0.0267 (4)
C100.08186 (11)0.09680 (8)0.0901 (3)0.0324 (5)
C110.52047 (10)0.16567 (8)0.4592 (3)0.0299 (5)
C120.21650 (10)0.42368 (8)0.7793 (3)0.0289 (5)
C130.07318 (10)0.06018 (9)0.2813 (3)0.0343 (5)
C140.13982 (11)0.45439 (9)0.8526 (3)0.0333 (5)
C150.29291 (10)0.19587 (8)0.1527 (3)0.0259 (4)
C160.09529 (11)0.50248 (9)0.7232 (3)0.0340 (5)
C170.45886 (10)0.25765 (9)0.7059 (3)0.0275 (5)
C180.15019 (10)0.14217 (8)0.0499 (3)0.0284 (4)
C190.13591 (10)0.06908 (8)0.4391 (3)0.0331 (5)
C200.28071 (9)0.28869 (8)0.4282 (3)0.0270 (4)
C210.54005 (11)0.21507 (9)0.6489 (3)0.0321 (5)
H1c10.224350.4999690.3004470.034*
H1c30.4224550.2889560.1761420.0276*
H1c40.3395340.4147240.3445060.0325*
H2c40.3811230.4351240.5643720.0325*
H1c80.4737810.339420.5021310.0284*
H1c90.5416140.2332350.2030.032*
H2c90.4751050.1762140.1478520.032*
H1c110.4750290.1332490.4993110.0359*
H2c110.5713550.1384280.4246590.0359*
H1c130.0246290.0290770.304910.0412*
H1c140.1176210.4422740.9933840.0399*
H1c150.3351790.1670230.0794090.0311*
H2c150.2767480.232310.0512530.0311*
H1c160.0426270.5243240.7732340.0408*
H1c170.4129660.2255970.7454250.033*
H2c170.4705850.2874460.8289620.033*
H1c180.1536720.1674580.085170.0341*
H1c190.130780.0441520.5744330.0397*
H1c200.2358820.2708240.5216920.0324*
H2c200.2583960.3159140.3087610.0324*
H1c210.5859540.247120.609380.0386*
H2c210.5576410.1873590.7721630.0386*
H10.3046 (14)0.1501 (12)0.523 (4)0.0426*
H20.2959 (14)0.3567 (12)0.832 (4)0.0443*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0366 (5)0.0315 (5)0.0583 (7)0.0066 (4)0.0117 (5)0.0030 (5)
F20.0397 (5)0.0393 (5)0.0602 (7)0.0079 (4)0.0155 (5)0.0076 (5)
O10.0400 (6)0.0352 (6)0.0312 (6)0.0068 (5)0.0009 (5)0.0091 (5)
O20.0452 (7)0.0398 (7)0.0259 (6)0.0104 (5)0.0049 (6)0.0029 (5)
N10.0233 (6)0.0226 (6)0.0234 (6)0.0014 (5)0.0034 (5)0.0016 (5)
N20.0231 (6)0.0199 (6)0.0285 (7)0.0004 (5)0.0028 (5)0.0003 (5)
C10.0308 (8)0.0214 (7)0.0328 (9)0.0035 (6)0.0036 (7)0.0010 (6)
C20.0293 (7)0.0185 (7)0.0292 (8)0.0026 (6)0.0007 (7)0.0035 (6)
C30.0240 (7)0.0227 (7)0.0224 (8)0.0007 (6)0.0037 (6)0.0024 (6)
C40.0304 (7)0.0203 (7)0.0304 (9)0.0002 (6)0.0035 (6)0.0009 (6)
C50.0292 (7)0.0220 (7)0.0311 (8)0.0018 (6)0.0045 (7)0.0006 (6)
C60.0294 (8)0.0208 (7)0.0441 (10)0.0006 (6)0.0077 (7)0.0044 (7)
C70.0266 (7)0.0200 (7)0.0295 (8)0.0028 (6)0.0035 (6)0.0041 (6)
C80.0223 (6)0.0221 (7)0.0266 (8)0.0011 (6)0.0025 (6)0.0003 (6)
C90.0246 (7)0.0288 (8)0.0267 (8)0.0015 (6)0.0063 (6)0.0011 (6)
C100.0284 (8)0.0241 (7)0.0449 (11)0.0006 (6)0.0021 (7)0.0076 (7)
C110.0287 (7)0.0280 (7)0.0331 (9)0.0055 (6)0.0031 (6)0.0009 (7)
C120.0339 (8)0.0249 (8)0.0278 (9)0.0003 (6)0.0001 (7)0.0046 (6)
C130.0287 (8)0.0221 (8)0.0522 (11)0.0038 (6)0.0107 (8)0.0073 (7)
C140.0363 (8)0.0314 (8)0.0321 (9)0.0007 (6)0.0069 (7)0.0081 (7)
C150.0290 (7)0.0248 (7)0.0239 (8)0.0014 (6)0.0009 (6)0.0004 (6)
C160.0289 (7)0.0273 (8)0.0459 (11)0.0001 (7)0.0012 (7)0.0109 (7)
C170.0279 (7)0.0304 (8)0.0241 (8)0.0021 (6)0.0024 (6)0.0012 (6)
C180.0324 (8)0.0224 (7)0.0306 (9)0.0005 (6)0.0000 (7)0.0033 (7)
C190.0354 (8)0.0234 (7)0.0405 (10)0.0006 (6)0.0102 (8)0.0017 (7)
C200.0247 (7)0.0241 (7)0.0323 (9)0.0002 (6)0.0033 (7)0.0036 (7)
C210.0299 (7)0.0364 (9)0.0302 (9)0.0076 (7)0.0000 (7)0.0005 (7)
Geometric parameters (Å, º) top
F1—C61.372 (2)C8—C171.523 (2)
F2—C101.370 (2)C8—H1c80.96
O1—C51.360 (2)C9—C111.522 (2)
O1—H10.85 (2)C9—H1c90.96
O2—C121.368 (2)C9—H2c90.96
O2—H20.85 (2)C10—C131.371 (3)
N1—C31.4818 (18)C10—C181.377 (2)
N1—C151.468 (2)C11—C211.523 (2)
N1—C201.4747 (19)C11—H1c110.96
N2—C41.4758 (19)C11—H2c110.96
N2—C81.4874 (18)C12—C141.390 (2)
N2—C201.4805 (19)C13—C191.381 (2)
C1—C21.395 (2)C13—H1c130.96
C1—C61.379 (2)C14—C161.387 (2)
C1—H1c10.96C14—H1c140.96
C2—C41.509 (2)C15—H1c150.96
C2—C121.400 (2)C15—H2c150.96
C3—C81.526 (2)C16—H1c160.96
C3—C91.530 (2)C17—C211.526 (2)
C3—H1c30.96C17—H1c170.96
C4—H1c40.96C17—H2c170.96
C4—H2c40.96C18—H1c180.96
C5—C71.400 (2)C19—H1c190.96
C5—C191.398 (2)C20—H1c200.96
C6—C161.373 (3)C20—H2c200.96
C7—C151.514 (2)C21—H1c210.96
C7—C181.392 (2)C21—H2c210.96
C5—O1—H1107.6 (15)C13—C10—C18122.66 (16)
C12—O2—H2104.7 (16)C9—C11—C21110.60 (13)
C3—N1—C15114.79 (12)C9—C11—H1c11109.47
C3—N1—C20103.30 (11)C9—C11—H2c11109.47
C15—N1—C20112.07 (11)C21—C11—H1c11109.47
C4—N2—C8113.02 (11)C21—C11—H2c11109.47
C4—N2—C20111.82 (11)H1c11—C11—H2c11108.32
C8—N2—C20106.20 (11)O2—C12—C2121.15 (14)
C2—C1—C6118.79 (16)O2—C12—C14118.45 (15)
C2—C1—H1c1120.6C2—C12—C14120.40 (15)
C6—C1—H1c1120.6C10—C13—C19118.45 (15)
C1—C2—C4120.66 (14)C10—C13—H1c13120.78
C1—C2—C12119.20 (14)C19—C13—H1c13120.78
C4—C2—C12120.06 (14)C12—C14—C16120.23 (16)
N1—C3—C8100.13 (11)C12—C14—H1c14119.89
N1—C3—C9115.24 (12)C16—C14—H1c14119.89
N1—C3—H1c3113.88N1—C15—C7112.94 (13)
C8—C3—C9114.52 (12)N1—C15—H1c15109.47
C8—C3—H1c3114.61N1—C15—H2c15109.47
C9—C3—H1c399.29C7—C15—H1c15109.47
N2—C4—C2111.48 (12)C7—C15—H2c15109.47
N2—C4—H1c4109.47H1c15—C15—H2c15105.76
N2—C4—H2c4109.47C6—C16—C14118.49 (15)
C2—C4—H1c4109.47C6—C16—H1c16120.75
C2—C4—H2c4109.47C14—C16—H1c16120.75
H1c4—C4—H2c4107.38C8—C17—C21111.23 (13)
O1—C5—C7122.28 (13)C8—C17—H1c17109.47
O1—C5—C19117.78 (15)C8—C17—H2c17109.47
C7—C5—C19119.93 (15)C21—C17—H1c17109.47
F1—C6—C1118.40 (16)C21—C17—H2c17109.47
F1—C6—C16118.73 (14)H1c17—C17—H2c17107.66
C1—C6—C16122.88 (16)C7—C18—C10119.35 (16)
C5—C7—C15122.18 (14)C7—C18—H1c18120.33
C5—C7—C18118.99 (14)C10—C18—H1c18120.32
C15—C7—C18118.65 (14)C5—C19—C13120.61 (16)
N2—C8—C3103.77 (11)C5—C19—H1c19119.7
N2—C8—C17110.70 (12)C13—C19—H1c19119.7
N2—C8—H1c8113.54N1—C20—N2105.82 (11)
C3—C8—C17112.67 (12)N1—C20—H1c20109.47
C3—C8—H1c8111.6N1—C20—H2c20109.47
C17—C8—H1c8104.79N2—C20—H1c20109.47
C3—C9—C11113.83 (13)N2—C20—H2c20109.47
C3—C9—H1c9109.47H1c20—C20—H2c20112.89
C3—C9—H2c9109.47C11—C21—C17109.50 (13)
C11—C9—H1c9109.47C11—C21—H1c21109.47
C11—C9—H2c9109.47C11—C21—H2c21109.47
H1c9—C9—H2c9104.73C17—C21—H1c21109.47
F2—C10—C13118.53 (14)C17—C21—H2c21109.47
F2—C10—C18118.81 (16)H1c21—C21—H2c21109.45
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (2)1.89 (2)2.6540 (17)148 (2)
O2—H2···N20.85 (2)1.89 (2)2.6741 (18)152 (2)
O1—H1···C150.85 (2)2.45 (2)2.937 (2)117.4 (18)
O2—H2···C40.85 (2)2.35 (2)2.867 (2)119.3 (19)
C13—H1C13···F2i0.962.433.2645 (19)145
C17—H2C17···F2ii0.962.543.356 (2)142
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H24F2N2O2
Mr374.4
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)120
a, b, c (Å)15.4029 (4), 18.7822 (4), 6.1639 (2)
V3)1783.22 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.86
Crystal size (mm)0.31 × 0.15 × 0.11
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.222, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
40310, 3177, 2984
Rint0.049
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.42
No. of reflections3177
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.11

Computer programs: CrysAlis PRO (Agilent, 2010), SUPERFLIP (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (2)1.89 (2)2.6540 (17)148 (2)
O2—H2···N20.85 (2)1.89 (2)2.6741 (18)152 (2)
C13—H1C13···F2i0.962.433.2645 (19)144.88
C17—H2C17···F2ii0.962.543.356 (2)142
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationHutchins, R. O., Kopp, L. D. & Eliel, E. L. (1968). J. Am. Chem. Soc. 90, 7174–7175.  CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o1542.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds