metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridodi-μ2-hydroxido-di-μ3-oxido-octa­phenyl­tetra­tin(IV) di­methyl sulfoxide disolvate

aDepartment of Chemistry, Faculty of Science, Karaj Branch, Islamic Azad, University, Karaj, Iran, bFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113, Iran
*Correspondence e-mail: sh-foladi@kiau.ac.ir

(Received 27 November 2012; accepted 22 December 2012; online 9 January 2013)

In the centrosymmetric tetra­nuclear title mol­ecule, [Sn4(C6H5)8Cl2O2(OH)2]·2C2H6OS, the two independent tinIV atoms show distorted trigonal–bipyramidal SnC2O3 and SnC2O2Cl coordination geometries. The four tinIV atoms are bridged by the hydroxo and oxo ligands, forming a ladder-like array of three edge-connected Sn2O2 squares. The solvent mol­ecules are linked to the tetra­nuclear mol­ecule via O–H⋯O hydrogen bonds.

Related literature

For biological applications of organotin(IV) complexes, see: Davies & Smith (1982[Davies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. Gordon, A. Stone & E. W. Abel, pp. 519-616. New York: Pergamon Press.]). For the crystal structures of closely related compounds, see: Vollano et al. (1984[Vollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745-750.]); Kresinski et al. (1994[Kresinski, R. A., Staples, R. J. & Fackler, J. P. (1994). Acta Cryst. C50, 40-41.]); Yap et al. (2010[Yap, Q. L., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m8.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(C6H5)8Cl2O2(OH)2]·2C2H6OS

  • Mr = 1384.73

  • Monoclinic, P 21 /n

  • a = 11.521 (2) Å

  • b = 19.372 (4) Å

  • c = 11.854 (2) Å

  • β = 93.61 (3)°

  • V = 2640.4 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 298 K

  • 0.50 × 0.47 × 0.45 mm

Data collection
  • STOE IPDS 2T diffractometer

  • Absorption correction: numerical (X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.420, Tmax = 0.452

  • 28831 measured reflections

  • 7108 independent reflections

  • 6034 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.05

  • 7108 reflections

  • 304 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 (2) 2.04 (2) 2.851 (3) 166 (4)
Symmetry code: (i) x+1, y, z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Organotin(IV) complexes have been studied due to the diversity of structures that such compounds can form and in view of their potential biological activities (Davies & Smith, 1982). Herewith we present the title compound (I).

In (I) (Fig. 1), all geometric parameters are normal and correspond to those reported for related compounds (Vollano et al., 1984; Kresinski et al., 1994) The similar structure with bromide (instead of chloride) anions was reported by Yap et al. (2010). All tin atoms are five-coordinated, form distorted trigonal–bipyramidal environments. Oxide or hydroxide groups play bridging role between Sn atoms. Each of the inner SnIV atoms is coordinated by three O atoms in the equatorial plane and two phenyl rings in axial position. The equatorial angle is shorter than ideally 180° being only 124.24 (11) °. The Sn2—O1 and Sn2—O2 bond distances are 2.0451 (18) and 2.1630 (19) Å, respectively. Each of the outer SnIV atoms is coordinated by one chloride and two O atoms in equatorial plane and axial positions are occupied by two phenyl rings. The Sn1—Cl1 bond distance is 2.4628 (9) Å and axial angle, C1—Sn2—C7 is 120.35 (11) °. The centrosymmetric tetrameric species bears a central part which consists of Sn2O2 ring with two adjacent Sn2O(OH) four-membered rings. This behavior is also consistent with the reported structure. The DMSO molecules accompany the tetranuclear compound by O2—H2A···O3 hydrogen bonds.

Related literature top

For biological applications of organotin(IV) complexes, see: Davies & Smith (1982). For the crystal structures of closely related compounds, see: Vollano et al. (1984); Kresinski et al. (1994); Yap et al. (2010).

Experimental top

The solution of 2-mercaptobenzaldehyde (2.76 g, 20 mmol) in 15 ml e thanol was added to solution of diethylamine (0.6 g, 10 mmol) in 10 ml e thanol. The obtained mixture was refluxed at 60 C for 4 h. The yellow crystals of the product was filtered off and dried. In order to synthesis of the title compound, the obtained ligand and dichloridediphenyltin were dissolved in DMSO at ambient temperature. Colourless crystals of the tetramer suitable for X-ray were obtained by slow evaporation of the solvent within one month.

Refinement top

O-bound H atom was found in a difference Fourier map and isotropically refined with O–H distance restraint of 0.824 (19) Å. C-bound H atoms were positioned geometrically and refined as riding atoms with C—H = 0.93-0.96 Å, and Uiso(H) = 1.2-1.5 Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (a) 2-x, -y, 2-z]. Solvent molecule and C-bound H atoms were omitted for clarity.
Dichloridodi-µ2-hydroxido-di-µ3-oxido-octaphenyltetratin(IV) dimethyl sulfoxide disolvate top
Crystal data top
[Sn4(C6H5)8Cl2O2(OH)2]·2C2H6OSF(000) = 1360
Mr = 1384.73Dx = 1.742 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7108 reflections
a = 11.521 (2) Åθ = 2.0–29.2°
b = 19.372 (4) ŵ = 2.10 mm1
c = 11.854 (2) ÅT = 298 K
β = 93.61 (3)°Block, colourless
V = 2640.4 (9) Å30.50 × 0.47 × 0.45 mm
Z = 2
Data collection top
STOE IPDS 2T
diffractometer
7108 independent reflections
Radiation source: fine-focus sealed tube6034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
Detector resolution: 0.15 pixels mm-1θmax = 29.2°, θmin = 2.0°
rotation method scansh = 1514
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2005)
k = 2626
Tmin = 0.420, Tmax = 0.452l = 1616
28831 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.0145P]
where P = (Fo2 + 2Fc2)/3
7108 reflections(Δ/σ)max = 0.002
304 parametersΔρmax = 0.92 e Å3
1 restraintΔρmin = 0.83 e Å3
Crystal data top
[Sn4(C6H5)8Cl2O2(OH)2]·2C2H6OSV = 2640.4 (9) Å3
Mr = 1384.73Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.521 (2) ŵ = 2.10 mm1
b = 19.372 (4) ÅT = 298 K
c = 11.854 (2) Å0.50 × 0.47 × 0.45 mm
β = 93.61 (3)°
Data collection top
STOE IPDS 2T
diffractometer
7108 independent reflections
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2005)
6034 reflections with I > 2σ(I)
Tmin = 0.420, Tmax = 0.452Rint = 0.095
28831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.92 e Å3
7108 reflectionsΔρmin = 0.83 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.923073 (16)0.109727 (9)0.801260 (13)0.03225 (6)
Sn21.050659 (15)0.052478 (9)1.103601 (13)0.02920 (5)
Cl10.98076 (8)0.20923 (4)0.92137 (6)0.05121 (18)
S10.46511 (8)0.04222 (5)0.28731 (8)0.0587 (2)
O10.96963 (18)0.04965 (9)0.93664 (14)0.0343 (4)
O21.12468 (17)0.00375 (10)1.24848 (15)0.0344 (4)
O30.3549 (2)0.02385 (16)0.3395 (2)0.0620 (6)
C10.7530 (3)0.14934 (15)0.7610 (2)0.0386 (6)
C20.6974 (3)0.19241 (18)0.8329 (3)0.0491 (7)
H20.73090.20020.90520.059*
C30.5946 (4)0.2238 (2)0.8011 (4)0.0655 (11)
H30.55790.25180.85170.079*
C40.5453 (3)0.2137 (2)0.6929 (4)0.0697 (11)
H40.47640.23600.66970.084*
C50.5987 (4)0.1705 (2)0.6196 (3)0.0676 (11)
H50.56520.16300.54720.081*
C60.7027 (3)0.13809 (19)0.6540 (3)0.0508 (7)
H60.73830.10870.60460.061*
C71.0545 (3)0.11797 (15)0.6825 (2)0.0376 (6)
C81.0729 (3)0.06512 (18)0.6064 (2)0.0463 (7)
H81.02810.02530.60750.056*
C91.1578 (3)0.0713 (2)0.5289 (3)0.0558 (8)
H91.17040.03540.47900.067*
C101.2236 (3)0.1309 (2)0.5260 (3)0.0581 (9)
H101.27920.13570.47290.070*
C111.2069 (3)0.1829 (2)0.6012 (3)0.0605 (9)
H111.25200.22270.59990.073*
C121.1228 (3)0.17680 (18)0.6797 (3)0.0510 (8)
H121.11240.21240.73080.061*
C131.2033 (2)0.10738 (14)1.0699 (2)0.0343 (5)
C141.2472 (3)0.10957 (18)0.9635 (3)0.0491 (7)
H141.21150.08420.90450.059*
C151.3439 (3)0.1494 (2)0.9450 (3)0.0626 (10)
H151.37320.15060.87360.075*
C161.3969 (3)0.1874 (2)1.0319 (4)0.0640 (10)
H161.46140.21441.01860.077*
C171.3556 (3)0.18588 (19)1.1379 (3)0.0585 (9)
H171.39230.21121.19650.070*
C181.2580 (3)0.14597 (16)1.1566 (3)0.0431 (6)
H181.22900.14521.22810.052*
C190.9102 (2)0.09486 (14)1.1881 (2)0.0356 (5)
C200.9278 (3)0.11474 (17)1.3006 (2)0.0489 (8)
H200.99980.10751.33880.059*
C210.8387 (4)0.1453 (2)1.3562 (3)0.0680 (12)
H210.85120.15861.43130.082*
C220.7322 (4)0.1558 (2)1.3006 (4)0.0762 (14)
H220.67250.17591.33840.091*
C230.7139 (4)0.1373 (2)1.1918 (4)0.0757 (13)
H230.64150.14501.15480.091*
C240.8021 (3)0.10635 (18)1.1330 (3)0.0501 (8)
H240.78830.09371.05770.060*
C250.4630 (5)0.0023 (3)0.1581 (4)0.0878 (16)
H25A0.44870.05040.17080.132*
H25B0.53660.00310.12550.132*
H25C0.40240.01610.10740.132*
C260.5777 (4)0.0069 (3)0.3584 (4)0.0856 (15)
H26A0.58510.00630.43660.128*
H26B0.64980.00170.32430.128*
H26C0.55900.05510.35260.128*
H2A1.1948 (17)0.000 (2)1.265 (3)0.056 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03346 (10)0.03404 (10)0.02899 (9)0.00335 (7)0.00002 (7)0.00140 (6)
Sn20.02770 (9)0.03127 (9)0.02838 (9)0.00062 (6)0.00011 (6)0.00281 (6)
Cl10.0625 (5)0.0413 (4)0.0486 (4)0.0008 (3)0.0060 (3)0.0099 (3)
S10.0438 (5)0.0623 (6)0.0697 (5)0.0040 (4)0.0006 (4)0.0115 (4)
O10.0412 (11)0.0300 (9)0.0305 (8)0.0013 (8)0.0078 (7)0.0007 (6)
O20.0310 (10)0.0380 (10)0.0335 (8)0.0001 (8)0.0050 (7)0.0015 (7)
O30.0473 (14)0.0759 (18)0.0629 (14)0.0007 (13)0.0047 (11)0.0011 (13)
C10.0339 (14)0.0383 (14)0.0435 (14)0.0037 (11)0.0002 (11)0.0092 (11)
C20.0469 (18)0.0511 (18)0.0506 (16)0.0107 (14)0.0125 (14)0.0096 (13)
C30.056 (2)0.058 (2)0.086 (3)0.0166 (18)0.026 (2)0.0201 (19)
C40.0402 (18)0.068 (3)0.100 (3)0.0114 (18)0.0023 (19)0.034 (2)
C50.061 (2)0.072 (3)0.067 (2)0.004 (2)0.0175 (19)0.0212 (19)
C60.0478 (18)0.0527 (18)0.0509 (17)0.0036 (15)0.0049 (14)0.0092 (14)
C70.0392 (15)0.0417 (15)0.0318 (12)0.0018 (12)0.0014 (11)0.0048 (10)
C80.0459 (17)0.0531 (18)0.0400 (14)0.0018 (14)0.0040 (13)0.0037 (12)
C90.050 (2)0.076 (2)0.0417 (15)0.0036 (18)0.0085 (14)0.0083 (15)
C100.0400 (17)0.087 (3)0.0482 (17)0.0027 (18)0.0115 (14)0.0055 (17)
C110.053 (2)0.060 (2)0.069 (2)0.0105 (17)0.0147 (18)0.0113 (17)
C120.054 (2)0.0446 (17)0.0554 (17)0.0063 (14)0.0116 (15)0.0018 (13)
C130.0267 (12)0.0376 (14)0.0383 (13)0.0003 (10)0.0010 (10)0.0024 (10)
C140.0414 (17)0.065 (2)0.0411 (15)0.0018 (15)0.0037 (13)0.0044 (13)
C150.046 (2)0.081 (3)0.062 (2)0.0063 (19)0.0154 (17)0.0149 (18)
C160.0386 (18)0.066 (2)0.087 (3)0.0126 (17)0.0001 (18)0.021 (2)
C170.0457 (19)0.0465 (19)0.082 (2)0.0079 (15)0.0082 (17)0.0068 (16)
C180.0403 (16)0.0405 (15)0.0483 (15)0.0018 (12)0.0012 (12)0.0045 (12)
C190.0350 (14)0.0334 (13)0.0389 (13)0.0036 (11)0.0073 (11)0.0028 (10)
C200.057 (2)0.0464 (17)0.0440 (16)0.0026 (14)0.0115 (15)0.0073 (12)
C210.091 (3)0.054 (2)0.064 (2)0.003 (2)0.039 (2)0.0101 (16)
C220.076 (3)0.059 (2)0.099 (3)0.020 (2)0.053 (3)0.010 (2)
C230.050 (2)0.077 (3)0.103 (3)0.028 (2)0.026 (2)0.031 (2)
C240.0365 (16)0.060 (2)0.0539 (17)0.0081 (14)0.0049 (13)0.0122 (14)
C250.074 (3)0.123 (4)0.067 (2)0.034 (3)0.013 (2)0.002 (3)
C260.050 (2)0.105 (4)0.099 (3)0.007 (2)0.014 (2)0.033 (3)
Geometric parameters (Å, º) top
Sn1—O12.0271 (18)C10—C111.367 (6)
Sn1—C12.130 (3)C10—H100.9300
Sn1—C72.137 (3)C11—C121.389 (5)
Sn1—O2i2.196 (2)C11—H110.9300
Sn1—Cl12.4628 (9)C12—H120.9300
Sn2—O1i2.0451 (18)C13—C141.388 (4)
Sn2—C132.115 (3)C13—C181.390 (4)
Sn2—C192.121 (3)C14—C151.385 (5)
Sn2—O12.1351 (18)C14—H140.9300
Sn2—O22.1630 (19)C15—C161.377 (6)
S1—O31.490 (3)C15—H150.9300
S1—C251.757 (5)C16—C171.371 (5)
S1—C261.777 (4)C16—H160.9300
O1—Sn2i2.0451 (18)C17—C181.394 (5)
O2—Sn1i2.196 (2)C17—H170.9300
O2—H2A0.824 (19)C18—H180.9300
C1—C21.379 (4)C19—C241.387 (4)
C1—C61.379 (4)C19—C201.390 (4)
C2—C31.363 (5)C20—C211.387 (5)
C2—H20.9300C20—H200.9300
C3—C41.384 (6)C21—C221.370 (7)
C3—H30.9300C21—H210.9300
C4—C51.379 (6)C22—C231.343 (7)
C4—H40.9300C22—H220.9300
C5—C61.390 (5)C23—C241.402 (5)
C5—H50.9300C23—H230.9300
C6—H60.9300C24—H240.9300
C7—C121.387 (4)C25—H25A0.9600
C7—C81.389 (4)C25—H25B0.9600
C8—C91.389 (4)C25—H25C0.9600
C8—H80.9300C26—H26A0.9600
C9—C101.384 (6)C26—H26B0.9600
C9—H90.9300C26—H26C0.9600
O1—Sn1—C1125.30 (10)C11—C10—H10120.0
O1—Sn1—C7113.66 (10)C9—C10—H10120.0
C1—Sn1—C7120.35 (11)C10—C11—C12120.5 (4)
O1—Sn1—O2i74.05 (7)C10—C11—H11119.8
C1—Sn1—O2i93.75 (10)C12—C11—H11119.8
C7—Sn1—O2i93.94 (9)C7—C12—C11120.4 (3)
O1—Sn1—Cl186.75 (6)C7—C12—H12119.8
C1—Sn1—Cl193.34 (9)C11—C12—H12119.8
C7—Sn1—Cl198.39 (8)C14—C13—C18118.8 (3)
O2i—Sn1—Cl1160.17 (5)C14—C13—Sn2122.8 (2)
O1i—Sn2—C13121.78 (9)C18—C13—Sn2118.3 (2)
O1i—Sn2—C19113.91 (10)C15—C14—C13120.3 (3)
C13—Sn2—C19124.24 (11)C15—C14—H14119.9
O1i—Sn2—O173.87 (8)C13—C14—H14119.9
C13—Sn2—O199.07 (9)C16—C15—C14120.1 (3)
C19—Sn2—O198.37 (10)C16—C15—H15119.9
O1i—Sn2—O274.43 (7)C14—C15—H15119.9
C13—Sn2—O296.46 (9)C17—C16—C15120.7 (3)
C19—Sn2—O295.42 (9)C17—C16—H16119.6
O1—Sn2—O2148.27 (7)C15—C16—H16119.6
O3—S1—C25106.2 (2)C16—C17—C18119.2 (3)
O3—S1—C26106.9 (2)C16—C17—H17120.4
C25—S1—C2696.9 (3)C18—C17—H17120.4
Sn1—O1—Sn2i110.49 (8)C13—C18—C17120.8 (3)
Sn1—O1—Sn2142.90 (9)C13—C18—H18119.6
Sn2i—O1—Sn2106.13 (8)C17—C18—H18119.6
Sn2—O2—Sn1i100.26 (8)C24—C19—C20118.6 (3)
Sn2—O2—H2A118 (3)C24—C19—Sn2121.9 (2)
Sn1i—O2—H2A112 (3)C20—C19—Sn2119.4 (2)
C2—C1—C6118.6 (3)C21—C20—C19120.4 (4)
C2—C1—Sn1122.4 (2)C21—C20—H20119.8
C6—C1—Sn1118.5 (2)C19—C20—H20119.8
C3—C2—C1121.9 (4)C22—C21—C20120.1 (4)
C3—C2—H2119.0C22—C21—H21119.9
C1—C2—H2119.0C20—C21—H21119.9
C2—C3—C4119.5 (4)C23—C22—C21120.2 (3)
C2—C3—H3120.3C23—C22—H22119.9
C4—C3—H3120.3C21—C22—H22119.9
C5—C4—C3119.8 (3)C22—C23—C24121.1 (4)
C5—C4—H4120.1C22—C23—H23119.5
C3—C4—H4120.1C24—C23—H23119.5
C4—C5—C6120.0 (4)C19—C24—C23119.5 (4)
C4—C5—H5120.0C19—C24—H24120.2
C6—C5—H5120.0C23—C24—H24120.2
C1—C6—C5120.2 (4)S1—C25—H25A109.5
C1—C6—H6119.9S1—C25—H25B109.5
C5—C6—H6119.9H25A—C25—H25B109.5
C12—C7—C8118.7 (3)S1—C25—H25C109.5
C12—C7—Sn1120.2 (2)H25A—C25—H25C109.5
C8—C7—Sn1121.1 (2)H25B—C25—H25C109.5
C9—C8—C7120.6 (3)S1—C26—H26A109.5
C9—C8—H8119.7S1—C26—H26B109.5
C7—C8—H8119.7H26A—C26—H26B109.5
C10—C9—C8119.8 (3)S1—C26—H26C109.5
C10—C9—H9120.1H26A—C26—H26C109.5
C8—C9—H9120.1H26B—C26—H26C109.5
C11—C10—C9119.9 (3)
C1—Sn1—O1—Sn2i90.30 (14)O2i—Sn1—C7—C83.9 (2)
C7—Sn1—O1—Sn2i80.16 (12)Cl1—Sn1—C7—C8168.3 (2)
O2i—Sn1—O1—Sn2i7.14 (8)C12—C7—C8—C90.3 (5)
Cl1—Sn1—O1—Sn2i177.90 (9)Sn1—C7—C8—C9179.4 (3)
C1—Sn1—O1—Sn299.31 (19)C7—C8—C9—C100.9 (5)
C7—Sn1—O1—Sn290.23 (19)C8—C9—C10—C111.6 (6)
O2i—Sn1—O1—Sn2177.53 (19)C9—C10—C11—C121.0 (6)
Cl1—Sn1—O1—Sn27.51 (16)C8—C7—C12—C110.9 (5)
O1i—Sn2—O1—Sn1170.6 (2)Sn1—C7—C12—C11178.8 (3)
C13—Sn2—O1—Sn150.03 (19)C10—C11—C12—C70.3 (6)
C19—Sn2—O1—Sn176.80 (19)O1i—Sn2—C13—C1453.5 (3)
O2—Sn2—O1—Sn1168.40 (12)C19—Sn2—C13—C14129.8 (2)
O1i—Sn2—O1—Sn2i0.0O1—Sn2—C13—C1423.1 (3)
C13—Sn2—O1—Sn2i120.60 (10)O2—Sn2—C13—C14129.2 (2)
C19—Sn2—O1—Sn2i112.57 (10)O1i—Sn2—C13—C18130.2 (2)
O2—Sn2—O1—Sn2i2.2 (2)C19—Sn2—C13—C1846.5 (3)
O1i—Sn2—O2—Sn1i6.35 (7)O1—Sn2—C13—C18153.2 (2)
C13—Sn2—O2—Sn1i127.59 (9)O2—Sn2—C13—C1854.5 (2)
C19—Sn2—O2—Sn1i106.98 (10)C18—C13—C14—C150.2 (5)
O1—Sn2—O2—Sn1i8.58 (18)Sn2—C13—C14—C15176.5 (3)
O1—Sn1—C1—C260.3 (3)C13—C14—C15—C160.3 (6)
C7—Sn1—C1—C2129.9 (2)C14—C15—C16—C170.6 (6)
O2i—Sn1—C1—C2133.3 (2)C15—C16—C17—C180.8 (6)
Cl1—Sn1—C1—C228.1 (2)C14—C13—C18—C170.4 (5)
O1—Sn1—C1—C6127.6 (2)Sn2—C13—C18—C17176.9 (3)
C7—Sn1—C1—C642.3 (3)C16—C17—C18—C130.7 (5)
O2i—Sn1—C1—C654.5 (2)O1i—Sn2—C19—C2470.8 (3)
Cl1—Sn1—C1—C6144.0 (2)C13—Sn2—C19—C24112.2 (3)
C6—C1—C2—C30.1 (5)O1—Sn2—C19—C245.2 (3)
Sn1—C1—C2—C3172.2 (3)O2—Sn2—C19—C24146.2 (2)
C1—C2—C3—C41.4 (6)O1i—Sn2—C19—C20112.1 (2)
C2—C3—C4—C51.9 (6)C13—Sn2—C19—C2064.8 (3)
C3—C4—C5—C61.0 (6)O1—Sn2—C19—C20171.9 (2)
C2—C1—C6—C50.8 (5)O2—Sn2—C19—C2036.8 (2)
Sn1—C1—C6—C5171.6 (3)C24—C19—C20—C210.1 (5)
C4—C5—C6—C10.4 (6)Sn2—C19—C20—C21177.3 (3)
O1—Sn1—C7—C12102.1 (3)C19—C20—C21—C220.3 (6)
C1—Sn1—C7—C1286.9 (3)C20—C21—C22—C230.6 (6)
O2i—Sn1—C7—C12176.4 (3)C21—C22—C23—C240.5 (7)
Cl1—Sn1—C7—C1212.0 (3)C20—C19—C24—C230.2 (5)
O1—Sn1—C7—C878.2 (3)Sn2—C19—C24—C23177.3 (3)
C1—Sn1—C7—C892.8 (3)C22—C23—C24—C190.1 (6)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3ii0.82 (2)2.04 (2)2.851 (3)166 (4)
Symmetry code: (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Sn4(C6H5)8Cl2O2(OH)2]·2C2H6OS
Mr1384.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.521 (2), 19.372 (4), 11.854 (2)
β (°) 93.61 (3)
V3)2640.4 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.50 × 0.47 × 0.45
Data collection
DiffractometerSTOE IPDS 2T
diffractometer
Absorption correctionNumerical
(X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.420, 0.452
No. of measured, independent and
observed [I > 2σ(I)] reflections
28831, 7108, 6034
Rint0.095
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.05
No. of reflections7108
No. of parameters304
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.92, 0.83

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.824 (19)2.04 (2)2.851 (3)166 (4)
Symmetry code: (i) x+1, y, z+1.
 

References

First citationDavies, A. G. & Smith, P. G. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. Gordon, A. Stone & E. W. Abel, pp. 519–616. New York: Pergamon Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKresinski, R. A., Staples, R. J. & Fackler, J. P. (1994). Acta Cryst. C50, 40–41.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745–750.  CSD CrossRef CAS Web of Science Google Scholar
First citationYap, Q. L., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m8.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds