organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Imidazol-1-yl)-4-[3-(tri­fluoro­meth­yl)phen­yl]-1,3-thia­zole

aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, bInstitute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russian Federation, cInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation, and dSchool of Pharmacy, National Taiwan University, Taipei 100, Taiwan
*Correspondence e-mail: kudr@org.chem.msu.ru

(Received 4 January 2013; accepted 7 January 2013; online 16 January 2013)

The title compound, C13H8F3N3S, consists of three linked aromatic rings. The whole mol­ecule (except for the three F atoms) is planar to within 0.225 (2) Å. In the crystal, adjacent mol­ecules are linked into chains along the ac diagonal by weak C—H⋯N inter­actions.

Related literature

For general background to the synthesis of imidazolo­thia­zoles by copper-catalysed coupling, see: Zhu et al. (2007[Zhu, L., Guo, P., Li, G., Lan, J., Xie, R. & You, J. (2007). J. Org. Chem. 72, 8535-8538.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8F3N3S

  • Mr = 295.28

  • Monoclinic, P 21 /c

  • a = 8.4152 (7) Å

  • b = 19.2403 (15) Å

  • c = 8.4105 (7) Å

  • β = 114.210 (1)°

  • V = 1241.98 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.972

  • 9797 measured reflections

  • 2716 independent reflections

  • 2164 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.07

  • 2716 reflections

  • 213 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N3i 0.95 (2) 2.34 (2) 3.278 (2) 169.4 (18)
Symmetry code: (i) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, C13H8F3N3S, which is a potential anticancer agent, consists of the three linked aromatic and heteroaromatic cycles, which were condensed by copper-catalyzed method (Fig. 1). The whole molecule (except three fluorine atoms) is planar within 0.225 (2) Å (Fig. 2).

In the crystal, the adjacent molecules are combined in chains along ac-diagonal by weak C—H···N interactions (Fig. 3). The C···N separation is equal to 3.278 (2) Å and C—H···N angle is close to linear (169 (2) °).

Related literature top

For general background to the synthesis of imidazolothiazoles by copper-catalysed coupling, see: Zhu et al. (2007).

Experimental top

2-Bromo-4-(3-(trifluoromethyl)phenyl)thiazole (0.800 g, 2.60 mmol) was added to a stirred suspension of imidazole (0.345 g, 5.07 mmol), CuI (0.209 g, 1.10 mmol) and Cs2CO3 (1.830 g, 5.62 mmol) in 30 ml of DMF under argon atmosphere. The reaction mixture was stirred for 8 h at rt and then for 7 h at 115 °C. After cooling to the ambient temperature the reaction mixture was filtered and precipitate was washed with 30 ml of DMF. The solution was concentrated under vacuum and residue was diluted with 80 ml of ethyl acetate. Organic phase was washed with water (2 x 10 ml) and saturated solution of NH4Cl (1 x 10 ml), dried over Na2SO4, concentrated and purified by column chromatography on silica gel 60 (particle size 0.040–0.063 mm) using CHCl3—MeOH (gradient from 1:0 to 50:1) as eluent. 2-(1H-Imidazol-1-yl)-4-(3-(trifluoromethyl)phenyl)thiazole, yield 368 mg (48%), yellowish crystals, mp 99–100°C. 1H NMR (400 MHz, CDCl3/DMSO-d6 5:1): δ 7.16 (s, 1H), 7.52–7.56 (m, 2H), 7.67 (s, 1H), 7.75 (s, 1H), 8.09–8.11 (m, 1H), 8.15 (s, 1H), 8.40 (s, 1H). 13C NMR (100 MHz, CDCl3/DMSO-d6 5:1): δ 111.88, 118.24, 122.95, 122.98, 125.00, 125.03, 129.59, 129.66, 130.17, 130.62, 134.35, 135.63, 150.89, 157.05. Found, %: C, 52.95; H, 2.69; N, 14.20. C13H8F3N3S. Calculated, %: C, 52.88; H, 2.73; N, 14.23. The crystals were obtained by slow evaporation of the CDCl3/DMSO-d6 (5:1) solution.

Refinement top

All hydrogen atoms were located in a difference Fourier map and refined with isotropic thermal parameters.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level.
[Figure 3] Fig. 3. Chains along ac-diagonal in the structure of the title compound. C—H···N interactions are shown as dashed lines. [Symmetry codes: (i) 1 + x, y, 1 + z; (ii) -1 + x, y, -1 + z.]
2-(1H-Imidazol-1-yl)-4-[3-(trifluoromethyl)phenyl]-1,3-thiazole top
Crystal data top
C13H8F3N3SF(000) = 600
Mr = 295.28Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1717 reflections
a = 8.4152 (7) Åθ = 3.1–24.5°
b = 19.2403 (15) ŵ = 0.29 mm1
c = 8.4105 (7) ÅT = 150 K
β = 114.210 (1)°Block, colourless
V = 1241.98 (18) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
2716 independent reflections
Radiation source: fine-focus sealed tube2164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 109
Tmin = 0.893, Tmax = 0.972k = 2424
9797 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.103All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.2754P]
where P = (Fo2 + 2Fc2)/3
2716 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H8F3N3SV = 1241.98 (18) Å3
Mr = 295.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4152 (7) ŵ = 0.29 mm1
b = 19.2403 (15) ÅT = 150 K
c = 8.4105 (7) Å0.40 × 0.20 × 0.10 mm
β = 114.210 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
2716 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2164 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.972Rint = 0.049
9797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103All H-atom parameters refined
S = 1.07Δρmax = 0.27 e Å3
2716 reflectionsΔρmin = 0.27 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22949 (6)0.55985 (2)0.40649 (6)0.02492 (15)
N10.0577 (2)0.44567 (7)0.36963 (19)0.0214 (3)
N20.0844 (2)0.52744 (7)0.14612 (18)0.0207 (3)
N30.3431 (2)0.52646 (9)0.0761 (2)0.0306 (4)
F10.62622 (19)0.32402 (8)1.15343 (17)0.0571 (4)
F20.64762 (19)0.22590 (6)1.0452 (2)0.0571 (4)
F30.74065 (16)0.31841 (7)0.97113 (19)0.0530 (4)
C10.2432 (2)0.37530 (9)0.6250 (2)0.0215 (4)
C20.4056 (3)0.36375 (10)0.7611 (2)0.0234 (4)
C30.4358 (3)0.30371 (9)0.8600 (2)0.0250 (4)
C40.3055 (3)0.25486 (10)0.8277 (3)0.0277 (4)
C50.1440 (3)0.26582 (10)0.6924 (3)0.0288 (5)
C60.1129 (3)0.32528 (10)0.5908 (3)0.0256 (4)
C70.6105 (3)0.29265 (10)1.0058 (3)0.0331 (5)
C80.2102 (2)0.43953 (9)0.5201 (2)0.0204 (4)
C90.3176 (3)0.49573 (9)0.5588 (2)0.0240 (4)
C100.0540 (2)0.50577 (9)0.2999 (2)0.0205 (4)
C110.2399 (3)0.49374 (10)0.0647 (2)0.0285 (5)
C120.2503 (3)0.58436 (11)0.0854 (3)0.0286 (4)
C130.0922 (3)0.58620 (10)0.0485 (2)0.0266 (4)
H90.425 (3)0.5042 (10)0.656 (3)0.028 (5)*
H60.004 (3)0.3331 (10)0.496 (3)0.028 (5)*
H20.489 (3)0.3964 (11)0.783 (3)0.031 (6)*
H110.263 (3)0.4517 (11)0.113 (3)0.035 (6)*
H50.053 (3)0.2292 (11)0.670 (3)0.040 (6)*
H40.328 (3)0.2144 (11)0.900 (3)0.037 (6)*
H120.298 (3)0.6159 (12)0.176 (3)0.043 (7)*
H130.002 (3)0.6192 (12)0.080 (3)0.044 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0198 (3)0.0248 (2)0.0255 (3)0.00220 (19)0.00454 (19)0.00161 (18)
N10.0189 (8)0.0255 (8)0.0196 (8)0.0012 (6)0.0077 (6)0.0024 (6)
N20.0192 (8)0.0238 (7)0.0172 (7)0.0011 (6)0.0055 (6)0.0012 (6)
N30.0268 (9)0.0364 (9)0.0214 (8)0.0014 (7)0.0028 (7)0.0014 (7)
F10.0494 (9)0.0731 (10)0.0318 (7)0.0124 (8)0.0007 (6)0.0037 (7)
F20.0446 (9)0.0321 (7)0.0713 (10)0.0094 (6)0.0003 (7)0.0201 (6)
F30.0223 (7)0.0689 (10)0.0589 (9)0.0053 (6)0.0076 (6)0.0279 (7)
C10.0230 (10)0.0223 (9)0.0209 (9)0.0020 (7)0.0107 (8)0.0022 (7)
C20.0210 (10)0.0251 (9)0.0244 (10)0.0001 (8)0.0096 (8)0.0013 (7)
C30.0256 (11)0.0233 (9)0.0250 (10)0.0028 (8)0.0094 (8)0.0007 (7)
C40.0315 (11)0.0222 (9)0.0319 (11)0.0007 (8)0.0155 (9)0.0025 (8)
C50.0257 (11)0.0260 (10)0.0361 (11)0.0043 (8)0.0142 (9)0.0040 (8)
C60.0214 (10)0.0273 (10)0.0270 (10)0.0003 (8)0.0088 (8)0.0046 (8)
C70.0315 (12)0.0276 (10)0.0357 (12)0.0029 (9)0.0092 (9)0.0084 (8)
C80.0176 (9)0.0250 (9)0.0186 (9)0.0028 (7)0.0074 (7)0.0018 (7)
C90.0198 (10)0.0267 (10)0.0229 (9)0.0014 (8)0.0059 (8)0.0008 (7)
C100.0179 (9)0.0257 (9)0.0176 (9)0.0005 (7)0.0068 (7)0.0029 (7)
C110.0274 (11)0.0297 (10)0.0220 (10)0.0044 (8)0.0037 (8)0.0012 (8)
C120.0307 (11)0.0316 (10)0.0224 (10)0.0043 (9)0.0099 (8)0.0034 (8)
C130.0259 (11)0.0282 (10)0.0255 (10)0.0005 (8)0.0104 (8)0.0036 (8)
Geometric parameters (Å, º) top
S1—C91.7128 (19)C2—C31.385 (3)
S1—C101.7266 (18)C2—H20.90 (2)
N1—C101.291 (2)C3—C41.384 (3)
N1—C81.390 (2)C3—C71.494 (3)
N2—C111.367 (2)C4—C51.385 (3)
N2—C131.383 (2)C4—H40.96 (2)
N2—C101.403 (2)C5—C61.387 (3)
N3—C111.307 (2)C5—H51.00 (2)
N3—C121.381 (3)C6—H60.95 (2)
F1—C71.337 (3)C8—C91.360 (3)
F2—C71.331 (2)C9—H90.95 (2)
F3—C71.339 (3)C11—H110.96 (2)
C1—C21.394 (3)C12—C131.346 (3)
C1—C61.397 (3)C12—H120.93 (2)
C1—C81.477 (2)C13—H130.96 (2)
C9—S1—C1088.27 (9)F2—C7—F1106.30 (17)
C10—N1—C8109.34 (15)F2—C7—F3106.36 (18)
C11—N2—C13106.72 (15)F1—C7—F3104.87 (18)
C11—N2—C10125.71 (16)F2—C7—C3113.16 (17)
C13—N2—C10127.57 (16)F1—C7—C3112.79 (18)
C11—N3—C12105.01 (17)F3—C7—C3112.71 (17)
C2—C1—C6118.77 (17)C9—C8—N1115.14 (16)
C2—C1—C8120.30 (17)C9—C8—C1125.36 (16)
C6—C1—C8120.93 (17)N1—C8—C1119.50 (16)
C3—C2—C1120.20 (18)C8—C9—S1110.65 (14)
C3—C2—H2121.4 (13)C8—C9—H9130.2 (12)
C1—C2—H2118.4 (13)S1—C9—H9119.0 (12)
C4—C3—C2120.85 (18)N1—C10—N2122.77 (16)
C4—C3—C7119.88 (17)N1—C10—S1116.59 (13)
C2—C3—C7119.25 (17)N2—C10—S1120.64 (13)
C3—C4—C5119.30 (18)N3—C11—N2111.68 (18)
C3—C4—H4119.6 (14)N3—C11—H11128.1 (13)
C5—C4—H4121.1 (14)N2—C11—H11120.2 (13)
C4—C5—C6120.36 (19)C13—C12—N3111.19 (17)
C4—C5—H5117.8 (13)C13—C12—H12128.0 (14)
C6—C5—H5121.8 (13)N3—C12—H12120.8 (14)
C5—C6—C1120.50 (18)C12—C13—N2105.38 (17)
C5—C6—H6121.5 (12)C12—C13—H13131.8 (14)
C1—C6—H6118.0 (12)N2—C13—H13122.8 (14)
C6—C1—C2—C30.1 (3)C2—C1—C8—N1170.46 (17)
C8—C1—C2—C3179.52 (17)C6—C1—C8—N19.9 (3)
C1—C2—C3—C41.0 (3)N1—C8—C9—S10.5 (2)
C1—C2—C3—C7179.66 (18)C1—C8—C9—S1178.79 (15)
C2—C3—C4—C51.2 (3)C10—S1—C9—C80.46 (15)
C7—C3—C4—C5179.87 (19)C8—N1—C10—N2179.81 (16)
C3—C4—C5—C60.3 (3)C8—N1—C10—S10.2 (2)
C4—C5—C6—C10.8 (3)C11—N2—C10—N19.5 (3)
C2—C1—C6—C51.0 (3)C13—N2—C10—N1171.01 (18)
C8—C1—C6—C5178.61 (18)C11—N2—C10—S1170.05 (15)
C4—C3—C7—F226.1 (3)C13—N2—C10—S19.4 (3)
C2—C3—C7—F2155.26 (19)C9—S1—C10—N10.41 (16)
C4—C3—C7—F194.6 (2)C9—S1—C10—N2180.00 (16)
C2—C3—C7—F184.0 (2)C12—N3—C11—N20.4 (2)
C4—C3—C7—F3146.84 (19)C13—N2—C11—N30.4 (2)
C2—C3—C7—F334.5 (3)C10—N2—C11—N3180.00 (17)
C10—N1—C8—C90.2 (2)C11—N3—C12—C130.2 (2)
C10—N1—C8—C1179.13 (16)N3—C12—C13—N20.0 (2)
C2—C1—C8—C910.3 (3)C11—N2—C13—C120.3 (2)
C6—C1—C8—C9169.30 (18)C10—N2—C13—C12179.81 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N3i0.95 (2)2.34 (2)3.278 (2)169.4 (18)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H8F3N3S
Mr295.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.4152 (7), 19.2403 (15), 8.4105 (7)
β (°) 114.210 (1)
V3)1241.98 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.893, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
9797, 2716, 2164
Rint0.049
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.07
No. of reflections2716
No. of parameters213
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N3i0.95 (2)2.34 (2)3.278 (2)169.4 (18)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This study was partially supported by the Russian Foundation for Basic Research (project Nos. 11–03-00630_a and 12–03-92005-NSC_a) and by the National Science Council of the Republic of China (NSC101–2923-B-002–008-MY3).

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, L., Guo, P., Li, G., Lan, J., Xie, R. & You, J. (2007). J. Org. Chem. 72, 8535–8538.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds