organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3aS,4S,7aS)-Ethyl 1-benzyl-2-(4-meth­­oxy­benz­yl)-6,7-di­methyl-3-oxo-2,3,3a,4,5,7a-hexa­hydro-1H-iso­indole-4-carboxyl­ate di­chloro­methane monosolvate

aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: wyz@zju.edu.cn

(Received 29 December 2012; accepted 25 January 2013; online 31 January 2013)

In the title compound, C28H33NO4·CH2Cl2, the pyrrolidone ring adopts a twisted envelope conformation and the cyclo­hexene has a half-chair conformation. In the crystal, weak C—H⋯O hydrogen bonds link the components into chains along [100].

Related literature

For isoindolin-1-one derivatives in cytochalasins, see: Liu et al. (2006[Liu, R., Gu, Q., Zhu, W., Cui, C., Fan, G., Fang, Y., Zhu, T. & Liu, H. (2006). J. Nat. Prod. 69, 871-875.]); Cox et al. (1983[Cox, R. H., Cutler, H. G., Hurd, R. E. & Cole, R. J. (1983). J. Agric. Food Chem. 31, 405-408.]).

[Scheme 1]

Experimental

Crystal data
  • C28H33NO4·CH2Cl2

  • Mr = 532.48

  • Monoclinic, P 21

  • a = 9.6864 (5) Å

  • b = 15.5706 (8) Å

  • c = 9.7460 (6) Å

  • β = 109.221 (7)°

  • V = 1387.99 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.32 × 0.26 × 0.23 mm

Data collection
  • Oxford Diffraction Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2011[Oxford Diffraction (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.919, Tmax = 0.941

  • 6260 measured reflections

  • 3844 independent reflections

  • 2990 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 1.07

  • 3844 reflections

  • 330 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1789 Friedel pairs

  • Flack parameter: −0.05 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29B⋯O2i 0.97 2.42 3.313 (7) 153
C6—H6⋯O3ii 0.93 2.65 3.562 (5) 166
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2011[Oxford Diffraction (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The scaffold of isoindolin-1-ones have derived many natural products and have great research values, such as cytochalasins (Liu et al. , 2006; Cox et al., 1983). In our total synthesis of cytochalasin Z8, we have obtained the title compound as a major product through intramolecular Diels-Alder reaction. The structure of the title compound has been characterized by spectroscopic methods and further confirmation by X-ray analysis. The molecule has four rings including two benzene rings and one pyrrolidone ring and one cyclohexene ring and has four stereogenic centers as indicated absolute stereoconfiguration. We report here its crystal structure (Fig. 1). In the crystals of the title compound, the pyrrolidone ring C9/C17-C19/N1 adopts twisted envelope conformation, whereas the cyclohexene ring C17-C18/C20-C23 has a half chair conformation. The crystal packing (Fig. 2) is stabilized by two weak non-classical intermolecular C—H···O hydrogen bonds, the first one between H atom of dichloromethane and the carbonyl oxygen of the pyrrolidone, with a C29—H29B···O2i, and the second one between the H atom on the benzene ring of methoxybenzyl group and the carbonyl oxygen of the carboxylate group, with C6—H6···O3ii, respectively (Table 1).

Related literature top

For isoindolin-1-one derivatives in cytochalasins, see: Liu et al. (2006); Cox et al. (1983).

Experimental top

To a solution of the (S,E)-N-(4-methoxybenzyl)-4,5-dimethyl-1-phenylhexa-3,5-dien-2-amine (272 mg, 0.85 mmol), 4-(dimethylamino)pyridine (DMAP) (10 mg, 0.085 mmol) and fumaric acid monoethyl ester (159 mg, 1.1 mmol) in dry CH2Cl2 cooled in an ice-water bath (273 K) under a nitrogen atmosphere, was added N, N'-diisopropylcarbodiimide (DIC) (164 mg, 1.3 mmol) and the reaction mixture was stirred for 4 hours at room temperature. After adding Celite, the mixture was stirred for another 30 minutes, and then the solid was filtered off and washed with CH2Cl2. The combined filtrate was evaporated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 25% of ethyl acetate in hexane) to afford the title compound in 89% yield (338 mg) as a white solid (m.p. 381–382 K). Single crystals suitable for X-ray diffraction of the title compound were grown in CH2Cl2.

Refinement top

The H atoms were placed in calculated positions with C—H = 0.93– 0.98 Å according to their own hybridization model. And included in the refinement in riding model with U iso(H)=1.2Ueq or 1.5Ueq (sp3) of the carrier atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2011); cell refinement: CrysAlis PRO (Oxford Diffraction, 2011); data reduction: CrysAlis PRO (Oxford Diffraction, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing showing one-dimensional hydrogen-bonded (dashed line) chains [symmetry codes: (i) x, y, 1+z; (ii) 1+x, y, z].
(1S,3aS,4S,7aS)-Ethyl 1-benzyl-2-(4-methoxybenzyl)-6,7-dimethyl-3-oxo-2,3,3a,4,5,7a-hexahydro-1H-isoindole-4-carboxylate dichloromethane monosolvate top
Crystal data top
C28H33NO4·CH2Cl2F(000) = 564
Mr = 532.48Dx = 1.274 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2239 reflections
a = 9.6864 (5) Åθ = 2.9–29.1°
b = 15.5706 (8) ŵ = 0.27 mm1
c = 9.7460 (6) ÅT = 293 K
β = 109.221 (7)°Block, colourless
V = 1387.99 (14) Å30.32 × 0.26 × 0.23 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini ultra)
diffractometer
3844 independent reflections
Radiation source: fine-focus sealed tube2990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.3592 pixels mm-1θmax = 25.4°, θmin = 2.9°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2011)
k = 1814
Tmin = 0.919, Tmax = 0.941l = 1111
6260 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.5082P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.26 e Å3
3844 reflectionsΔρmin = 0.22 e Å3
330 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0155 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1789 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (11)
Crystal data top
C28H33NO4·CH2Cl2V = 1387.99 (14) Å3
Mr = 532.48Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.6864 (5) ŵ = 0.27 mm1
b = 15.5706 (8) ÅT = 293 K
c = 9.7460 (6) Å0.32 × 0.26 × 0.23 mm
β = 109.221 (7)°
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini ultra)
diffractometer
3844 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2011)
2990 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.941Rint = 0.024
6260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.127Δρmax = 0.26 e Å3
S = 1.07Δρmin = 0.22 e Å3
3844 reflectionsAbsolute structure: Flack (1983), 1789 Friedel pairs
330 parametersAbsolute structure parameter: 0.05 (11)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.9553 (2)0.0250 (2)1.0097 (3)0.1866 (12)
Cl20.65374 (18)0.04546 (13)0.85047 (17)0.1164 (6)
O11.3771 (3)0.2369 (2)0.9604 (3)0.0767 (10)
O20.8238 (3)0.02886 (19)0.3287 (3)0.0632 (8)
O30.5215 (3)0.0189 (2)0.4345 (4)0.0860 (11)
O40.5046 (3)0.0707 (2)0.2171 (3)0.0750 (9)
N11.0380 (3)0.0314 (2)0.4734 (3)0.0468 (7)
C11.5287 (6)0.2472 (4)1.0238 (6)0.0980 (19)
H1A1.56700.27470.95580.147*
H1C1.54900.28201.10950.147*
H1B1.57380.19201.04950.147*
C21.3277 (4)0.1863 (3)0.8388 (4)0.0495 (9)
C31.1780 (4)0.1758 (3)0.7830 (4)0.0560 (10)
H31.11860.20160.82910.067*
C41.1162 (4)0.1279 (3)0.6604 (4)0.0528 (10)
H41.01510.12210.62340.063*
C51.2028 (4)0.0879 (2)0.5907 (4)0.0446 (9)
C61.3511 (4)0.0988 (3)0.6482 (4)0.0497 (10)
H61.41070.07260.60280.060*
C71.4150 (4)0.1476 (3)0.7712 (4)0.0540 (10)
H71.51600.15400.80770.065*
C81.1352 (4)0.0356 (3)0.4546 (4)0.0524 (10)
H8B1.21240.00940.42610.063*
H8A1.08050.07360.37680.063*
C91.0877 (4)0.0985 (2)0.5848 (4)0.0464 (9)
H91.10320.07230.68010.056*
C101.2300 (4)0.1407 (3)0.5864 (5)0.0587 (11)
H10B1.26830.17300.67610.070*
H10A1.29980.09560.58880.070*
C111.2230 (4)0.2007 (3)0.4609 (5)0.0541 (10)
C121.1740 (4)0.1739 (3)0.3175 (5)0.0594 (11)
H121.14230.11760.29520.071*
C131.1717 (5)0.2301 (4)0.2072 (6)0.0779 (15)
H131.13890.21090.11160.093*
C141.2158 (5)0.3122 (4)0.2352 (8)0.0866 (17)
H141.21210.34930.15940.104*
C151.2661 (5)0.3406 (3)0.3754 (8)0.0840 (17)
H151.29770.39710.39520.101*
C161.2701 (4)0.2854 (3)0.4887 (6)0.0705 (13)
H161.30460.30530.58390.085*
C170.9501 (4)0.1545 (2)0.5469 (4)0.0426 (9)
H170.94750.18890.46200.051*
C180.8293 (4)0.0886 (2)0.4960 (4)0.0455 (9)
H180.82080.06060.58290.055*
C190.8895 (4)0.0240 (3)0.4187 (4)0.0470 (9)
C200.6846 (4)0.1320 (3)0.4198 (4)0.0515 (10)
H200.69350.16680.33940.062*
C210.6515 (5)0.1908 (3)0.5308 (5)0.0699 (13)
H21B0.58800.23670.47850.084*
H21A0.59750.15800.58090.084*
C220.7822 (5)0.2308 (3)0.6435 (5)0.0604 (11)
C230.9207 (5)0.2151 (3)0.6560 (4)0.0556 (10)
C241.0504 (6)0.2564 (3)0.7643 (5)0.0743 (13)
H24B1.10090.29090.71430.111*
H24C1.11500.21290.81970.111*
H24A1.01850.29210.82840.111*
C250.7356 (6)0.2921 (3)0.7405 (6)0.0922 (18)
H25B0.68670.34060.68450.138*
H25C0.82020.31140.81760.138*
H25A0.67040.26320.78090.138*
C260.5632 (4)0.0670 (3)0.3608 (5)0.0645 (12)
C270.3958 (7)0.0046 (4)0.1472 (7)0.105 (2)
H27B0.44420.05020.14910.126*
H27A0.32690.00170.19970.126*
C280.3196 (7)0.0291 (5)0.0004 (7)0.116 (2)
H28C0.38690.03040.05390.173*
H28B0.27740.08500.00200.173*
H28A0.24360.01180.04390.173*
C290.7904 (7)0.0628 (5)1.0126 (7)0.124 (2)
H29A0.79830.12391.03320.149*
H29B0.76540.03461.09000.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0957 (13)0.250 (3)0.191 (2)0.0212 (17)0.0151 (13)0.069 (2)
Cl20.1087 (11)0.1250 (14)0.1006 (11)0.0138 (10)0.0143 (9)0.0090 (10)
O10.064 (2)0.099 (3)0.069 (2)0.0249 (18)0.0239 (16)0.0291 (19)
O20.0567 (17)0.0626 (19)0.0627 (18)0.0058 (15)0.0091 (14)0.0102 (16)
O30.0700 (19)0.094 (3)0.096 (2)0.0166 (19)0.0301 (18)0.034 (2)
O40.0652 (18)0.080 (2)0.072 (2)0.0154 (17)0.0118 (16)0.0209 (17)
N10.0445 (17)0.0443 (19)0.0474 (17)0.0077 (15)0.0093 (13)0.0010 (15)
C10.079 (4)0.128 (5)0.079 (4)0.039 (3)0.016 (3)0.029 (3)
C20.051 (2)0.048 (2)0.050 (2)0.0079 (19)0.0177 (18)0.0022 (19)
C30.046 (2)0.056 (3)0.072 (3)0.006 (2)0.027 (2)0.002 (2)
C40.0315 (18)0.053 (3)0.073 (3)0.0017 (18)0.0157 (19)0.001 (2)
C50.047 (2)0.039 (2)0.047 (2)0.0029 (17)0.0149 (17)0.0075 (17)
C60.0374 (19)0.054 (2)0.062 (2)0.0011 (18)0.0232 (18)0.000 (2)
C70.0333 (18)0.063 (3)0.066 (3)0.0107 (19)0.0173 (18)0.001 (2)
C80.053 (2)0.050 (2)0.053 (2)0.009 (2)0.0160 (19)0.0016 (19)
C90.046 (2)0.049 (2)0.038 (2)0.0094 (18)0.0060 (16)0.0004 (17)
C100.043 (2)0.062 (3)0.058 (3)0.005 (2)0.0011 (18)0.011 (2)
C110.0334 (19)0.054 (3)0.077 (3)0.0040 (18)0.0197 (19)0.007 (2)
C120.055 (2)0.059 (3)0.067 (3)0.002 (2)0.025 (2)0.006 (2)
C130.072 (3)0.082 (4)0.093 (4)0.009 (3)0.045 (3)0.028 (3)
C140.064 (3)0.085 (4)0.134 (5)0.019 (3)0.064 (3)0.038 (4)
C150.059 (3)0.054 (3)0.155 (6)0.003 (2)0.057 (3)0.007 (4)
C160.048 (3)0.057 (3)0.112 (4)0.002 (2)0.033 (3)0.015 (3)
C170.048 (2)0.047 (2)0.0358 (19)0.0074 (17)0.0182 (16)0.0057 (16)
C180.045 (2)0.052 (2)0.0399 (19)0.0053 (18)0.0133 (16)0.0107 (17)
C190.048 (2)0.048 (2)0.0408 (19)0.003 (2)0.0095 (17)0.0096 (19)
C200.043 (2)0.057 (3)0.057 (2)0.0073 (19)0.0209 (19)0.021 (2)
C210.063 (3)0.069 (3)0.092 (3)0.015 (2)0.044 (3)0.021 (3)
C220.081 (3)0.051 (3)0.067 (3)0.018 (2)0.048 (2)0.008 (2)
C230.082 (3)0.044 (2)0.043 (2)0.009 (2)0.023 (2)0.0101 (19)
C240.100 (4)0.064 (3)0.058 (3)0.013 (3)0.023 (3)0.017 (2)
C250.124 (4)0.080 (4)0.107 (4)0.017 (3)0.084 (4)0.002 (3)
C260.043 (2)0.067 (3)0.084 (3)0.004 (2)0.023 (2)0.029 (3)
C270.102 (4)0.099 (4)0.099 (4)0.044 (4)0.013 (3)0.021 (3)
C280.104 (4)0.119 (5)0.110 (5)0.030 (4)0.015 (4)0.032 (4)
C290.132 (5)0.144 (6)0.085 (4)0.014 (5)0.020 (4)0.033 (4)
Geometric parameters (Å, º) top
Cl1—C291.712 (7)C13—C141.347 (8)
Cl2—C291.716 (6)C13—H130.9300
O1—C21.372 (5)C14—C151.364 (7)
O1—C11.402 (6)C14—H140.9300
O2—C191.218 (4)C15—C161.389 (7)
O3—C261.197 (5)C15—H150.9300
O4—C261.328 (5)C16—H160.9300
O4—C271.470 (6)C17—C181.511 (5)
N1—C191.364 (4)C17—C231.517 (5)
N1—C81.456 (5)C17—H170.9800
N1—C91.470 (5)C18—C191.486 (5)
C1—H1A0.9600C18—C201.512 (5)
C1—H1C0.9600C18—H180.9800
C1—H1B0.9600C20—C261.513 (6)
C2—C71.371 (5)C20—C211.531 (6)
C2—C31.381 (5)C20—H200.9800
C3—C41.368 (5)C21—C221.510 (7)
C3—H30.9300C21—H21B0.9700
C4—C51.389 (5)C21—H21A0.9700
C4—H40.9300C22—C231.329 (6)
C5—C61.369 (5)C22—C251.513 (6)
C5—C81.509 (5)C23—C241.495 (6)
C6—C71.382 (5)C24—H24B0.9600
C6—H60.9300C24—H24C0.9600
C7—H70.9300C24—H24A0.9600
C8—H8B0.9700C25—H25B0.9600
C8—H8A0.9700C25—H25C0.9600
C9—C101.522 (5)C25—H25A0.9600
C9—C171.532 (5)C27—C281.435 (8)
C9—H90.9800C27—H27B0.9700
C10—C111.522 (6)C27—H27A0.9700
C10—H10B0.9700C28—H28C0.9600
C10—H10A0.9700C28—H28B0.9600
C11—C121.385 (6)C28—H28A0.9600
C11—C161.394 (6)C29—H29A0.9700
C12—C131.380 (6)C29—H29B0.9700
C12—H120.9300
C2—O1—C1117.6 (4)C18—C17—C9102.2 (3)
C26—O4—C27116.8 (4)C23—C17—C9122.3 (3)
C19—N1—C8122.2 (3)C18—C17—H17107.0
C19—N1—C9113.3 (3)C23—C17—H17107.0
C8—N1—C9122.3 (3)C9—C17—H17107.0
O1—C1—H1A109.5C19—C18—C17103.6 (3)
O1—C1—H1C109.5C19—C18—C20120.5 (3)
H1A—C1—H1C109.5C17—C18—C20110.6 (3)
O1—C1—H1B109.5C19—C18—H18107.1
H1A—C1—H1B109.5C17—C18—H18107.1
H1C—C1—H1B109.5C20—C18—H18107.1
C7—C2—O1125.0 (3)O2—C19—N1124.8 (4)
C7—C2—C3119.5 (3)O2—C19—C18128.6 (3)
O1—C2—C3115.5 (3)N1—C19—C18106.5 (3)
C4—C3—C2120.6 (4)C18—C20—C26111.6 (3)
C4—C3—H3119.7C18—C20—C21107.2 (3)
C2—C3—H3119.7C26—C20—C21110.6 (3)
C3—C4—C5120.7 (3)C18—C20—H20109.1
C3—C4—H4119.6C26—C20—H20109.1
C5—C4—H4119.6C21—C20—H20109.1
C6—C5—C4117.7 (3)C22—C21—C20116.1 (3)
C6—C5—C8121.3 (3)C22—C21—H21B108.3
C4—C5—C8120.9 (3)C20—C21—H21B108.3
C5—C6—C7122.2 (3)C22—C21—H21A108.3
C5—C6—H6118.9C20—C21—H21A108.3
C7—C6—H6118.9H21B—C21—H21A107.4
C2—C7—C6119.2 (3)C23—C22—C21124.7 (4)
C2—C7—H7120.4C23—C22—C25124.0 (5)
C6—C7—H7120.4C21—C22—C25111.3 (4)
N1—C8—C5112.8 (3)C22—C23—C24125.0 (4)
N1—C8—H8B109.0C22—C23—C17117.8 (4)
C5—C8—H8B109.0C24—C23—C17117.1 (4)
N1—C8—H8A109.0C23—C24—H24B109.5
C5—C8—H8A109.0C23—C24—H24C109.5
H8B—C8—H8A107.8H24B—C24—H24C109.5
N1—C9—C10113.0 (3)C23—C24—H24A109.5
N1—C9—C17100.3 (3)H24B—C24—H24A109.5
C10—C9—C17118.0 (3)H24C—C24—H24A109.5
N1—C9—H9108.3C22—C25—H25B109.5
C10—C9—H9108.3C22—C25—H25C109.5
C17—C9—H9108.3H25B—C25—H25C109.5
C11—C10—C9117.1 (3)C22—C25—H25A109.5
C11—C10—H10B108.0H25B—C25—H25A109.5
C9—C10—H10B108.0H25C—C25—H25A109.5
C11—C10—H10A108.0O3—C26—O4123.2 (4)
C9—C10—H10A108.0O3—C26—C20124.3 (4)
H10B—C10—H10A107.3O4—C26—C20112.4 (4)
C12—C11—C16117.6 (4)C28—C27—O4109.4 (5)
C12—C11—C10122.4 (4)C28—C27—H27B109.8
C16—C11—C10120.0 (4)O4—C27—H27B109.8
C13—C12—C11120.5 (5)C28—C27—H27A109.8
C13—C12—H12119.8O4—C27—H27A109.8
C11—C12—H12119.8H27B—C27—H27A108.2
C14—C13—C12121.4 (6)C27—C28—H28C109.5
C14—C13—H13119.3C27—C28—H28B109.5
C12—C13—H13119.3H28C—C28—H28B109.5
C13—C14—C15119.7 (5)C27—C28—H28A109.5
C13—C14—H14120.1H28C—C28—H28A109.5
C15—C14—H14120.1H28B—C28—H28A109.5
C14—C15—C16120.2 (5)Cl1—C29—Cl2111.8 (4)
C14—C15—H15119.9Cl1—C29—H29A109.3
C16—C15—H15119.9Cl2—C29—H29A109.3
C15—C16—C11120.6 (5)Cl1—C29—H29B109.3
C15—C16—H16119.7Cl2—C29—H29B109.3
C11—C16—H16119.7H29A—C29—H29B107.9
C18—C17—C23110.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29B···O2i0.972.423.313 (7)153
C6—H6···O3ii0.932.653.562 (5)166
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC28H33NO4·CH2Cl2
Mr532.48
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.6864 (5), 15.5706 (8), 9.7460 (6)
β (°) 109.221 (7)
V3)1387.99 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.32 × 0.26 × 0.23
Data collection
DiffractometerOxford Diffraction Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2011)
Tmin, Tmax0.919, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
6260, 3844, 2990
Rint0.024
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.07
No. of reflections3844
No. of parameters330
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22
Absolute structureFlack (1983), 1789 Friedel pairs
Absolute structure parameter0.05 (11)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29B···O2i0.972.423.313 (7)153
C6—H6···O3ii0.932.653.562 (5)166
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by a research grant from the Natural Science Foundation of China (grant No. 21172191). The authors gratefully acknowledge Mr Jiyong Liu and Jianming Gu of Zhejiang University for their kind assistance in the crystal structure analysis and for useful dicussions.

References

First citationCox, R. H., Cutler, H. G., Hurd, R. E. & Cole, R. J. (1983). J. Agric. Food Chem. 31, 405-408.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, R., Gu, Q., Zhu, W., Cui, C., Fan, G., Fang, Y., Zhu, T. & Liu, H. (2006). J. Nat. Prod. 69, 871–875.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds