organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6,8-Tetra­kis(2-fluoro­phen­yl)-3,7-di­aza­bi­cyclo­[3.3.1]nonan-9-one

aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: parthisivam@yahoo.co.in

(Received 24 November 2012; accepted 21 December 2012; online 4 January 2013)

The title compound, C31H24F4N2O, exists in a chair–boat conformation with an equatorial orientation of the 2-fluoro­phenyl groups on both sides of the secondary amino group of the chair form. The benzene rings in the `chair' part are inclined to each other at 19.4 (1)°, while the equivalent angle between the benzene rings in the `boat' part is 75.6 (1)°. One F atom was treated as disordered over two positions in a 0.838 (4):0.162 (4) ratio. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains along [001] and these chains are held together via weak N—H⋯F and C—H⋯F inter­actions.

Related literature

For the synthesis and stereochemistry of 3,7-diaza­bicyclo­[3.3.1]nonan-9-ones, see: Parthiban et al. (2008[Parthiban, P., Ramachandran, R., Aridoss, G. & Kabilan, S. (2008). Magn. Reson. Chem. 46, 780-785.]). For the biological activity of 3,7-diaza­bicyclo­[3.3.1]nonan-9-one derivatives and related structures, see: Park et al. (2012[Park, D. H., Ramkumar, V. & Parthiban, P. (2012). Acta Cryst. E68, o1481.]); Parthiban et al. (2009[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981-6985.], 2010[Parthiban, P., Kabilan, S., Ramkumar, V. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 6452-6458.]); Asakawa (1995[Asakawa, Y. (1995). In Progress in the Chemistry of Organic Natural Products, edited by G. W. Moore, R. E. Steglich & W. Tamm. New York: Springer-Verlag.]); Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C31H24F4N2O

  • Mr = 516.52

  • Monoclinic, P 21 /c

  • a = 12.5610 (11) Å

  • b = 15.9118 (13) Å

  • c = 13.0221 (8) Å

  • β = 103.207 (3)°

  • V = 2533.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.45 × 0.35 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.978

  • 18116 measured reflections

  • 5466 independent reflections

  • 3571 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.163

  • S = 1.05

  • 5466 reflections

  • 361 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (2) 2.26 (2) 3.119 (2) 175.2 (19)
N2—H2N⋯F1ii 0.92 (2) 2.46 (2) 3.332 (2) 158.4 (17)
C22—H22⋯F4iii 0.93 2.52 3.345 (3) 148
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The Lupin alkaloids contain the 3,7-diazabicyclo[3.3.1]nonan-9-one nucleus, displaying various biological actions (Parthiban et al., 2009, 2010; Asakawa, 1995; Jeyaraman & Avila, 1981). Since the biological actions mainly depend on the stereochemistry of the molecules, we examined the title compound, (I), to explore its stereochemistry in the solid-state.

In (I) (Fig. 1), the piperidone ring N1—C1—C2—C7—C5—C6 adopts a chair conformation, according to Cremer & Pople (1975). The total puckering amplitude QT is 0.623 (2) Å, and the phase angle θ is 2.7 (3)°. The piperidone ring N2—C3—C2—C7—C5—C4 adopts a boat conformation with QT = 0.799 (2) and θ = 90.38 (14)°. The 2-fluorophenyl groups attached to the 'chair' piperidone ring are in equatoril position with the torsion angles C7—C2—C1—C8 = 179.04 (19)° and C26—C6—C5—C7 = 176.67 (19)°. The 2-fluorophenyl groups attached to the 'boat' piperidone ring have the following torsion angles - C7—C2—C3—C14 = 116.8 (2)° and C20—C4—C5—C7 = -122.5 (2)°. The benzene rings of the 2-fluorophenyl group on the chair form piperidone are inclined to each other at an angle of 19.44 (3)°, whereas, the same attached on the boat form are inclined to each other at an angle of 74.55 (5)°. In one of the 2-fluorophenyl groups, the F atom is disordered in two positions in a ratio 0.838 (4):0.162 (4). On the basis of the above analysis, it is concluded that the title compound exists in the chair-boat conformation with an equatorial orientation of the 2-fluorophenyl groups on both sides of the secondary amino group of the piperidone in the chair conformation.

In the crystal, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains in [001], and these chains held together via weak N—H···F and C—H···F interactions (Table 1).

Related literature top

For the synthesis and stereochemistry of 3,7-diazabicyclo[3.3.1] nonan-9-ones, see: Parthiban et al. (2008). For the biological activity of 3,7-diazabicyclo[3.3.1]nonan-9-one derivatives and related structures, see: Park et al. (2012); Parthiban et al. (2009, 2010); Asakawa (1995); Jeyaraman & Avila (1981). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The 2,4,6,8-tetrakis(2-fluorophenyl)-3,7-diazabicyclo[3.3.1] nonan-9-one was synthesized by successive Mannich condensations in one-pot, using 2-fluorobenzaldehyde (0.2 mol, 21 ml), acetone (0.05 mol, 3.7 ml) and ammonium acetate (0.1 mol, 7.7 g) in a 50 ml of absolute ethanol (Parthiban et al., 2008). The mixture was gently warmed on a hot plate at 303 K (30° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude 3,7-diazabicycle was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. The X-ray diffraction quality crystals of pure 2,4,6,8- tetrakis(2-fluorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one was obtained by slow evaporation from ethanol.

Refinement top

N-bound H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C) and for methyl H atoms at Uiso(H) = 1.5Ueq(C). In one of the 4-fluorophenyl group the F atom is disordered over two positions in a ratio 0.838 (4):0.162 (4).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering and 30% probability displacement ellipsoids. For the disordered atoms, only major part is shown.
2,4,6,8-Tetrakis(2-fluorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one top
Crystal data top
C31H24F4N2OF(000) = 1072
Mr = 516.52Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5770 reflections
a = 12.5610 (11) Åθ = 2.9–25.5°
b = 15.9118 (13) ŵ = 0.10 mm1
c = 13.0221 (8) ÅT = 298 K
β = 103.207 (3)°Rectangular, colourless
V = 2533.9 (3) Å30.45 × 0.35 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5466 independent reflections
Radiation source: fine-focus sealed tube3571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 28.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1216
Tmin = 0.955, Tmax = 0.978k = 2120
18116 measured reflectionsl = 1713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.6943P]
where P = (Fo2 + 2Fc2)/3
5466 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.48 e Å3
2 restraintsΔρmin = 0.40 e Å3
Crystal data top
C31H24F4N2OV = 2533.9 (3) Å3
Mr = 516.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5610 (11) ŵ = 0.10 mm1
b = 15.9118 (13) ÅT = 298 K
c = 13.0221 (8) Å0.45 × 0.35 × 0.22 mm
β = 103.207 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5466 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3571 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.978Rint = 0.024
18116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
5466 reflectionsΔρmin = 0.40 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.09684 (16)0.22644 (12)0.67314 (15)0.0421 (5)
H10.11380.28390.69900.051*
C20.08454 (15)0.16959 (12)0.76747 (14)0.0396 (4)
H20.02820.19300.80030.048*
C30.05623 (15)0.07695 (11)0.73535 (14)0.0374 (4)
H30.04720.07080.65900.045*
C40.25113 (15)0.04433 (11)0.76060 (13)0.0349 (4)
H40.24050.04120.68380.042*
C50.28201 (15)0.13566 (11)0.79861 (13)0.0352 (4)
H50.35110.13550.85190.042*
C60.29129 (15)0.19517 (11)0.70649 (14)0.0374 (4)
H60.30620.25220.73440.045*
C70.19273 (16)0.17098 (11)0.84505 (14)0.0399 (4)
C80.00906 (17)0.22752 (13)0.58965 (17)0.0486 (5)
C90.02763 (19)0.18027 (17)0.49859 (18)0.0627 (6)
H90.02920.14880.48340.075*
C100.1295 (2)0.1787 (2)0.4290 (2)0.0863 (9)
H100.13990.14630.36810.104*
C110.2141 (3)0.2240 (3)0.4492 (3)0.0970 (11)
H110.28240.22190.40280.116*
C120.1985 (2)0.2725 (2)0.5373 (3)0.0974 (11)
H120.25540.30450.55160.117*
C130.0969 (2)0.27338 (16)0.6050 (2)0.0709 (7)
C140.04489 (16)0.04573 (13)0.76692 (16)0.0445 (5)
C150.0597 (2)0.0564 (2)0.86796 (19)0.0782 (8)
H150.00880.08770.91600.094*
C160.1475 (3)0.0222 (3)0.8997 (3)0.1031 (12)
H160.15460.02970.96870.124*
C170.2242 (2)0.0226 (2)0.8300 (3)0.0946 (10)
H170.28420.04490.85110.113*
C180.2129 (2)0.0345 (2)0.7304 (3)0.0840 (9)
H180.26470.06520.68250.101*
C190.1239 (2)0.00066 (16)0.70106 (19)0.0620 (6)
C200.33704 (15)0.01785 (11)0.81200 (15)0.0390 (4)
C220.4343 (2)0.09151 (15)0.9675 (2)0.0670 (7)
H220.44330.10271.03910.080*
C230.4977 (2)0.13167 (15)0.9108 (3)0.0787 (9)
H230.55070.16980.94360.094*
C240.4831 (2)0.11565 (16)0.8054 (3)0.0785 (8)
H240.52690.14190.76620.094*
C260.38407 (15)0.16825 (11)0.65687 (14)0.0396 (4)
C270.49103 (17)0.17460 (13)0.71274 (16)0.0470 (5)
C280.57966 (19)0.15100 (16)0.6745 (2)0.0643 (6)
H280.65030.15540.71590.077*
C290.5608 (2)0.12072 (17)0.5734 (2)0.0706 (7)
H290.61940.10530.54490.085*
C300.4567 (2)0.11314 (17)0.5146 (2)0.0656 (6)
H300.44460.09200.44640.079*
C310.36851 (18)0.13667 (13)0.55559 (16)0.0501 (5)
H310.29790.13110.51440.060*
F10.08125 (15)0.32238 (11)0.69330 (16)0.1080 (6)
F20.11291 (17)0.01465 (15)0.60175 (14)0.1208 (8)
F40.50996 (10)0.20708 (9)0.81229 (10)0.0628 (4)
N10.18692 (13)0.19524 (10)0.63013 (13)0.0407 (4)
H1N0.1914 (17)0.2264 (13)0.5771 (17)0.047 (6)*
N20.14804 (12)0.02386 (10)0.79069 (12)0.0384 (4)
H2N0.1312 (17)0.0318 (15)0.7762 (15)0.050 (6)*
O10.20898 (13)0.20153 (11)0.93241 (11)0.0625 (4)
C210.35739 (17)0.03465 (13)0.91879 (17)0.0520 (5)
H210.31710.00610.95940.062*0.838 (4)
F3A0.3015 (5)0.0083 (4)0.9768 (5)0.082 (4)0.162 (4)
C250.40231 (19)0.06003 (13)0.75767 (19)0.0565 (6)
H21A0.39170.05070.68550.068*0.162 (4)
F30.38896 (17)0.04757 (12)0.65546 (14)0.0842 (8)0.838 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0463 (12)0.0347 (10)0.0476 (11)0.0057 (8)0.0154 (9)0.0037 (8)
C20.0432 (11)0.0402 (10)0.0402 (9)0.0048 (8)0.0195 (8)0.0030 (8)
C30.0368 (10)0.0416 (10)0.0351 (9)0.0020 (8)0.0110 (8)0.0013 (7)
C40.0377 (10)0.0348 (9)0.0342 (9)0.0026 (7)0.0123 (8)0.0016 (7)
C50.0386 (11)0.0348 (9)0.0324 (8)0.0029 (7)0.0084 (8)0.0012 (7)
C60.0406 (11)0.0327 (9)0.0404 (9)0.0012 (8)0.0126 (8)0.0032 (8)
C70.0518 (12)0.0342 (9)0.0371 (9)0.0029 (8)0.0169 (9)0.0018 (8)
C80.0435 (12)0.0481 (11)0.0574 (12)0.0114 (9)0.0178 (10)0.0172 (10)
C90.0527 (14)0.0828 (17)0.0510 (12)0.0133 (12)0.0084 (11)0.0049 (12)
C100.0658 (19)0.121 (3)0.0641 (16)0.0033 (18)0.0028 (14)0.0096 (16)
C110.0544 (19)0.126 (3)0.101 (2)0.0119 (18)0.0019 (17)0.035 (2)
C120.0531 (18)0.102 (2)0.137 (3)0.0391 (16)0.0203 (19)0.038 (2)
C130.0689 (18)0.0603 (15)0.0879 (18)0.0262 (13)0.0271 (15)0.0130 (14)
C140.0338 (11)0.0501 (11)0.0490 (11)0.0006 (9)0.0086 (9)0.0004 (9)
C150.0657 (17)0.117 (2)0.0589 (14)0.0358 (16)0.0284 (13)0.0164 (15)
C160.085 (2)0.154 (3)0.087 (2)0.048 (2)0.0537 (18)0.024 (2)
C170.0587 (18)0.118 (3)0.118 (3)0.0284 (17)0.0429 (18)0.008 (2)
C180.0473 (16)0.099 (2)0.103 (2)0.0296 (14)0.0103 (15)0.0190 (17)
C190.0531 (15)0.0736 (16)0.0579 (14)0.0078 (12)0.0097 (11)0.0140 (12)
C200.0347 (10)0.0317 (9)0.0517 (11)0.0046 (7)0.0121 (9)0.0001 (8)
C220.0588 (16)0.0522 (14)0.0775 (16)0.0064 (12)0.0104 (13)0.0168 (12)
C230.0567 (17)0.0413 (13)0.123 (3)0.0055 (11)0.0104 (16)0.0058 (15)
C240.0616 (17)0.0480 (14)0.130 (3)0.0146 (12)0.0307 (17)0.0136 (16)
C260.0418 (11)0.0355 (10)0.0441 (10)0.0014 (8)0.0149 (9)0.0092 (8)
C270.0459 (13)0.0471 (11)0.0482 (11)0.0043 (9)0.0109 (9)0.0076 (9)
C280.0394 (13)0.0721 (16)0.0820 (17)0.0034 (11)0.0151 (12)0.0116 (13)
C290.0545 (16)0.0823 (18)0.0846 (18)0.0079 (13)0.0359 (14)0.0012 (15)
C300.0631 (17)0.0791 (17)0.0621 (14)0.0056 (13)0.0299 (12)0.0059 (12)
C310.0462 (12)0.0595 (13)0.0476 (11)0.0002 (10)0.0167 (9)0.0028 (10)
F10.1086 (14)0.0917 (12)0.1292 (15)0.0536 (11)0.0388 (11)0.0123 (11)
F20.1206 (16)0.1637 (19)0.0805 (11)0.0621 (14)0.0277 (11)0.0527 (12)
F40.0538 (8)0.0760 (9)0.0545 (8)0.0110 (6)0.0040 (6)0.0014 (6)
N10.0402 (10)0.0455 (9)0.0387 (8)0.0055 (7)0.0140 (7)0.0106 (7)
N20.0350 (9)0.0349 (9)0.0468 (9)0.0021 (7)0.0123 (7)0.0028 (7)
O10.0697 (11)0.0749 (11)0.0451 (8)0.0027 (8)0.0179 (7)0.0241 (7)
C210.0460 (13)0.0501 (12)0.0568 (13)0.0031 (10)0.0054 (10)0.0101 (10)
F3A0.092 (8)0.107 (8)0.047 (5)0.011 (6)0.015 (5)0.019 (5)
C250.0596 (14)0.0415 (11)0.0733 (15)0.0040 (10)0.0254 (12)0.0051 (10)
F30.1167 (17)0.0793 (13)0.0713 (12)0.0305 (11)0.0522 (11)0.0031 (9)
Geometric parameters (Å, º) top
C1—N11.459 (2)C15—H150.9300
C1—C81.514 (3)C16—C171.364 (4)
C1—C21.561 (3)C16—H160.9300
C1—H10.9800C17—C181.350 (4)
C2—C71.497 (3)C17—H170.9300
C2—C31.551 (3)C18—C191.373 (4)
C2—H20.9800C18—H180.9300
C3—N21.478 (2)C19—F21.350 (3)
C3—C141.506 (3)C20—C251.374 (3)
C3—H30.9800C20—C211.381 (3)
C4—N21.473 (2)C22—C231.363 (4)
C4—C201.504 (3)C22—C211.369 (3)
C4—C51.555 (2)C22—H220.9300
C4—H40.9800C23—C241.366 (4)
C5—C71.500 (3)C23—H230.9300
C5—C61.553 (2)C24—C251.382 (3)
C5—H50.9800C24—H240.9300
C6—N11.453 (2)C26—C271.378 (3)
C6—C261.518 (3)C26—C311.383 (3)
C6—H60.9800C27—F41.365 (2)
C7—O11.211 (2)C27—C281.371 (3)
C8—C131.375 (3)C28—C291.371 (4)
C8—C91.378 (3)C28—H280.9300
C9—C101.389 (3)C29—C301.362 (3)
C9—H90.9300C29—H290.9300
C10—C111.358 (4)C30—C311.386 (3)
C10—H100.9300C30—H300.9300
C11—C121.360 (5)C31—H310.9300
C11—H110.9300N1—H1N0.86 (2)
C12—C131.376 (4)N2—H2N0.92 (2)
C12—H120.9300C21—F3A1.331 (2)
C13—F11.366 (3)C21—H210.9300
C14—C191.370 (3)C25—F31.318 (3)
C14—C151.381 (3)C25—H21A0.9300
C15—C161.376 (3)
N1—C1—C8111.06 (16)C14—C15—H15119.0
N1—C1—C2109.24 (15)C17—C16—C15120.0 (3)
C8—C1—C2110.06 (16)C17—C16—H16120.0
N1—C1—H1108.8C15—C16—H16120.0
C8—C1—H1108.8C18—C17—C16120.0 (3)
C2—C1—H1108.8C18—C17—H17120.0
C7—C2—C3108.22 (15)C16—C17—H17120.0
C7—C2—C1106.54 (15)C17—C18—C19118.9 (3)
C3—C2—C1113.34 (14)C17—C18—H18120.5
C7—C2—H2109.5C19—C18—H18120.5
C3—C2—H2109.5F2—C19—C14118.1 (2)
C1—C2—H2109.5F2—C19—C18118.0 (2)
N2—C3—C14106.93 (15)C14—C19—C18123.9 (2)
N2—C3—C2107.85 (15)C25—C20—C21115.4 (2)
C14—C3—C2113.30 (15)C25—C20—C4122.96 (18)
N2—C3—H3109.6C21—C20—C4121.63 (17)
C14—C3—H3109.6C23—C22—C21119.8 (3)
C2—C3—H3109.6C23—C22—H22120.1
N2—C4—C20108.73 (14)C21—C22—H22120.1
N2—C4—C5107.01 (14)C22—C23—C24119.7 (2)
C20—C4—C5111.82 (15)C22—C23—H23120.1
N2—C4—H4109.7C24—C23—H23120.1
C20—C4—H4109.7C23—C24—C25119.2 (2)
C5—C4—H4109.7C23—C24—H24120.4
C7—C5—C6106.14 (14)C25—C24—H24120.4
C7—C5—C4108.87 (14)C27—C26—C31116.01 (18)
C6—C5—C4112.39 (14)C27—C26—C6120.37 (17)
C7—C5—H5109.8C31—C26—C6123.62 (17)
C6—C5—H5109.8F4—C27—C28117.94 (19)
C4—C5—H5109.8F4—C27—C26117.80 (17)
N1—C6—C26111.68 (15)C28—C27—C26124.3 (2)
N1—C6—C5108.28 (15)C29—C28—C27117.9 (2)
C26—C6—C5110.93 (15)C29—C28—H28121.0
N1—C6—H6108.6C27—C28—H28121.0
C26—C6—H6108.6C30—C29—C28120.3 (2)
C5—C6—H6108.6C30—C29—H29119.9
O1—C7—C2124.89 (17)C28—C29—H29119.9
O1—C7—C5123.25 (18)C29—C30—C31120.6 (2)
C2—C7—C5111.70 (15)C29—C30—H30119.7
C13—C8—C9115.5 (2)C31—C30—H30119.7
C13—C8—C1120.3 (2)C26—C31—C30120.9 (2)
C9—C8—C1124.06 (18)C26—C31—H31119.5
C8—C9—C10121.4 (2)C30—C31—H31119.5
C8—C9—H9119.3C6—N1—C1113.27 (15)
C10—C9—H9119.3C6—N1—H1N109.6 (14)
C11—C10—C9120.6 (3)C1—N1—H1N108.1 (14)
C11—C10—H10119.7C4—N2—C3112.30 (14)
C9—C10—H10119.7C4—N2—H2N109.5 (13)
C10—C11—C12119.7 (3)C3—N2—H2N109.4 (13)
C10—C11—H11120.1F3A—C21—C22119.0 (4)
C12—C11—H11120.1F3A—C21—C20118.1 (4)
C11—C12—C13118.7 (3)C22—C21—C20122.9 (2)
C11—C12—H12120.6F3A—C21—H211.7
C13—C12—H12120.6C22—C21—H21118.6
F1—C13—C8117.4 (2)C20—C21—H21118.6
F1—C13—C12118.6 (3)F3—C25—C20119.6 (2)
C8—C13—C12124.0 (3)F3—C25—C24117.5 (2)
C19—C14—C15115.3 (2)C20—C25—C24123.0 (2)
C19—C14—C3122.84 (18)F3—C25—H21A1.1
C15—C14—C3121.68 (18)C20—C25—H21A118.5
C16—C15—C14122.0 (2)C24—C25—H21A118.5
C16—C15—H15119.0
N1—C1—C2—C756.93 (19)C15—C14—C19—F2178.8 (3)
C8—C1—C2—C7179.12 (15)C3—C14—C19—F23.8 (3)
N1—C1—C2—C362.0 (2)C15—C14—C19—C180.5 (4)
C8—C1—C2—C360.2 (2)C3—C14—C19—C18175.5 (2)
C7—C2—C3—N21.65 (18)C17—C18—C19—F2178.7 (3)
C1—C2—C3—N2116.29 (16)C17—C18—C19—C140.5 (5)
C7—C2—C3—C14116.50 (16)N2—C4—C20—C25130.75 (19)
C1—C2—C3—C14125.56 (17)C5—C4—C20—C25111.3 (2)
N2—C4—C5—C73.65 (19)N2—C4—C20—C2151.0 (2)
C20—C4—C5—C7122.62 (16)C5—C4—C20—C2166.9 (2)
N2—C4—C5—C6120.95 (15)C21—C22—C23—C240.8 (4)
C20—C4—C5—C6120.09 (16)C22—C23—C24—C251.3 (4)
C7—C5—C6—N160.26 (18)N1—C6—C26—C27171.53 (17)
C4—C5—C6—N158.65 (19)C5—C6—C26—C2767.6 (2)
C7—C5—C6—C26176.86 (15)N1—C6—C26—C318.4 (2)
C4—C5—C6—C2664.2 (2)C5—C6—C26—C31112.5 (2)
C3—C2—C7—O1123.9 (2)C31—C26—C27—F4178.71 (17)
C1—C2—C7—O1113.9 (2)C6—C26—C27—F41.2 (3)
C3—C2—C7—C560.54 (18)C31—C26—C27—C280.8 (3)
C1—C2—C7—C561.65 (18)C6—C26—C27—C28179.30 (19)
C6—C5—C7—O1112.1 (2)F4—C27—C28—C29178.1 (2)
C4—C5—C7—O1126.71 (19)C26—C27—C28—C291.4 (4)
C6—C5—C7—C263.50 (18)C27—C28—C29—C301.3 (4)
C4—C5—C7—C257.69 (18)C28—C29—C30—C310.7 (4)
N1—C1—C8—C13163.67 (19)C27—C26—C31—C300.1 (3)
C2—C1—C8—C1375.2 (2)C6—C26—C31—C30180.0 (2)
N1—C1—C8—C920.7 (3)C29—C30—C31—C260.0 (4)
C2—C1—C8—C9100.4 (2)C26—C6—N1—C1175.95 (15)
C13—C8—C9—C101.2 (4)C5—C6—N1—C161.62 (19)
C1—C8—C9—C10174.7 (2)C8—C1—N1—C6178.37 (15)
C8—C9—C10—C110.1 (4)C2—C1—N1—C660.0 (2)
C9—C10—C11—C121.1 (5)C20—C4—N2—C3174.49 (14)
C10—C11—C12—C130.9 (5)C5—C4—N2—C364.57 (18)
C9—C8—C13—F1178.7 (2)C14—C3—N2—C4176.03 (14)
C1—C8—C13—F15.3 (3)C2—C3—N2—C461.80 (18)
C9—C8—C13—C121.4 (4)C23—C22—C21—F3A175.4 (4)
C1—C8—C13—C12174.6 (2)C23—C22—C21—C202.7 (3)
C11—C12—C13—F1179.7 (3)C25—C20—C21—F3A175.8 (3)
C11—C12—C13—C80.4 (5)C4—C20—C21—F3A2.5 (3)
N2—C3—C14—C19105.3 (2)C25—C20—C21—C222.3 (3)
C2—C3—C14—C19136.0 (2)C4—C20—C21—C22179.37 (18)
N2—C3—C14—C1569.4 (3)C21—C20—C25—F3179.71 (19)
C2—C3—C14—C1549.3 (3)C4—C20—C25—F31.4 (3)
C19—C14—C15—C160.4 (4)C21—C20—C25—C240.0 (3)
C3—C14—C15—C16174.7 (3)C4—C20—C25—C24178.4 (2)
C14—C15—C16—C171.2 (6)C23—C24—C25—F3178.5 (2)
C15—C16—C17—C181.1 (6)C23—C24—C25—C201.7 (4)
C16—C17—C18—C190.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)2.26 (2)3.119 (2)175.2 (19)
N2—H2N···F1ii0.92 (2)2.46 (2)3.332 (2)158.4 (17)
C22—H22···F4iii0.932.523.345 (3)148
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+3/2; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC31H24F4N2O
Mr516.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.5610 (11), 15.9118 (13), 13.0221 (8)
β (°) 103.207 (3)
V3)2533.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.35 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.955, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
18116, 5466, 3571
Rint0.024
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.163, 1.05
No. of reflections5466
No. of parameters361
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.40

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (2)2.26 (2)3.119 (2)175.2 (19)
N2—H2N···F1ii0.92 (2)2.46 (2)3.332 (2)158.4 (17)
C22—H22···F4iii0.932.523.345 (3)148
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+3/2; (iii) x+1, y, z+2.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT-Madras, for the X-ray data collection.

References

First citationAsakawa, Y. (1995). In Progress in the Chemistry of Organic Natural Products, edited by G. W. Moore, R. E. Steglich & W. Tamm. New York: Springer-Verlag.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationPark, D. H., Ramkumar, V. & Parthiban, P. (2012). Acta Cryst. E68, o1481.  CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Kabilan, S., Ramkumar, V. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 6452–6458.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParthiban, P., Ramachandran, R., Aridoss, G. & Kabilan, S. (2008). Magn. Reson. Chem. 46, 780–785.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds