organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o155-o156

3-Benzyl-4-ethyl-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Chemistry, Siedlce University, ul. 3 Maja 54, 08-110 Siedlce, Poland, and bDepartment of Organic Chemistry, Faculty of Pharmacy with Division of Medical Analytics, Medical University, ul. Chodźki 4A, 20-093 Lublin, Poland
*Correspondence e-mail: kar@uph.edu.pl

(Received 6 November 2012; accepted 19 December 2012; online 4 January 2013)

The title compound, C11H13N3S, exists in the 5-thioxo tautomeric form. The benzene ring exhibits disorder with a refined ratio of 0.77 (2):0.23 (2) for components A and B with a common bridgehead C atom. The 1,2,4-triazole ring is essentially planar, with a maximum deviation of 0.002 (3) Å for the benzyl-substituted C atom, and forms dihedral angles of 88.94 (18) and 86.56 (49)° with the benzene rings of components A and B, respectively. The angle between the plane of the ethyl chain and the mean plane of 1,2,4-triazole ring is 88.55 (15)° and this conformation is stabilized by an intra­molecular C—H⋯S contact. In the crystal, pairs of N—H⋯S hydrogen bonds link mol­ecules into inversion dimers. ππ inter­actions are observed between the triazole and benzene rings, with centroid–centroid separations of 3.547 (4) and 3.544 (12) Å for components A and B, and slippages of 0.49 (6) and 0.58 (15) Å, respectively.

Related literature

For background information on 1,2,4-triazole-5-thio­nes, see: Saadeh et al. (2010[Saadeh, H. A., Mosleh, I. M., Al-Bakri, A. G. & Mubarak, M. I. (2010). Monatsh. Chem. 141, 471-478.]); Akhtar et al. (2008[Akhtar, T., Hameede, S., Khan, K. M. & Choudhary, M. I. (2008). Med. Chem. 4, 539-543.]); Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.]). For their biological activity, see: Pitucha et al. (2010[Pitucha, M., Polak, B., Swatko-Ossor, M., Popiołek, Ł. & Ginalska, G. (2010). Croat. Chem. Acta, 83, 299-306.]). For the synthesis, see: Dobosz & Pachuta-Stec (1996[Dobosz, M. & Pachuta-Stec, A. (1996). Acta Pol. Pharm. 53, 123-131.]). For related structures, see: Karczmarzyk et al. (2012[Karczmarzyk, Z., Pitucha, M., Wysocki, W., Fruziński, A. & Olender, E. (2012). Acta Cryst. E68, o3264-o3265.]); Kruszynski et al. (2007[Kruszynski, R., Trzesowska, A., Przybycin, M., Gil, K. & Dobosz, M. (2007). Acta Cryst. E63, o4378.]); Siwek et al. (2008[Siwek, A., Wujec, M., Wawrzycka-Gorczyca, I., Dobosz, M. & Paneth, P. (2008). Heteroat. Chem. 19, 337-344.]). For graph-set motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3S

  • Mr = 219.30

  • Monoclinic, P 21 /c

  • a = 7.3731 (5) Å

  • b = 8.9408 (19) Å

  • c = 16.9936 (8) Å

  • β = 91.892 (4)°

  • V = 1119.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.55 × 0.20 × 0.20 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.834, Tmax = 0.852

  • 3392 measured reflections

  • 3289 independent reflections

  • 1385 reflections with I > 2σ(I)

  • Rint = 0.039

  • 2 standard reflections every 100 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.156

  • S = 0.98

  • 3289 reflections

  • 187 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯S6 0.97 2.85 3.204 (3) 103
N1—H1⋯S6i 0.86 (3) 2.46 (3) 3.303 (3) 167 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: KM4B8 (Gałdecki et al., 1996[Gałdecki, Z., Kowalski, A., Kucharczyk, D. & Uszyński, L. (1996). KM4B8. Kuma Diffraction, Wrocław, Poland.]); cell refinement: KM4B8; data reduction: DATAPROC (Gałdecki et al., 1995[Gałdecki, Z., Kowalski, A. & Uszyński, L. (1995). DATAPROC. Kuma Diffraction, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The 1,2,4-triazole-5-thiones were found to have significant antimicrobial action (Saadeh et al., 2010; Akhtar et al., 2008; Al-Omar et al., 2010). The title compound, (I), belongs to 3- and 4-substituted derivatives of 1,2,4-triazole-5-thiones with potential antituberculosis activity against mycobacterium strains of Mycobacterium smegmatis, Mycobacterium phlei and Mycobacterium H37Ra (Pitucha et al., 2010).

The X-ray analysis of the title compound revealed that this compound exists as the 5-thioxo tautomer in the crystalline state. The molecular geometry of (I) is very similar to that observed in the related structures of ethyl 2-(3-methyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-4-yl)acetate (Karczmarzyk et al., 2012), 2-(3-methyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-4-yl)acetic acid (Kruszynski et al., 2007) and 4-[3-(2-methyl-furan-3-yl)-5-thioxo-1,2,4-triazol-4-yl]acetic acid (Siwek et al., 2008). The 1,2,4-triazole ring is planar to within 0.002 (3) Å. The benzene ring exhibits disorder giving two components A and B with a common bridgehead C atom. The benzyl group adopts a cis-gauche conformation in respect to 1,2,4-triazole ring with the torsion angles N2—C3—C9—C10 and C3—C9—C10—C11A for benzene ring A and C3—C9—C10—C11B for benzene ring B of 25.1 (5), -102.9 (9) and -105 (4)°, respectively. The plane of the ethyl chain is positioned almost perpendicular to the mean plane of the 1,2,4-triazole ring with the dihedral angle of 88.55 (15)°. This conformation is stabilized by the C7—H71···S6 intramolecular hydrogen bond specified as S(5) in graph set notation (Bernstein et al., 1995).

In the crystal structure (Fig. 2), inversion-related molecules of (I) form molecular dimers designated as R22(8) rings via N1—H1···S6 intermolecular hydrogen bonds. Moreover, the π-electron systems of the pairs of triazole and benzene rings belonging to the molecules related by 21 axis overlap each other, with centroid-to-centroid separation of 3.547 (4) Å for ring A and 3.544 (12) Å for ring B between the triazole ring at (x, y, z) and benzene rings at (-x, y+1/2, -z+1/2) and benzene rings at (x, y, z) and triazole ring at (-x, y-1/2, -z+1/2). The angle between overlapping planes is 6.6 (3)° for A and 5.0 (10)° for B and the slippage is 0.490 (58) and 0.575 (147) Å for rings A and B, respectively.

Related literature top

For background information on 1,2,4-triazole-5-thiones, see: Saadeh et al. (2010); Akhtar et al. (2008); Al-Omar et al. (2010). For their biological activity, see: Pitucha et al. (2010). For the synthesis, see: Dobosz & Pachuta-Stec (1996). For related structures, see: Karczmarzyk et al. (2012); Kruszynski et al. ( 2007); Siwek et al. (2008). For graph-set motifs, see Bernstein et al. (1995).

Experimental top

The title compound, (I), was prepared by the cyclization reaction of 1-benzyl-4-ethylthiosemicarbazide in alkaline medium according to the metod described by Dobosz & Pachuta-Stec (1996). Crystals uitable for X-ray diffraction analysis were grown by slow evaporation of ethanol solution.

Refinement top

The benzene ring exhibits disorder with the refined ratio of 0.77 (2):0.23 (2) for the two components A and B with common bridgehead C atom. DFIX restraints (SHELXL97; Sheldrick, 2008) with a target value of 1.380 (5) Å were used for all CC bonds in component B. The N-bound H atom was located by difference Fourier synthesis and refined freely. The remaining H atoms were positioned geometrically and treated as riding on their C atoms with C—H distances of 0.93 Å (aromatic), 0.96 Å (CH2) and 0.97 Å (CH3). All H atoms were assigned Uiso(H) values of 1.5Ueq(N,C).

Computing details top

Data collection: KM4B8 (Gałdecki et al., 1996); cell refinement: KM4B8 (Gałdecki et al., 1996); data reduction: DATAPROC (Gałdecki et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the molecular packing in (I).
3-Benzyl-4-ethyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C11H13N3SF(000) = 464
Mr = 219.30Dx = 1.301 Mg m3
Monoclinic, P21/cMelting point: 425 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.3731 (5) ÅCell parameters from 67 reflections
b = 8.9408 (19) Åθ = 3.6–11.2°
c = 16.9936 (8) ŵ = 0.26 mm1
β = 91.892 (4)°T = 296 K
V = 1119.6 (3) Å3Prism, colourless
Z = 40.55 × 0.20 × 0.20 mm
Data collection top
Kuma KM-4 four-circle
diffractometer
1385 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 30.1°, θmin = 2.4°
ω–2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.834, Tmax = 0.852l = 023
3392 measured reflections2 standard reflections every 100 reflections
3289 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.062P)2 + 0.2203P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3289 reflectionsΔρmax = 0.23 e Å3
187 parametersΔρmin = 0.20 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)
Crystal data top
C11H13N3SV = 1119.6 (3) Å3
Mr = 219.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3731 (5) ŵ = 0.26 mm1
b = 8.9408 (19) ÅT = 296 K
c = 16.9936 (8) Å0.55 × 0.20 × 0.20 mm
β = 91.892 (4)°
Data collection top
Kuma KM-4 four-circle
diffractometer
1385 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.039
Tmin = 0.834, Tmax = 0.8522 standard reflections every 100 reflections
3392 measured reflections intensity decay: 1%
3289 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.23 e Å3
3289 reflectionsΔρmin = 0.20 e Å3
187 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S60.22230 (10)0.33538 (8)0.53097 (4)0.0567 (3)
N10.0496 (3)0.3323 (3)0.42647 (13)0.0473 (6)
H10.101 (4)0.412 (4)0.4446 (18)0.071*
N20.1063 (3)0.2595 (3)0.36067 (13)0.0525 (6)
N40.1519 (3)0.1693 (2)0.40086 (12)0.0445 (5)
C30.0184 (4)0.1613 (3)0.34683 (16)0.0516 (7)
C50.1070 (3)0.2807 (3)0.45287 (15)0.0412 (6)
C70.3151 (4)0.0780 (3)0.40482 (17)0.0563 (8)
H7A0.35270.04660.35210.084*
H7B0.41220.13750.42590.084*
C80.2841 (5)0.0576 (4)0.4557 (2)0.0776 (11)
H8A0.25610.02680.50880.116*
H8B0.18470.11460.43620.116*
H8C0.39170.11820.45450.116*
C90.0260 (4)0.0531 (4)0.2795 (2)0.0834 (12)
H910.10340.09420.23760.125*
H920.08130.03910.29690.125*
C100.1561 (3)0.0173 (3)0.24685 (16)0.0456 (6)
C11A0.1986 (18)0.0849 (15)0.1776 (6)0.0499 (18)0.77 (2)
H11A0.11750.15310.15470.075*0.77 (2)
C12A0.3582 (15)0.0546 (11)0.1410 (6)0.062 (2)0.77 (2)
H12A0.38370.10270.09410.093*0.77 (2)
C13A0.4806 (9)0.0468 (11)0.1733 (7)0.066 (2)0.77 (2)
H13A0.58900.06730.14900.100*0.77 (2)
C14A0.4388 (12)0.1159 (11)0.2417 (7)0.071 (3)0.77 (2)
H14A0.51790.18700.26330.107*0.77 (2)
C15A0.2833 (14)0.0828 (10)0.2790 (5)0.068 (2)0.77 (2)
H15A0.26130.12790.32700.102*0.77 (2)
C11B0.240 (5)0.060 (6)0.179 (2)0.069 (11)0.23 (2)
H11B0.18730.13160.14630.103*0.23 (2)
C12B0.403 (3)0.004 (4)0.1598 (16)0.052 (8)0.23 (2)
H12B0.46080.01850.11340.077*0.23 (2)
C13B0.475 (3)0.104 (4)0.214 (2)0.074 (12)0.23 (2)
H13B0.59090.14140.20530.112*0.23 (2)
C14B0.391 (3)0.154 (3)0.280 (2)0.072 (7)0.23 (2)
H14B0.44370.22720.31260.108*0.23 (2)
C15B0.225 (3)0.093 (3)0.2963 (16)0.053 (6)0.23 (2)
H15B0.16080.12440.33950.079*0.23 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S60.0669 (5)0.0494 (4)0.0553 (4)0.0142 (4)0.0264 (3)0.0107 (4)
N10.0485 (13)0.0404 (12)0.0538 (13)0.0110 (11)0.0150 (10)0.0100 (11)
N20.0480 (13)0.0527 (13)0.0577 (15)0.0092 (11)0.0180 (11)0.0129 (12)
N40.0407 (11)0.0443 (12)0.0491 (12)0.0089 (10)0.0113 (9)0.0094 (11)
C30.0438 (14)0.0560 (16)0.0558 (16)0.0092 (14)0.0160 (12)0.0166 (14)
C50.0429 (14)0.0345 (12)0.0465 (15)0.0038 (11)0.0069 (11)0.0005 (11)
C70.0447 (15)0.0585 (18)0.0665 (19)0.0148 (14)0.0138 (13)0.0140 (15)
C80.080 (2)0.0522 (18)0.102 (3)0.0176 (17)0.031 (2)0.0055 (18)
C90.0629 (19)0.101 (3)0.089 (2)0.0244 (19)0.0288 (17)0.054 (2)
C100.0451 (15)0.0458 (15)0.0465 (15)0.0063 (12)0.0078 (12)0.0113 (13)
C11A0.052 (4)0.043 (4)0.055 (4)0.004 (3)0.006 (3)0.004 (2)
C12A0.062 (5)0.063 (5)0.062 (4)0.001 (3)0.024 (3)0.004 (3)
C13A0.043 (4)0.077 (5)0.080 (5)0.008 (3)0.014 (4)0.027 (4)
C14A0.063 (6)0.063 (5)0.087 (8)0.018 (4)0.015 (5)0.002 (4)
C15A0.091 (6)0.063 (4)0.050 (4)0.020 (5)0.003 (4)0.007 (3)
C11B0.054 (19)0.06 (2)0.09 (2)0.006 (12)0.022 (13)0.003 (13)
C12B0.032 (14)0.07 (2)0.052 (16)0.003 (12)0.015 (12)0.019 (14)
C13B0.051 (12)0.10 (2)0.07 (2)0.041 (13)0.029 (13)0.041 (18)
C14B0.074 (15)0.049 (11)0.094 (19)0.016 (10)0.004 (13)0.003 (11)
C15B0.033 (10)0.059 (12)0.067 (15)0.008 (9)0.003 (7)0.008 (8)
Geometric parameters (Å, º) top
S6—C51.673 (3)C10—C11B1.379 (5)
N1—C51.335 (3)C10—C15A1.394 (7)
N1—N21.371 (3)C11A—C12A1.376 (9)
N1—H10.86 (3)C11A—H11A0.9300
N2—C31.288 (3)C12A—C13A1.381 (10)
N4—C51.365 (3)C12A—H12A0.9300
N4—C31.370 (3)C13A—C14A1.360 (11)
N4—C71.457 (3)C13A—H13A0.9300
C3—C91.498 (4)C14A—C15A1.361 (9)
C7—C81.502 (4)C14A—H14A0.9300
C7—H7A0.9700C15A—H15A0.9300
C7—H7B0.9700C11B—C12B1.380 (5)
C8—H8A0.9600C11B—H11B0.9300
C8—H8B0.9600C12B—C13B1.379 (5)
C8—H8C0.9600C12B—H12B0.9300
C9—C101.504 (4)C13B—C14B1.377 (5)
C9—H910.9700C13B—H13B0.9300
C9—H920.9700C14B—C15B1.379 (5)
C10—C11A1.369 (6)C14B—H14B0.9300
C10—C15B1.379 (5)C15B—H15B0.9300
C5—N1—N2113.6 (2)C15B—C10—C9103.9 (10)
C5—N1—H1123 (2)C11B—C10—C9133.0 (12)
N2—N1—H1123 (2)C15A—C10—C9126.1 (5)
C3—N2—N1103.7 (2)C10—C11A—C12A121.7 (8)
C5—N4—C3107.9 (2)C10—C11A—H11A119.2
C5—N4—C7124.2 (2)C12A—C11A—H11A119.2
C3—N4—C7127.9 (2)C11A—C12A—C13A120.5 (9)
N2—C3—N4111.5 (2)C11A—C12A—H12A119.8
N2—C3—C9126.0 (2)C13A—C12A—H12A119.8
N4—C3—C9122.4 (2)C14A—C13A—C12A118.3 (8)
N1—C5—N4103.2 (2)C14A—C13A—H13A120.8
N1—C5—S6129.3 (2)C12A—C13A—H13A120.8
N4—C5—S6127.47 (18)C13A—C14A—C15A121.1 (7)
N4—C7—C8111.6 (2)C13A—C14A—H14A119.4
N4—C7—H7A109.3C15A—C14A—H14A119.4
C8—C7—H7A109.3C14A—C15A—C10121.6 (5)
N4—C7—H7B109.3C14A—C15A—H15A119.2
C8—C7—H7B109.3C10—C15A—H15A119.2
H7A—C7—H7B108.0C10—C11B—C12B120.3 (17)
C7—C8—H8A109.5C10—C11B—H11B119.8
C7—C8—H8B109.5C12B—C11B—H11B119.8
H8A—C8—H8B109.5C13B—C12B—C11B115 (2)
C7—C8—H8C109.5C13B—C12B—H12B122.3
H8A—C8—H8C109.5C11B—C12B—H12B122.3
H8B—C8—H8C109.5C14B—C13B—C12B126 (2)
C3—C9—C10114.1 (3)C14B—C13B—H13B117.2
C3—C9—H91108.7C12B—C13B—H13B117.2
C10—C9—H91108.7C13B—C14B—C15B117 (2)
C3—C9—H92108.7C13B—C14B—H14B121.3
C10—C9—H92108.7C15B—C14B—H14B121.3
H91—C9—H92107.6C14B—C15B—C10118.3 (15)
C15B—C10—C11B122.5 (12)C14B—C15B—H15B120.8
C11A—C10—C15A116.8 (5)C10—C15B—H15B120.8
C11A—C10—C9117.1 (5)
C5—N1—N2—C30.1 (3)C3—C9—C10—C11B105 (4)
N1—N2—C3—N40.3 (3)C3—C9—C10—C15A79.6 (7)
N1—N2—C3—C9178.3 (3)C15A—C10—C11A—C12A0.7 (18)
C5—N4—C3—N20.3 (3)C9—C10—C11A—C12A177.0 (11)
C7—N4—C3—N2179.7 (3)C10—C11A—C12A—C13A0 (2)
C5—N4—C3—C9178.5 (3)C11A—C12A—C13A—C14A0.4 (17)
C7—N4—C3—C91.6 (5)C12A—C13A—C14A—C15A2.2 (16)
N2—N1—C5—N40.1 (3)C13A—C14A—C15A—C103.3 (16)
N2—N1—C5—S6179.3 (2)C11A—C10—C15A—C14A2.5 (14)
C3—N4—C5—N10.2 (3)C9—C10—C15A—C14A175.0 (7)
C7—N4—C5—N1179.8 (2)C15B—C10—C11B—C12B2 (7)
C3—N4—C5—S6179.2 (2)C9—C10—C11B—C12B173 (3)
C7—N4—C5—S60.8 (4)C10—C11B—C12B—C13B3 (7)
C5—N4—C7—C888.5 (3)C11B—C12B—C13B—C14B7 (5)
C3—N4—C7—C891.4 (3)C12B—C13B—C14B—C15B4 (5)
N2—C3—C9—C1025.1 (5)C13B—C14B—C15B—C102 (5)
N4—C3—C9—C10157.0 (3)C11B—C10—C15B—C14B5 (5)
C3—C9—C10—C11A102.9 (9)C9—C10—C15B—C14B178 (3)
C3—C9—C10—C15B83.1 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···S60.972.853.204 (3)103
N1—H1···S6i0.86 (3)2.46 (3)3.303 (3)167 (3)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H13N3S
Mr219.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.3731 (5), 8.9408 (19), 16.9936 (8)
β (°) 91.892 (4)
V3)1119.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.55 × 0.20 × 0.20
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.834, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
3392, 3289, 1385
Rint0.039
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.156, 0.98
No. of reflections3289
No. of parameters187
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: KM4B8 (Gałdecki et al., 1996), DATAPROC (Gałdecki et al., 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···S60.972.853.204 (3)103
N1—H1···S6i0.86 (3)2.46 (3)3.303 (3)167 (3)
Symmetry code: (i) x, y+1, z+1.
 

References

First citationAkhtar, T., Hameede, S., Khan, K. M. & Choudhary, M. I. (2008). Med. Chem. 4, 539–543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.  Web of Science CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDobosz, M. & Pachuta-Stec, A. (1996). Acta Pol. Pharm. 53, 123–131.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGałdecki, Z., Kowalski, A., Kucharczyk, D. & Uszyński, L. (1996). KM4B8. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationGałdecki, Z., Kowalski, A. & Uszyński, L. (1995). DATAPROC. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationKarczmarzyk, Z., Pitucha, M., Wysocki, W., Fruziński, A. & Olender, E. (2012). Acta Cryst. E68, o3264–o3265.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKruszynski, R., Trzesowska, A., Przybycin, M., Gil, K. & Dobosz, M. (2007). Acta Cryst. E63, o4378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPitucha, M., Polak, B., Swatko-Ossor, M., Popiołek, Ł. & Ginalska, G. (2010). Croat. Chem. Acta, 83, 299–306.  CAS Google Scholar
First citationSaadeh, H. A., Mosleh, I. M., Al-Bakri, A. G. & Mubarak, M. I. (2010). Monatsh. Chem. 141, 471–478.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiwek, A., Wujec, M., Wawrzycka-Gorczyca, I., Dobosz, M. & Paneth, P. (2008). Heteroat. Chem. 19, 337–344.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o155-o156
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds