organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o299-o300

Ethyl 4-anilino-2,6-bis­­(4-fluoro­phen­yl)-1-phenyl-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bLaboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235, West Bengal, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

(Received 12 December 2012; accepted 22 January 2013; online 26 January 2013)

In the title compound, C32H28F2N2O2, the tetra­hydro­pyridine ring adopts a distorted boat conformation. The two fluoro­phenyl groups are attached to the tetra­hydro­pyridine ring in a trans orientation. The dihedral angle between the planes of the fluoro-substituted rings is 57.0 (1)°. The amino group and carbonyl O atom are involved in intra­molecular hydrogen bonding. In the crystal, weak C—H⋯O, C—H⋯F and C—H⋯π inter­actions link the mol­ecules into columns along [010].

Related literature

For the crystal structures of related densely functionalized piperidine derivatives, see: Sambyal et al. (2011[Sambyal, A., Bamezai, R. K., Razdan, T. K. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 868-873.]); Brahmachari & Das (2012[Brahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479-1484.]); Khan et al. (2008[Khan, T. K., Parvin, T. & Choudhury, L. H. (2008). J. Org. Chem. 73, 8398-8402.], 2010[Khan, T. K., Khan, Md. M. & Bannuru, K. K. R. (2010). Tetrahedron, 66, 7762-7772.]). For general background to functionalized piperidines, see: Desai et al. (1992[Desai, M. C., Lefkowitz, S. L., Thadeio, P. F., Longo, K. P. & Srider, R. M. (1992). J. Med. Chem. 35, 4911-4913.]). For applications of functionalized piperidines, see: Jaen et al. (1988[Jaen, J. C., Wise, L. D., Heffner, T. G., Pugsley, T. A. & Meltzer, L. T. (1988). J. Med. Chem. 31, 1621-1625.]); Schotte et al. (1996[Schotte, A., Janssen, P. F. M., Gommeren, W., Luyten, W. H. M. L., Gompel, P., Lasage, A. S., Loore, De. K. & Leysen, J. E. (1996). Psychopharmacology, 124, 57-73.]); Agrawal & Somani (2009[Agrawal, A. G. & Somani, R. R. (2009). Mini Rev. Med. Chem. 9, 638-52.]). For bond-length data in organic compounds, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C32H28F2N2O2

  • Mr = 510.56

  • Triclinic, [P \overline 1]

  • a = 10.0432 (4) Å

  • b = 10.4646 (4) Å

  • c = 13.9932 (6) Å

  • α = 105.422 (4)°

  • β = 105.982 (4)°

  • γ = 96.407 (4)°

  • V = 1335.53 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.846, Tmax = 1.000

  • 19971 measured reflections

  • 5521 independent reflections

  • 3372 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.167

  • S = 1.03

  • 5521 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.01 2.672 (3) 133
C11—H11⋯O1i 0.93 2.46 3.298 (3) 150
C9—H9A⋯F1ii 0.96 2.55 3.412 (3) 148
C26—H26⋯Cg1ii 0.93 2.66 3.470 (3) 146
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Functionalized piperidines are found to constitute a very important core in numerous natural products (Desai et al., 1992). In particular, 1,4-disubstituted piperidine scaffolds find useful applications as established drugs (Schotte et al., 1996) and they exhibit a wide range of pharmacological activities including antibacterial, antimalarial, anti-hypertensive, anticonvulsant, anti-inflammatory, and enzyme inhibitory activity (Agrawal & Somani, 2009; Jaen et al., 1988). In continuation of our structural studies of densely functionalized piperidines (Sambyal et al., 2011; Brahmachari & Das, 2012) we present here the title compound, (I).

In (I) (Fig. 1), all bond lengths are within normal ranges (Allen et al., 1987) and comparable to those observed in related structures (Khan et al., 2008, 2010). The dihedral angle between fluoro-substituted phenyl rings are 57.0 (1) °. In the title molecule, tetrahydropyridine ring adopts a distorted bath conformation. The length of the double bond C7=O1 is confirmed by the respective distance of 1.222 (2) Å. The length of the double bond C7=O1 is larger than the standard value for carbonyl group (1.192 Å) and lengthening of the C7=O1 double bond is due to strong intramolecular hydrogen bond between N2 and O1. This intramolecular interaction leads to the formation of a pseudo-six membered ring comprising atoms O1, C7, C3, C4, N2 and H2.

In the crystal, weak intermolecular C—H···O, C—H···F and C—H···π interactions (Table 1) link the molecules into columns in [010].

Related literature top

For the crystal structures of related densely functionalized piperidine derivatives, see: Sambyal et al. (2011); Brahmachari & Das (2012); Khan et al. (2008, 2010). For general background to functionalized piperidines, see: Desai et al. (1992). For applications of functionalized piperidines, see: Jaen et al. (1988); Schotte et al. (1996); Agrawal & Somani (2009). For bond-length data in organic compounds, see: Allen et al. (1987).

Experimental top

An oven-dried screw cap reaction tube was charged with a magnetic stir bar, aniline (2 mmol), ethyl acetoacetate (1 mmol) and Bi(NO3)3.5H2O (10 mol%) in 4 ml ethanol; the mixture was stirred at room temperature for 20 min, and after then 4-fluorobenzaldehyde (2 mmol) was added to the reaction mixture and stirring was continued up to 17 h to complete the reaction (monitored by TLC). On completion of the reaction, a thick white precipitate was obtained. The solid residue was filtered off and washed with cold ethanol–water. The solid mass was dissolved in hot ethyl acetate–ethanol mixture and filtered off when bismuth salt separated out; the filtrate on standing afforded white crystals of the title compound, characterized by elemental analyses and spectral studies including FT–IR, 1H-NMR, and 13C-NMR. For X-ray study, single crystals of the title compound were prepared by further recrystallization by slow evaporation from ethanol-ethyl acetate-water solution. White crystals; mp 204–208 °C. 1H NMR (400 MHz, CDCl3): δH 1.45 (t, 3H, J = 7.2 Hz), 2.73–2.86 (m, 2H), 4.28–4.36 (m, 1H), 4.41–4.49 (m, 1H), 5.11 (d, 1H, J = 2.8 Hz), 6.39 (d, 3H, J = 6.4 Hz), 6.48 (d, 2H, J = 8.4 Hz), 6.63 (t, 1H, J = 7.2 Hz), 6.93- 6.98 (m, 4H), 7.06–7.16 (m, 7H), 7.24–7.29 (m, 2H), 10.31 (s, 1H). 13C NMR (100 MHz, CDCl3): δC. 14.81, 33.81, 54.61, 57.35, 59.83, 98.05, 113.01, 114.92, 115.14, 115.37, 115.59, 116.58, 125.66, 125.88, 127.87, 127.96, 128.09, 128.17, 128.98, 129.02, 137.76, 138.09, 138.12, 139.48, 139.51, 146.64, 155.91, 160.30, 160.77, 162.74, 163.20, 168.08. IR ν max (KBr): 3234, 3059, 2976, 2924, 2866, 1649, 1591, 1498, 1408, 1259, 1070, 1020, 821, 694, 620 cm-1. Anal. Calcd for C32 H28F2N2 O2: C 75.28, H 5.53, N 5.49; found: C 75.29, H 5.54, N 5.51.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.98 Å and N—H distance of 0.86 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl groups where Uiso(H) = 1.5Ueq(C). There are 14 reflections below theta minimum set for data collection. Some of them have theta less than 2.5 ° which will anyway be blocked collimator. However, some of them could be collected by lowering the minimum theta. The reported value of theta minimum was set by the automatic data collection strategy of the diffractometer software.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
Ethyl 4-anilino-2,6-bis(4-fluorophenyl)-1-phenyl-1,2,5,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C32H28F2N2O2Z = 2
Mr = 510.56F(000) = 536
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0432 (4) ÅCell parameters from 6806 reflections
b = 10.4646 (4) Åθ = 3.5–29.1°
c = 13.9932 (6) ŵ = 0.09 mm1
α = 105.422 (4)°T = 293 K
β = 105.982 (4)°Block, white
γ = 96.407 (4)°0.30 × 0.20 × 0.20 mm
V = 1335.53 (9) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5521 independent reflections
Radiation source: fine-focus sealed tube3372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.1049 pixels mm-1θmax = 26.5°, θmin = 3.5°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.846, Tmax = 1.000l = 1717
19971 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.1544P]
where P = (Fo2 + 2Fc2)/3
5521 reflections(Δ/σ)max = 0.001
344 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C32H28F2N2O2γ = 96.407 (4)°
Mr = 510.56V = 1335.53 (9) Å3
Triclinic, P1Z = 2
a = 10.0432 (4) ÅMo Kα radiation
b = 10.4646 (4) ŵ = 0.09 mm1
c = 13.9932 (6) ÅT = 293 K
α = 105.422 (4)°0.30 × 0.20 × 0.20 mm
β = 105.982 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5521 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3372 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 1.000Rint = 0.041
19971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
5521 reflectionsΔρmin = 0.24 e Å3
344 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06508 (17)0.83928 (15)0.48277 (12)0.0642 (4)
O20.24814 (15)1.00928 (15)0.52566 (11)0.0602 (4)
N10.42208 (16)0.98911 (15)0.80637 (13)0.0435 (4)
N20.02371 (17)0.75242 (17)0.63745 (14)0.0541 (5)
H20.00170.73840.57110.065*
F10.4324 (2)0.36262 (17)0.6220 (2)0.1577 (10)
F20.1378 (2)1.48695 (18)0.96125 (17)0.1255 (7)
C20.32539 (19)1.04907 (18)0.73928 (15)0.0413 (5)
H2A0.37811.08530.69970.050*
C30.20278 (19)0.94002 (19)0.66044 (15)0.0426 (5)
C40.13514 (19)0.85367 (19)0.69787 (15)0.0427 (5)
C50.2015 (2)0.8679 (2)0.81070 (16)0.0463 (5)
H5A0.16050.79110.82680.056*
H5B0.18440.94950.85420.056*
C60.36178 (19)0.87535 (18)0.83276 (15)0.0425 (5)
H60.40500.89180.90790.051*
C70.1637 (2)0.9234 (2)0.55011 (17)0.0475 (5)
C80.2171 (3)0.9964 (3)0.41545 (19)0.0757 (7)
H8A0.12661.02060.38930.091*
H8B0.21230.90370.37570.091*
C90.3289 (4)1.0865 (3)0.4038 (2)0.1045 (11)
H9A0.33461.17770.44500.157*
H9B0.30831.08160.33160.157*
H9C0.41741.05970.42730.157*
C100.2753 (2)1.16718 (18)0.80160 (16)0.0430 (5)
C110.1627 (2)1.2155 (2)0.75133 (19)0.0563 (6)
H110.11751.17470.68000.068*
C120.1156 (3)1.3227 (2)0.8043 (2)0.0719 (7)
H120.03971.35440.76970.086*
C130.1829 (3)1.3806 (2)0.9080 (2)0.0740 (7)
C140.2956 (3)1.3388 (3)0.9614 (2)0.0745 (7)
H140.34081.38151.03250.089*
C150.3412 (3)1.2309 (2)0.90674 (18)0.0585 (6)
H150.41801.20080.94190.070*
C160.56767 (19)1.03852 (19)0.84332 (15)0.0420 (5)
C170.6603 (2)0.9685 (2)0.89330 (15)0.0447 (5)
H170.62410.88880.90280.054*
C180.8046 (2)1.0161 (2)0.92869 (18)0.0570 (6)
H180.86420.96800.96180.068*
C190.8616 (2)1.1337 (2)0.9157 (2)0.0693 (7)
H190.95891.16480.93880.083*
C200.7717 (2)1.2039 (2)0.8678 (2)0.0671 (7)
H200.80891.28400.85920.081*
C210.6271 (2)1.1582 (2)0.83221 (17)0.0536 (6)
H210.56861.20810.80030.064*
C220.3867 (2)0.73939 (19)0.77545 (16)0.0451 (5)
C230.4137 (3)0.7159 (2)0.68185 (19)0.0653 (6)
H230.42260.78620.65360.078*
C240.4279 (3)0.5881 (3)0.6291 (2)0.0934 (10)
H240.44520.57160.56540.112*
C250.4157 (3)0.4868 (3)0.6732 (3)0.0967 (11)
C260.3936 (3)0.5079 (3)0.7662 (3)0.0910 (10)
H260.38960.43830.79580.109*
C270.3772 (2)0.6339 (2)0.8168 (2)0.0667 (7)
H270.35920.64860.88020.080*
C280.0612 (2)0.6666 (2)0.67033 (18)0.0496 (5)
C290.1048 (3)0.5324 (2)0.6143 (2)0.0746 (7)
H290.07760.49740.55580.089*
C300.1896 (3)0.4487 (3)0.6452 (3)0.0919 (10)
H300.21920.35740.60690.110*
C310.2302 (3)0.4971 (4)0.7296 (3)0.0927 (10)
H310.28500.43960.75090.111*
C320.1896 (3)0.6314 (4)0.7833 (3)0.0997 (10)
H320.21870.66600.84090.120*
C330.1066 (3)0.7165 (3)0.7540 (2)0.0779 (8)
H330.08100.80840.79100.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0674 (10)0.0715 (10)0.0401 (9)0.0066 (8)0.0064 (8)0.0150 (7)
O20.0605 (9)0.0788 (10)0.0398 (9)0.0019 (8)0.0154 (7)0.0229 (7)
N10.0408 (9)0.0471 (9)0.0449 (10)0.0064 (7)0.0120 (7)0.0207 (8)
N20.0500 (10)0.0623 (11)0.0438 (11)0.0046 (8)0.0126 (8)0.0151 (8)
F10.1198 (16)0.0709 (11)0.224 (3)0.0209 (10)0.0456 (16)0.0400 (13)
F20.1365 (16)0.1095 (13)0.1386 (18)0.0639 (12)0.0714 (14)0.0069 (12)
C20.0420 (10)0.0494 (11)0.0349 (11)0.0056 (8)0.0127 (8)0.0182 (9)
C30.0412 (11)0.0508 (11)0.0357 (11)0.0061 (8)0.0129 (9)0.0138 (9)
C40.0396 (10)0.0502 (11)0.0398 (12)0.0089 (9)0.0153 (9)0.0136 (9)
C50.0481 (12)0.0515 (11)0.0440 (12)0.0077 (9)0.0209 (9)0.0168 (9)
C60.0456 (11)0.0506 (11)0.0329 (11)0.0061 (9)0.0124 (9)0.0169 (9)
C70.0475 (12)0.0522 (12)0.0444 (13)0.0081 (9)0.0166 (10)0.0161 (10)
C80.0909 (19)0.0969 (19)0.0430 (15)0.0081 (15)0.0225 (13)0.0308 (13)
C90.121 (3)0.130 (3)0.066 (2)0.007 (2)0.0425 (19)0.0371 (18)
C100.0433 (11)0.0439 (10)0.0437 (12)0.0040 (8)0.0148 (9)0.0180 (9)
C110.0446 (12)0.0547 (13)0.0625 (15)0.0062 (10)0.0086 (11)0.0171 (11)
C120.0525 (14)0.0662 (15)0.098 (2)0.0196 (12)0.0213 (14)0.0261 (15)
C130.0787 (18)0.0629 (15)0.090 (2)0.0252 (14)0.0453 (17)0.0149 (15)
C140.095 (2)0.0770 (17)0.0530 (16)0.0256 (15)0.0316 (14)0.0117 (13)
C150.0678 (15)0.0645 (14)0.0468 (14)0.0206 (11)0.0191 (11)0.0192 (11)
C160.0423 (11)0.0475 (11)0.0338 (11)0.0052 (8)0.0128 (9)0.0096 (8)
C170.0455 (11)0.0519 (11)0.0372 (11)0.0092 (9)0.0124 (9)0.0159 (9)
C180.0459 (12)0.0739 (15)0.0501 (14)0.0136 (11)0.0108 (10)0.0214 (11)
C190.0428 (13)0.0845 (17)0.0729 (18)0.0013 (12)0.0068 (12)0.0299 (14)
C200.0549 (14)0.0659 (14)0.0740 (18)0.0060 (11)0.0097 (13)0.0296 (13)
C210.0499 (12)0.0525 (12)0.0559 (14)0.0029 (10)0.0089 (10)0.0238 (10)
C220.0402 (11)0.0470 (11)0.0452 (12)0.0036 (8)0.0115 (9)0.0137 (9)
C230.0730 (16)0.0738 (15)0.0536 (15)0.0261 (12)0.0255 (12)0.0170 (12)
C240.086 (2)0.107 (2)0.068 (2)0.0378 (18)0.0240 (16)0.0102 (17)
C250.0681 (18)0.0488 (16)0.136 (3)0.0092 (13)0.0179 (19)0.0149 (18)
C260.0741 (19)0.0514 (16)0.148 (3)0.0066 (13)0.043 (2)0.0268 (18)
C270.0667 (15)0.0553 (14)0.0875 (19)0.0092 (11)0.0341 (14)0.0288 (13)
C280.0377 (11)0.0551 (13)0.0563 (14)0.0060 (9)0.0136 (10)0.0207 (10)
C290.0713 (17)0.0625 (15)0.085 (2)0.0021 (12)0.0329 (15)0.0119 (14)
C300.0710 (18)0.0629 (17)0.140 (3)0.0017 (14)0.030 (2)0.0377 (18)
C310.0594 (17)0.113 (3)0.136 (3)0.0133 (17)0.0367 (19)0.084 (2)
C320.083 (2)0.120 (3)0.112 (3)0.0001 (18)0.0578 (19)0.041 (2)
C330.0705 (16)0.0800 (17)0.089 (2)0.0029 (13)0.0479 (15)0.0169 (15)
Geometric parameters (Å, º) top
O1—C71.222 (2)C14—C151.386 (3)
O2—C71.341 (2)C14—H140.9300
O2—C81.452 (3)C15—H150.9300
N1—C161.395 (2)C16—C211.392 (3)
N1—C61.455 (2)C16—C171.399 (3)
N1—C21.471 (2)C17—C181.381 (3)
N2—C41.352 (2)C17—H170.9300
N2—C281.418 (3)C18—C191.376 (3)
N2—H20.8600C18—H180.9300
F1—C251.360 (3)C19—C201.371 (3)
F2—C131.362 (3)C19—H190.9300
C2—C31.518 (3)C20—C211.380 (3)
C2—C101.532 (3)C20—H200.9300
C2—H2A0.9800C21—H210.9300
C3—C41.365 (3)C22—C231.374 (3)
C3—C71.441 (3)C22—C271.382 (3)
C4—C51.494 (3)C23—C241.389 (4)
C5—C61.543 (3)C23—H230.9300
C5—H5A0.9700C24—C251.371 (5)
C5—H5B0.9700C24—H240.9300
C6—C221.521 (3)C25—C261.345 (5)
C6—H60.9800C26—C271.373 (4)
C8—C91.457 (4)C26—H260.9300
C8—H8A0.9700C27—H270.9300
C8—H8B0.9700C28—C291.367 (3)
C9—H9A0.9600C28—C331.368 (3)
C9—H9B0.9600C29—C301.385 (4)
C9—H9C0.9600C29—H290.9300
C10—C151.375 (3)C30—C311.345 (5)
C10—C111.381 (3)C30—H300.9300
C11—C121.379 (3)C31—C321.359 (4)
C11—H110.9300C31—H310.9300
C12—C131.353 (4)C32—C331.369 (4)
C12—H120.9300C32—H320.9300
C13—C141.360 (4)C33—H330.9300
C7—O2—C8116.64 (17)C13—C14—H14121.0
C16—N1—C6120.52 (15)C15—C14—H14121.0
C16—N1—C2121.37 (15)C10—C15—C14121.5 (2)
C6—N1—C2118.11 (15)C10—C15—H15119.3
C4—N2—C28127.81 (18)C14—C15—H15119.3
C4—N2—H2116.1C21—C16—N1121.98 (17)
C28—N2—H2116.1C21—C16—C17117.20 (18)
N1—C2—C3110.00 (14)N1—C16—C17120.82 (17)
N1—C2—C10112.99 (15)C18—C17—C16121.00 (19)
C3—C2—C10112.16 (15)C18—C17—H17119.5
N1—C2—H2A107.1C16—C17—H17119.5
C3—C2—H2A107.1C19—C18—C17121.0 (2)
C10—C2—H2A107.1C19—C18—H18119.5
C4—C3—C7121.12 (18)C17—C18—H18119.5
C4—C3—C2117.10 (18)C20—C19—C18118.5 (2)
C7—C3—C2121.69 (17)C20—C19—H19120.7
N2—C4—C3123.90 (19)C18—C19—H19120.7
N2—C4—C5120.37 (17)C19—C20—C21121.4 (2)
C3—C4—C5115.44 (17)C19—C20—H20119.3
C4—C5—C6108.66 (16)C21—C20—H20119.3
C4—C5—H5A110.0C20—C21—C16120.9 (2)
C6—C5—H5A110.0C20—C21—H21119.5
C4—C5—H5B110.0C16—C21—H21119.5
C6—C5—H5B110.0C23—C22—C27118.5 (2)
H5A—C5—H5B108.3C23—C22—C6122.42 (19)
N1—C6—C22114.26 (16)C27—C22—C6119.0 (2)
N1—C6—C5109.69 (15)C22—C23—C24120.6 (3)
C22—C6—C5109.08 (15)C22—C23—H23119.7
N1—C6—H6107.9C24—C23—H23119.7
C22—C6—H6107.9C25—C24—C23118.4 (3)
C5—C6—H6107.9C25—C24—H24120.8
O1—C7—O2121.4 (2)C23—C24—H24120.8
O1—C7—C3125.04 (19)C26—C25—F1119.6 (4)
O2—C7—C3113.54 (18)C26—C25—C24122.3 (3)
O2—C8—C9108.4 (2)F1—C25—C24118.0 (4)
O2—C8—H8A110.0C25—C26—C27118.8 (3)
C9—C8—H8A110.0C25—C26—H26120.6
O2—C8—H8B110.0C27—C26—H26120.6
C9—C8—H8B110.0C26—C27—C22121.3 (3)
H8A—C8—H8B108.4C26—C27—H27119.3
C8—C9—H9A109.5C22—C27—H27119.3
C8—C9—H9B109.5C29—C28—C33119.1 (2)
H9A—C9—H9B109.5C29—C28—N2119.4 (2)
C8—C9—H9C109.5C33—C28—N2121.4 (2)
H9A—C9—H9C109.5C28—C29—C30119.6 (3)
H9B—C9—H9C109.5C28—C29—H29120.2
C15—C10—C11117.81 (19)C30—C29—H29120.2
C15—C10—C2122.34 (18)C31—C30—C29121.2 (3)
C11—C10—C2119.83 (18)C31—C30—H30119.4
C12—C11—C10121.6 (2)C29—C30—H30119.4
C12—C11—H11119.2C30—C31—C32118.8 (3)
C10—C11—H11119.2C30—C31—H31120.6
C13—C12—C11118.2 (2)C32—C31—H31120.6
C13—C12—H12120.9C31—C32—C33121.2 (3)
C11—C12—H12120.9C31—C32—H32119.4
C12—C13—C14122.8 (2)C33—C32—H32119.4
C12—C13—F2118.9 (3)C28—C33—C32120.1 (3)
C14—C13—F2118.3 (3)C28—C33—H33120.0
C13—C14—C15118.0 (2)C32—C33—H33120.0
C16—N1—C2—C3145.42 (17)C11—C10—C15—C140.9 (3)
C6—N1—C2—C334.1 (2)C2—C10—C15—C14179.02 (19)
C16—N1—C2—C1088.4 (2)C13—C14—C15—C100.1 (4)
C6—N1—C2—C1092.11 (19)C6—N1—C16—C21170.75 (19)
N1—C2—C3—C448.6 (2)C2—N1—C16—C219.8 (3)
C10—C2—C3—C478.1 (2)C6—N1—C16—C179.4 (3)
N1—C2—C3—C7128.23 (19)C2—N1—C16—C17170.11 (18)
C10—C2—C3—C7105.1 (2)C21—C16—C17—C180.8 (3)
C28—N2—C4—C3173.38 (19)N1—C16—C17—C18179.09 (18)
C28—N2—C4—C513.1 (3)C16—C17—C18—C190.1 (3)
C7—C3—C4—N23.7 (3)C17—C18—C19—C200.8 (4)
C2—C3—C4—N2179.45 (17)C18—C19—C20—C210.7 (4)
C7—C3—C4—C5170.13 (17)C19—C20—C21—C160.3 (4)
C2—C3—C4—C56.7 (2)N1—C16—C21—C20178.9 (2)
N2—C4—C5—C6127.31 (18)C17—C16—C21—C201.0 (3)
C3—C4—C5—C646.8 (2)N1—C6—C22—C2323.4 (3)
C16—N1—C6—C2273.6 (2)C5—C6—C22—C2399.8 (2)
C2—N1—C6—C22105.88 (19)N1—C6—C22—C27158.97 (18)
C16—N1—C6—C5163.55 (16)C5—C6—C22—C2777.9 (2)
C2—N1—C6—C516.9 (2)C27—C22—C23—C241.4 (3)
C4—C5—C6—N158.4 (2)C6—C22—C23—C24176.3 (2)
C4—C5—C6—C2267.4 (2)C22—C23—C24—C250.7 (4)
C8—O2—C7—O10.4 (3)C23—C24—C25—C261.4 (5)
C8—O2—C7—C3178.66 (19)C23—C24—C25—F1178.8 (2)
C4—C3—C7—O14.5 (3)F1—C25—C26—C27179.9 (2)
C2—C3—C7—O1178.82 (19)C24—C25—C26—C272.6 (5)
C4—C3—C7—O2174.60 (17)C25—C26—C27—C221.8 (4)
C2—C3—C7—O22.1 (3)C23—C22—C27—C260.2 (3)
C7—O2—C8—C9173.5 (2)C6—C22—C27—C26177.6 (2)
N1—C2—C10—C1515.4 (3)C4—N2—C28—C29140.2 (2)
C3—C2—C10—C15140.5 (2)C4—N2—C28—C3343.1 (3)
N1—C2—C10—C11166.45 (17)C33—C28—C29—C302.2 (4)
C3—C2—C10—C1141.4 (2)N2—C28—C29—C30179.0 (2)
C15—C10—C11—C120.9 (3)C28—C29—C30—C310.1 (4)
C2—C10—C11—C12179.12 (19)C29—C30—C31—C321.8 (5)
C10—C11—C12—C130.0 (4)C30—C31—C32—C331.3 (5)
C11—C12—C13—C141.0 (4)C29—C28—C33—C322.7 (4)
C11—C12—C13—F2179.8 (2)N2—C28—C33—C32179.4 (3)
C12—C13—C14—C151.1 (4)C31—C32—C33—C281.0 (5)
F2—C13—C14—C15179.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.012.672 (3)133
C11—H11···O1i0.932.463.298 (3)150
C9—H9A···F1ii0.962.553.412 (3)148
C26—H26···Cg1ii0.932.663.470 (3)146
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC32H28F2N2O2
Mr510.56
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.0432 (4), 10.4646 (4), 13.9932 (6)
α, β, γ (°)105.422 (4), 105.982 (4), 96.407 (4)
V3)1335.53 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.846, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19971, 5521, 3372
Rint0.041
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.167, 1.03
No. of reflections5521
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.012.672 (3)133
C11—H11···O1i0.932.463.298 (3)150
C9—H9A···F1ii0.962.553.412 (3)148
C26—H26···Cg1ii0.932.663.470 (3)146
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. GB is thankful to the CSIR, New Delhi, for financial support [grant No. 02 (110)/12/EMR-II].

References

First citationAgrawal, A. G. & Somani, R. R. (2009). Mini Rev. Med. Chem. 9, 638–52.  CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479–1484.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesai, M. C., Lefkowitz, S. L., Thadeio, P. F., Longo, K. P. & Srider, R. M. (1992). J. Med. Chem. 35, 4911–4913.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaen, J. C., Wise, L. D., Heffner, T. G., Pugsley, T. A. & Meltzer, L. T. (1988). J. Med. Chem. 31, 1621–1625.  CrossRef CAS PubMed Google Scholar
First citationKhan, T. K., Khan, Md. M. & Bannuru, K. K. R. (2010). Tetrahedron, 66, 7762–7772.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, T. K., Parvin, T. & Choudhury, L. H. (2008). J. Org. Chem. 73, 8398–8402.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSambyal, A., Bamezai, R. K., Razdan, T. K. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 868–873.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchotte, A., Janssen, P. F. M., Gommeren, W., Luyten, W. H. M. L., Gompel, P., Lasage, A. S., Loore, De. K. & Leysen, J. E. (1996). Psychopharmacology, 124, 57–73.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o299-o300
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds