organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o161-o162

(1SR,3RS,3aSR,6aRS)-Methyl 5-methyl-4,6-dioxo-3-[2-(tri­fluoro­meth­yl)phen­yl]octa­hydro­pyrrolo­[3,4-c]pyrrole-1-carboxyl­ate

aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, bInstitute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation, and cInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: kudr@org.chem.msu.ru

(Received 16 December 2012; accepted 20 December 2012; online 4 January 2013)

In the title compound, C16H15F3N2O4, the relative stereochemistry of the four stereogenic C atoms has been determined. The carb­oxy­methyl and 2-(trifluoro­meth­yl)­phenyl substituents of the pyrrolidine cycle have a cis mutual arrangement. The five-membered saturated aza­cycle adopts an envelope conformation with the N atom occupying the flap position. In the crystal, adjacent mol­ecules are combined in centrosymmetric dimers by two weak N—H⋯O hydrogen bonds.

Related literature

For general background to the chemistry affording bicyclic pyrrolo­[3,4-c]pyrrole-based scaffolds and structural determination, see: Kudryavtsev & Irkha (2005[Kudryavtsev, K. V. & Irkha, V. V. (2005). Molecules, 10, 755-761.]); Kudryavtsev (2008[Kudryavtsev, K. V. (2008). Russ. Chem. Bull. 57, 2364-2372.]); Kudryavtsev & Zagulyaeva (2008[Kudryavtsev, K. V. & Zagulyaeva, A. A. (2008). Russ. J. Org. Chem. 44, 378-387.]); Kudryavtsev et al. (2011[Kudryavtsev, K. V., Churakov, A. V. & Dogan, O. (2011). Acta Cryst. E67, o3186.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15F3N2O4

  • Mr = 356.30

  • Orthorhombic, P b c a

  • a = 11.6168 (4) Å

  • b = 12.7385 (5) Å

  • c = 21.2429 (8) Å

  • V = 3143.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.968

  • 28987 measured reflections

  • 4585 independent reflections

  • 3698 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.05

  • 4585 reflections

  • 286 parameters

  • All H-atom parameters refined

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.884 (15) 2.363 (15) 3.1738 (13) 152.5 (13)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The core of the title compound is formed by two fused pyrrolidine cycles. It was effectively synthesized by the three-component approach developed by the authors (Fig. 1). Combination of molecular sieves and triethyamine represents an efficient reagent for performing three-component interaction of benzaldehyde, glycine ester and dipolarophile. The product X-ray structure determination indicates that cycloaddition step proceeds as endo-process (Fig. 2). Tetrasubstituted pyrrolidine cycle adopts envelope conformation with N1 atom occupying flap position. Amine atom N1 has trigonal pyramidal environment with the sum of valent angles equal to 329.0 °. Hydrogen atom H1 lies in axial position (relative to the mean plane of five-membered ring). As expected, dioxopyrrolidine cycle is planar within 0.0354 (7) Å.

In the crystal, the adjacent molecules are combined in centrosymmetric dimers by two weak N—H···O hydrogen bonds (Fig. 3). The same dimers were previously observed in the structure of (1SR,3RS,3aSR,6aRS-methyl 5-methyl-4,6-dioxo-3-phenyloctahydropyrrolo [3,4-c]pyrrole-1-carboxylate (Kudryavtsev & Zagulyaeva, 2008).

Related literature top

For general background to the chemistry affording bicyclic pyrrolo[3,4-c]pyrrole-based scaffolds and structural determination, see: Kudryavtsev & Irkha (2005); Kudryavtsev (2008); Kudryavtsev & Zagulyaeva (2008); Kudryavtsev et al. (2011).

Experimental top

Triethylamine (0.340 ml, 2.41 mmol) was added to the stirred mixture of 2-(trifluoromethyl)benzaldehyde (200 mg, 1.15 mmol), N-methylmaleimide (130 mg, 1.15 mmol), glycine methyl ester hydrochloride (158 mg, 1.30 mmol) and 4 Å molecular sieves (200 mg) in toluene under argon atmosphere. Reaction mixture was stirred for 48 h. Volatiles were removed at reduced pressure. CH2Cl2 (50 ml) was added to the residue, resulted suspension was filtered through Celite, washed with saturated solution of NH4Cl (2 x 10 ml). Organic phase was dried over Na2SO4, concentrated and purified by column chromatography on silica gel 60 (particle size 0.040–0.063 mm) using CH2Cl2—MeOH (100:1) as eluent. Yield 168 mg (41%), colorless crystals, mp 183–185°C. 1H NMR (400 MHz, CDCl3): δ 2.61 (s, 3H, NCH3), 3.28 (t, 1H, H-3a, J 8.2), 3.40 (t, 1H, H-6a, J 7.3), 3.64 (s, 3H, OCH3), 3.95 (d, 1H, H-1, J 6.7), 4.59 (d, 1H, H-3, J 8.6), 7.20 (t, 1H, Ar, J 7.6), 7.30 (t, 1H, Ar, J 7.6), 7.61 (d, 1H, Ar, J 7.6). 13C NMR (100 MHz, CDCl3): δ 24.94, 47.31, 48.92, 52.26, 58.89, 61.04, 123.02, 125.89, 128.06, 128.23, 131.96, 135.74, 169.84, 174.30, 175.78. Found, %: C, 54.12; H, 4.27; N, 7.78. C16H15F3N2O4. Calculated, %: C, 53.94; H, 4.24; N, 7.86. The crystals were obtained by slow evaporation of the CDCl3 solution.

Refinement top

All hydrogen atoms were located in a difference Fourier map and refined with isotropic thermal parameters.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthetic scheme.
[Figure 2] Fig. 2. The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level.
[Figure 3] Fig. 3. Hydrogen-bonded dimers in the structure of the title compound. H-bonds are shown as dashed lines. [Symmetry code: (i) 1 - x, 2 - y, 1 - z.]
(1SR,3RS,3aSR,6aRS)-Methyl 5-methyl-4,6-dioxo-3-[2-(trifluoromethyl)phenyl]octahydropyrrolo[3,4- c]pyrrole-1-carboxylate top
Crystal data top
C16H15F3N2O4F(000) = 1472
Mr = 356.30Dx = 1.506 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7037 reflections
a = 11.6168 (4) Åθ = 2.6–30.2°
b = 12.7385 (5) ŵ = 0.13 mm1
c = 21.2429 (8) ÅT = 150 K
V = 3143.5 (2) Å3Block, colourless
Z = 80.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII
diffractometer
4585 independent reflections
Radiation source: fine-focus sealed tube3698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.955, Tmax = 0.968k = 1716
28987 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.115All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.958P]
where P = (Fo2 + 2Fc2)/3
4585 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C16H15F3N2O4V = 3143.5 (2) Å3
Mr = 356.30Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.6168 (4) ŵ = 0.13 mm1
b = 12.7385 (5) ÅT = 150 K
c = 21.2429 (8) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII
diffractometer
4585 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3698 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.968Rint = 0.032
28987 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115All H-atom parameters refined
S = 1.05Δρmax = 0.41 e Å3
4585 reflectionsΔρmin = 0.36 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.37232 (8)0.96741 (8)0.58121 (4)0.01832 (19)
N20.43578 (9)0.80090 (8)0.70073 (5)0.0223 (2)
O10.59707 (8)0.90401 (9)0.70207 (5)0.0323 (2)
O20.25210 (8)0.73656 (7)0.69180 (4)0.0293 (2)
O30.60527 (8)1.01872 (8)0.56746 (4)0.0261 (2)
O40.59604 (7)1.12962 (7)0.64969 (4)0.0265 (2)
F10.02339 (7)0.95536 (7)0.66222 (4)0.0360 (2)
F20.01291 (10)1.04045 (8)0.57563 (5)0.0519 (3)
F30.11317 (8)0.92265 (11)0.59782 (7)0.0708 (4)
C10.49344 (10)0.89519 (10)0.69792 (5)0.0218 (2)
C20.40611 (10)0.98226 (9)0.68818 (5)0.0187 (2)
C30.42693 (10)1.03976 (9)0.62520 (5)0.0182 (2)
C40.25821 (9)0.94880 (9)0.60901 (5)0.0180 (2)
C50.29053 (9)0.92447 (9)0.67894 (5)0.0187 (2)
C60.31822 (10)0.80982 (9)0.69077 (5)0.0206 (2)
C70.49500 (13)0.70166 (11)0.71063 (7)0.0309 (3)
C80.55262 (10)1.05870 (9)0.60979 (5)0.0197 (2)
C90.71865 (12)1.14732 (14)0.64520 (7)0.0352 (3)
C100.00083 (11)0.94442 (12)0.60086 (7)0.0342 (3)
C110.19231 (9)0.86470 (9)0.57357 (5)0.0182 (2)
C120.25319 (10)0.78516 (10)0.54317 (6)0.0238 (2)
C130.19746 (11)0.70890 (10)0.50777 (6)0.0246 (2)
C140.07863 (11)0.70963 (10)0.50236 (6)0.0241 (2)
C150.01667 (11)0.78587 (10)0.53409 (6)0.0265 (3)
C160.07221 (10)0.86314 (10)0.56912 (6)0.0224 (2)
H40.2122 (13)1.0153 (12)0.6103 (7)0.023 (4)*
H140.0394 (13)0.6570 (12)0.4770 (7)0.024 (4)*
H50.2277 (12)0.9465 (11)0.7074 (7)0.018 (3)*
H10.3693 (12)0.9935 (12)0.5427 (7)0.021 (4)*
H30.3902 (13)1.1102 (12)0.6286 (7)0.025 (4)*
H150.0638 (14)0.7870 (13)0.5322 (8)0.034 (4)*
H20.4071 (13)1.0292 (13)0.7231 (7)0.028 (4)*
H120.3371 (15)0.7847 (13)0.5480 (8)0.034 (4)*
H130.2416 (14)0.6568 (13)0.4868 (8)0.032 (4)*
H730.5522 (17)0.7131 (15)0.7416 (10)0.051 (5)*
H720.5263 (16)0.6773 (15)0.6724 (10)0.048 (5)*
H930.7376 (17)1.2026 (16)0.6754 (9)0.053 (5)*
H710.4386 (16)0.6518 (15)0.7264 (9)0.043 (5)*
H920.7571 (18)1.0823 (17)0.6561 (9)0.052 (6)*
H910.7395 (18)1.1612 (16)0.6019 (10)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0192 (4)0.0201 (5)0.0156 (4)0.0034 (3)0.0001 (3)0.0012 (3)
N20.0226 (5)0.0219 (5)0.0223 (4)0.0002 (4)0.0016 (4)0.0028 (4)
O10.0209 (4)0.0408 (6)0.0351 (5)0.0038 (4)0.0069 (4)0.0116 (4)
O20.0306 (5)0.0260 (5)0.0313 (4)0.0092 (4)0.0024 (4)0.0040 (4)
O30.0235 (4)0.0328 (5)0.0219 (4)0.0027 (4)0.0024 (3)0.0044 (3)
O40.0226 (4)0.0287 (5)0.0282 (4)0.0085 (4)0.0013 (3)0.0080 (4)
F10.0303 (4)0.0427 (5)0.0349 (4)0.0047 (3)0.0050 (3)0.0139 (4)
F20.0706 (7)0.0358 (5)0.0493 (6)0.0292 (5)0.0191 (5)0.0091 (4)
F30.0184 (4)0.0833 (8)0.1107 (10)0.0122 (5)0.0119 (5)0.0622 (8)
C10.0222 (5)0.0272 (6)0.0162 (5)0.0026 (4)0.0030 (4)0.0019 (4)
C20.0199 (5)0.0206 (5)0.0157 (4)0.0035 (4)0.0002 (4)0.0033 (4)
C30.0191 (5)0.0176 (5)0.0178 (4)0.0020 (4)0.0002 (4)0.0017 (4)
C40.0169 (5)0.0184 (5)0.0185 (5)0.0004 (4)0.0001 (4)0.0024 (4)
C50.0172 (5)0.0215 (5)0.0174 (4)0.0020 (4)0.0016 (4)0.0021 (4)
C60.0223 (5)0.0235 (6)0.0161 (5)0.0027 (4)0.0010 (4)0.0000 (4)
C70.0309 (7)0.0268 (7)0.0352 (7)0.0057 (5)0.0003 (5)0.0065 (5)
C80.0207 (5)0.0195 (5)0.0189 (5)0.0022 (4)0.0014 (4)0.0009 (4)
C90.0232 (6)0.0457 (9)0.0367 (7)0.0127 (6)0.0005 (5)0.0083 (6)
C100.0202 (6)0.0376 (8)0.0448 (8)0.0082 (5)0.0101 (5)0.0172 (6)
C110.0182 (5)0.0191 (5)0.0174 (5)0.0019 (4)0.0003 (4)0.0009 (4)
C120.0186 (5)0.0255 (6)0.0274 (5)0.0036 (4)0.0050 (4)0.0062 (4)
C130.0254 (6)0.0226 (6)0.0257 (5)0.0034 (5)0.0065 (4)0.0061 (4)
C140.0262 (6)0.0228 (6)0.0231 (5)0.0045 (5)0.0024 (4)0.0039 (4)
C150.0198 (5)0.0290 (6)0.0307 (6)0.0000 (5)0.0065 (5)0.0059 (5)
C160.0185 (5)0.0234 (6)0.0254 (5)0.0036 (4)0.0044 (4)0.0048 (4)
Geometric parameters (Å, º) top
N1—C31.4578 (14)C4—C51.5633 (15)
N1—C41.4704 (14)C4—H41.002 (15)
N1—H10.884 (15)C5—C61.5164 (17)
N2—C11.3766 (16)C5—H50.988 (14)
N2—C61.3866 (15)C7—H730.95 (2)
N2—C71.4545 (16)C7—H720.94 (2)
O1—C11.2124 (14)C7—H710.972 (19)
O2—C61.2089 (15)C9—H930.98 (2)
O3—C81.2008 (14)C9—H920.97 (2)
O4—C81.3375 (14)C9—H910.97 (2)
O4—C91.4451 (15)C10—C161.4990 (17)
F1—C101.3406 (17)C11—C121.3942 (16)
F2—C101.3452 (19)C11—C161.3984 (15)
F3—C101.3357 (16)C12—C131.3886 (16)
C1—C21.5173 (17)C12—H120.980 (17)
C2—C51.5437 (15)C13—C141.3852 (17)
C2—C31.5444 (15)C13—H130.950 (17)
C2—H20.953 (16)C14—C151.3842 (18)
C3—C81.5157 (16)C14—H140.973 (15)
C3—H30.997 (16)C15—C161.3923 (17)
C4—C111.5168 (15)C15—H150.936 (17)
C3—N1—C4103.70 (8)N2—C7—H72110.1 (12)
C3—N1—H1112.0 (10)H73—C7—H72112.3 (16)
C4—N1—H1113.3 (9)N2—C7—H71107.4 (11)
C1—N2—C6113.64 (10)H73—C7—H71109.5 (16)
C1—N2—C7122.31 (11)H72—C7—H71110.0 (16)
C6—N2—C7124.00 (11)O3—C8—O4124.67 (11)
C8—O4—C9115.80 (10)O3—C8—C3125.80 (10)
O1—C1—N2124.12 (12)O4—C8—C3109.51 (9)
O1—C1—C2127.31 (11)O4—C9—H93106.9 (12)
N2—C1—C2108.57 (10)O4—C9—H92107.7 (12)
C1—C2—C5104.50 (9)H93—C9—H92110.8 (17)
C1—C2—C3111.11 (9)O4—C9—H91109.7 (12)
C5—C2—C3104.61 (9)H93—C9—H91115.8 (17)
C1—C2—H2110.2 (10)H92—C9—H91105.6 (17)
C5—C2—H2114.1 (10)F3—C10—F1105.89 (13)
C3—C2—H2112.0 (10)F3—C10—F2106.58 (12)
N1—C3—C8112.42 (9)F1—C10—F2105.55 (11)
N1—C3—C2100.80 (9)F3—C10—C16112.82 (11)
C8—C3—C2114.43 (9)F1—C10—C16112.98 (11)
N1—C3—H3115.4 (9)F2—C10—C16112.44 (13)
C8—C3—H3106.6 (9)C12—C11—C16117.67 (10)
C2—C3—H3107.3 (9)C12—C11—C4119.15 (10)
N1—C4—C11111.69 (9)C16—C11—C4123.17 (10)
N1—C4—C5101.36 (8)C13—C12—C11121.52 (11)
C11—C4—C5116.93 (9)C13—C12—H12121.0 (10)
N1—C4—H4110.8 (9)C11—C12—H12117.4 (10)
C11—C4—H4109.9 (9)C14—C13—C12120.32 (11)
C5—C4—H4105.7 (8)C14—C13—H13120.2 (10)
C6—C5—C2104.70 (9)C12—C13—H13119.4 (10)
C6—C5—C4113.54 (9)C15—C14—C13118.85 (11)
C2—C5—C4103.61 (9)C15—C14—H14120.6 (9)
C6—C5—H5109.2 (8)C13—C14—H14120.5 (9)
C2—C5—H5115.4 (8)C14—C15—C16121.01 (11)
C4—C5—H5110.4 (8)C14—C15—H15120.6 (10)
O2—C6—N2124.03 (11)C16—C15—H15118.4 (10)
O2—C6—C5127.72 (11)C15—C16—C11120.57 (11)
N2—C6—C5108.25 (9)C15—C16—C10117.79 (11)
N2—C7—H73107.4 (12)C11—C16—C10121.63 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.884 (15)2.363 (15)3.1738 (13)152.5 (13)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H15F3N2O4
Mr356.30
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)11.6168 (4), 12.7385 (5), 21.2429 (8)
V3)3143.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.955, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
28987, 4585, 3698
Rint0.032
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.05
No. of reflections4585
No. of parameters286
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.884 (15)2.363 (15)3.1738 (13)152.5 (13)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This study was partially supported by the Russian Foundation for Basic Research (project Nos 11-03-00630_a, 11-03-91375-ST_a and 12-03-92005-NNS_a).

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKudryavtsev, K. V. (2008). Russ. Chem. Bull. 57, 2364–2372.  Web of Science CrossRef CAS Google Scholar
First citationKudryavtsev, K. V., Churakov, A. V. & Dogan, O. (2011). Acta Cryst. E67, o3186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKudryavtsev, K. V. & Irkha, V. V. (2005). Molecules, 10, 755–761.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKudryavtsev, K. V. & Zagulyaeva, A. A. (2008). Russ. J. Org. Chem. 44, 378–387.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o161-o162
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds