organic compounds
(6R*,10R*)-Dimethyl 1,4-dioxaspiro[4.5]decane-6,10-dicarboxylate
aCentre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden, and bCentre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 123, 221 00 Lund, Sweden
*Correspondence e-mail: daniel.strand@chem.lu.se
The title compound, C12H18O6, is in the usual chair conformation with the two ester functions in a 1,3-trans orientation. With a value of 1.439 (2) Å, the pseudo-axial C—O bond of the 1,3-dioxolane ring is slightly longer than the corresponding equatorial C—O bond of 1.424 (3) Å. The O—C—O angle of the dioxolane ring is 106.25 (17)°.
Related literature
The starting material (1R,3S)-dimethyl 2-oxocyclohexane-1,3-dicarboxylate was prepared following a known procedure (Blicke & McCarty, 1959). Alternative methods for the synthesis of this coumpound include alkylation of cyclohexanone (Balasubrahmanyam & Balasubramanian, 1969; Beckman & Munshi, 2011). Synthesis and characterization of a related 1,3-trans-dicarboxylate cyclohexanone has been reported (Scaric & Turjak-Cebic, 1982). The acetal formation follows standard procedures (Wuts & Greene, 2007).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2011); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053681300161X/ds2225sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681300161X/ds2225Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681300161X/ds2225Isup3.cml
(1R,3S)-dimethyl 2-oxocyclohexane-1,3-dicarboxylate (0.5 g, 2.5 mmol) was dissolved in toluene (10 mL). Ethylene glycol (1.6 g, 25.7 mmol) and a catalytic amount of p-toluene sulfonic acid were then added sequentially. The vessel was fitted with a Dean-Stark trap, heated to reflux for 3 h, and then cooled to RT. The reaction mixture was washed with NaHCO3 (10 ml, sat. aq.) and water (10 ml). The organic phase was dried (MgSO4), filtered, and concentrated under reduced pressure. 1H NMR of the crude shows a single diastereomer. The crude product was purified by flash
(6.25% EtOAc/pet. ether) to give (6R*,10R*)dimethyl-1,4-dioxosparo[4,5]decane-6,10-dicarboxylate as a colorless oil (0.30 g, 46%), which crystallized under vaccuum upon standing.Rf: 0.3 in 6.25% EtOAc/pet. ether 1H-NMR: (400 MHz, CDCl3) δ: 4.0–3.8 (m, 4H), 3.69 (s, 6H), 3.17 (t, 2H), 2.6 (dd, J = 8, 2H), 2.0–1.8 (m, 2H) p.p.m.. 13C-NMR: (101 MHz, CDCl3) δ: 66.2, 65.1, 52.1, 51.8, 51.7, 47.5, 27.1, 26.6, 23.5, 19.8 p.p.m.. IR: (CHCl3, film): 1727 (s), 1434 (m), 1161 (s) cm-1.
The H atoms were positioned geometrically and treated as riding on their parent atoms with C–H distances of 0.93–0.97 Å, and Uiso(H) = 1.2 Ueq. The highest difference peak in the Fourier map is located 0.87 Å from C12 and the lowest is located 0.30 Å from H12B.
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids. H-atoms were omitted for clarity. |
C12H18O6 | F(000) = 276 |
Mr = 258.26 | Dx = 1.336 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yc | Cell parameters from 1887 reflections |
a = 8.6243 (9) Å | θ = 2.8–28.6° |
b = 7.3203 (6) Å | µ = 0.11 mm−1 |
c = 10.1704 (9) Å | T = 293 K |
β = 91.719 (8)° | Plate, colourless |
V = 641.79 (10) Å3 | 0.2 × 0.2 × 0.05 mm |
Z = 2 |
Agilent Xcalibur Sapphire3 diffractometer | 2717 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2329 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 16.1829 pixels mm-1 | θmax = 28.7°, θmin = 2.8° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −9→9 |
Tmin = 0.919, Tmax = 1.000 | l = −13→13 |
5645 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
2717 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.31 e Å−3 |
2 restraints | Δρmin = −0.23 e Å−3 |
C12H18O6 | V = 641.79 (10) Å3 |
Mr = 258.26 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 8.6243 (9) Å | µ = 0.11 mm−1 |
b = 7.3203 (6) Å | T = 293 K |
c = 10.1704 (9) Å | 0.2 × 0.2 × 0.05 mm |
β = 91.719 (8)° |
Agilent Xcalibur Sapphire3 diffractometer | 2717 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2329 reflections with I > 2σ(I) |
Tmin = 0.919, Tmax = 1.000 | Rint = 0.025 |
5645 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 2 restraints |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.31 e Å−3 |
2717 reflections | Δρmin = −0.23 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4569 (2) | 0.2366 (3) | 0.86367 (19) | 0.0350 (5) | |
O1 | 0.2305 (3) | 0.1361 (4) | 1.0635 (2) | 0.0837 (8) | |
C2 | 0.2830 (3) | 0.1979 (3) | 0.8327 (2) | 0.0397 (5) | |
H2 | 0.2775 | 0.1093 | 0.7605 | 0.048* | |
O2 | 0.0836 (3) | 0.0069 (3) | 0.9057 (2) | 0.0618 (6) | |
C3 | 0.1999 (3) | 0.3712 (4) | 0.7846 (3) | 0.0527 (6) | |
H3A | 0.0899 | 0.3460 | 0.7733 | 0.063* | |
H3B | 0.2388 | 0.4053 | 0.6995 | 0.063* | |
O3 | 0.7232 (3) | 0.5536 (4) | 0.9408 (3) | 0.0847 (8) | |
O4 | 0.7037 (2) | 0.3362 (3) | 1.09499 (18) | 0.0544 (5) | |
C4 | 0.2227 (4) | 0.5314 (4) | 0.8801 (3) | 0.0589 (7) | |
H4A | 0.1742 | 0.6400 | 0.8427 | 0.071* | |
H4B | 0.1728 | 0.5039 | 0.9620 | 0.071* | |
O5 | 0.52831 (19) | 0.2833 (2) | 0.74210 (15) | 0.0452 (4) | |
C5 | 0.3944 (4) | 0.5677 (3) | 0.9073 (3) | 0.0535 (7) | |
H5A | 0.4059 | 0.6666 | 0.9703 | 0.064* | |
H5B | 0.4420 | 0.6057 | 0.8265 | 0.064* | |
O6 | 0.53266 (19) | 0.0753 (2) | 0.91042 (16) | 0.0431 (4) | |
C6 | 0.4790 (3) | 0.3956 (3) | 0.9621 (2) | 0.0398 (5) | |
H6 | 0.4301 | 0.3607 | 1.0441 | 0.048* | |
C7 | 0.2023 (3) | 0.1132 (4) | 0.9483 (2) | 0.0442 (5) | |
C8 | 0.6476 (3) | 0.4376 (4) | 0.9939 (2) | 0.0473 (6) | |
C9 | −0.0086 (5) | −0.0765 (5) | 1.0061 (4) | 0.0781 (10) | |
H9A | −0.0899 | −0.1481 | 0.9651 | 0.117* | |
H9B | −0.0533 | 0.0171 | 1.0591 | 0.117* | |
H9C | 0.0562 | −0.1539 | 1.0606 | 0.117* | |
C10 | 0.8590 (4) | 0.3810 (5) | 1.1422 (4) | 0.0701 (9) | |
H10A | 0.8881 | 0.3015 | 1.2138 | 0.105* | |
H10B | 0.8617 | 0.5054 | 1.1719 | 0.105* | |
H10C | 0.9301 | 0.3657 | 1.0722 | 0.105* | |
C11 | 0.6241 (5) | 0.1332 (5) | 0.7054 (3) | 0.0690 (8) | |
H11A | 0.5974 | 0.0938 | 0.6165 | 0.083* | |
H11B | 0.7326 | 0.1685 | 0.7093 | 0.083* | |
C12 | 0.5965 (6) | −0.0107 (5) | 0.7970 (4) | 0.0818 (12) | |
H12A | 0.6926 | −0.0730 | 0.8208 | 0.098* | |
H12B | 0.5241 | −0.0990 | 0.7594 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0413 (12) | 0.0341 (10) | 0.0298 (10) | 0.0001 (8) | 0.0028 (8) | 0.0031 (8) |
O1 | 0.0846 (17) | 0.124 (2) | 0.0432 (11) | −0.0515 (15) | 0.0057 (10) | 0.0031 (12) |
C2 | 0.0429 (12) | 0.0414 (12) | 0.0346 (11) | −0.0009 (9) | −0.0037 (8) | −0.0019 (9) |
O2 | 0.0594 (12) | 0.0623 (12) | 0.0638 (12) | −0.0207 (9) | 0.0007 (9) | −0.0022 (9) |
C3 | 0.0543 (15) | 0.0568 (15) | 0.0465 (14) | 0.0105 (12) | −0.0066 (11) | 0.0056 (11) |
O3 | 0.0750 (16) | 0.0944 (18) | 0.0845 (17) | −0.0420 (15) | 0.0001 (12) | 0.0270 (14) |
O4 | 0.0454 (10) | 0.0592 (11) | 0.0580 (11) | −0.0120 (8) | −0.0054 (8) | 0.0028 (9) |
C4 | 0.0665 (19) | 0.0498 (14) | 0.0601 (16) | 0.0181 (13) | −0.0012 (13) | 0.0003 (13) |
O5 | 0.0594 (11) | 0.0409 (8) | 0.0360 (8) | 0.0035 (7) | 0.0103 (7) | 0.0046 (7) |
C5 | 0.0700 (19) | 0.0319 (11) | 0.0586 (16) | 0.0019 (11) | 0.0038 (13) | −0.0062 (11) |
O6 | 0.0502 (10) | 0.0344 (8) | 0.0445 (9) | 0.0041 (7) | −0.0009 (7) | 0.0060 (7) |
C6 | 0.0458 (13) | 0.0375 (11) | 0.0364 (11) | −0.0049 (9) | 0.0048 (9) | −0.0009 (9) |
C7 | 0.0359 (12) | 0.0505 (13) | 0.0459 (13) | −0.0015 (9) | −0.0030 (9) | −0.0030 (10) |
C8 | 0.0532 (15) | 0.0479 (13) | 0.0412 (12) | −0.0141 (11) | 0.0058 (10) | −0.0059 (10) |
C9 | 0.073 (2) | 0.069 (2) | 0.093 (3) | −0.0289 (17) | 0.0185 (18) | −0.0040 (18) |
C10 | 0.0461 (17) | 0.086 (2) | 0.078 (2) | −0.0110 (15) | −0.0106 (14) | −0.0074 (18) |
C11 | 0.087 (2) | 0.0631 (18) | 0.0581 (17) | 0.0159 (16) | 0.0190 (15) | −0.0070 (15) |
C12 | 0.107 (3) | 0.0574 (18) | 0.082 (2) | 0.0358 (18) | 0.031 (2) | 0.0060 (16) |
C1—O6 | 1.424 (3) | O5—C11 | 1.431 (4) |
C1—O5 | 1.439 (2) | C5—C6 | 1.551 (4) |
C1—C6 | 1.544 (3) | C5—H5A | 0.9700 |
C1—C2 | 1.549 (3) | C5—H5B | 0.9700 |
O1—C7 | 1.201 (3) | O6—C12 | 1.438 (4) |
C2—C7 | 1.516 (4) | C6—C8 | 1.511 (4) |
C2—C3 | 1.530 (3) | C6—H6 | 0.9800 |
C2—H2 | 0.9800 | C9—H9A | 0.9600 |
O2—C7 | 1.347 (3) | C9—H9B | 0.9600 |
O2—C9 | 1.448 (4) | C9—H9C | 0.9600 |
C3—C4 | 1.531 (4) | C10—H10A | 0.9600 |
C3—H3A | 0.9700 | C10—H10B | 0.9600 |
C3—H3B | 0.9700 | C10—H10C | 0.9600 |
O3—C8 | 1.208 (3) | C11—C12 | 1.431 (5) |
O4—C8 | 1.346 (3) | C11—H11A | 0.9700 |
O4—C10 | 1.446 (3) | C11—H11B | 0.9700 |
C4—C5 | 1.522 (4) | C12—H12A | 0.9700 |
C4—H4A | 0.9700 | C12—H12B | 0.9700 |
C4—H4B | 0.9700 | ||
O6—C1—O5 | 106.25 (17) | C8—C6—C5 | 110.5 (2) |
O6—C1—C6 | 111.21 (17) | C1—C6—C5 | 109.36 (19) |
O5—C1—C6 | 109.28 (17) | C8—C6—H6 | 107.9 |
O6—C1—C2 | 110.39 (17) | C1—C6—H6 | 107.9 |
O5—C1—C2 | 107.80 (17) | C5—C6—H6 | 107.9 |
C6—C1—C2 | 111.70 (18) | O1—C7—O2 | 121.6 (2) |
C7—C2—C3 | 111.5 (2) | O1—C7—C2 | 128.0 (2) |
C7—C2—C1 | 112.39 (17) | O2—C7—C2 | 110.4 (2) |
C3—C2—C1 | 110.79 (19) | O3—C8—O4 | 122.8 (2) |
C7—C2—H2 | 107.3 | O3—C8—C6 | 125.2 (3) |
C3—C2—H2 | 107.3 | O4—C8—C6 | 111.9 (2) |
C1—C2—H2 | 107.3 | O2—C9—H9A | 109.5 |
C7—O2—C9 | 116.4 (2) | O2—C9—H9B | 109.5 |
C2—C3—C4 | 112.48 (19) | H9A—C9—H9B | 109.5 |
C2—C3—H3A | 109.1 | O2—C9—H9C | 109.5 |
C4—C3—H3A | 109.1 | H9A—C9—H9C | 109.5 |
C2—C3—H3B | 109.1 | H9B—C9—H9C | 109.5 |
C4—C3—H3B | 109.1 | O4—C10—H10A | 109.5 |
H3A—C3—H3B | 107.8 | O4—C10—H10B | 109.5 |
C8—O4—C10 | 115.9 (2) | H10A—C10—H10B | 109.5 |
C5—C4—C3 | 110.8 (2) | O4—C10—H10C | 109.5 |
C5—C4—H4A | 109.5 | H10A—C10—H10C | 109.5 |
C3—C4—H4A | 109.5 | H10B—C10—H10C | 109.5 |
C5—C4—H4B | 109.5 | C12—C11—O5 | 106.7 (3) |
C3—C4—H4B | 109.5 | C12—C11—H11A | 110.4 |
H4A—C4—H4B | 108.1 | O5—C11—H11A | 110.4 |
C11—O5—C1 | 107.9 (2) | C12—C11—H11B | 110.4 |
C4—C5—C6 | 111.6 (2) | O5—C11—H11B | 110.4 |
C4—C5—H5A | 109.3 | H11A—C11—H11B | 108.6 |
C6—C5—H5A | 109.3 | C11—C12—O6 | 106.0 (3) |
C4—C5—H5B | 109.3 | C11—C12—H12A | 110.5 |
C6—C5—H5B | 109.3 | O6—C12—H12A | 110.5 |
H5A—C5—H5B | 108.0 | C11—C12—H12B | 110.5 |
C1—O6—C12 | 106.2 (2) | O6—C12—H12B | 110.5 |
C8—C6—C1 | 113.1 (2) | H12A—C12—H12B | 108.7 |
Experimental details
Crystal data | |
Chemical formula | C12H18O6 |
Mr | 258.26 |
Crystal system, space group | Monoclinic, Pc |
Temperature (K) | 293 |
a, b, c (Å) | 8.6243 (9), 7.3203 (6), 10.1704 (9) |
β (°) | 91.719 (8) |
V (Å3) | 641.79 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.2 × 0.2 × 0.05 |
Data collection | |
Diffractometer | Agilent Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.919, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5645, 2717, 2329 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.675 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.148, 1.03 |
No. of reflections | 2717 |
No. of parameters | 163 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.23 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2011).
Acknowledgements
Lund University, the Swedish Research Council, the Knut and Alice Wallenberg Foundation and the Royal Physiographic Society in Lund are gratefully acknowledged for financial support.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Balasubrahmanyam, S. N. & Balasubramanian, M. (1969). Org. Synth. 49, 56–61. CAS Google Scholar
Beckman, E. J. & Munshi, P. (2011). Green Chem. 13, 376–383. Web of Science CrossRef CAS Google Scholar
Blicke, F. F. & McCarty, F. J. (1959). J. Org. Chem. 24, 1069–1076. CrossRef CAS Web of Science Google Scholar
CrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England. Google Scholar
Scaric, V. & Turjak-Cebic, V. (1982). Croat. Chem. Acta, 55, 457–65. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wuts, P. G. M. & Greene, T. W. (2007). In Greene's Protective Groups in Organic Synthesis. Hoboken, NJ: Wiley Interscience. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The cyclohexane ring is in the usual chair conformation. All intramolecular distances and angles display expected values. The dioxolane occupies a pseudo-twist form oriented towards the axial ester group of the cyclohexane ring. Presumably to reduce unfavorable interactions with the carbonyl group of the equatorial ester moiety.