organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy-1-methyl-3-phenyl­quinolin-2(1H)-one

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin 76272, Czech Republic, and bFaculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: andrej.pevec@fkkt.uni-lj.si

(Received 16 November 2012; accepted 3 January 2013; online 12 January 2013)

In the title compound, C16H13NO2, the quinoline system is approximately planar with a maximum deviation from the least-squares plane of 0.059 (1) Å for the N atom. The phenyl ring is rotated by 62.16 (4)° with respect to the plane of the quinoline system. In the crystal, O—H⋯O hydrogen bonds link mol­ecules into infinite chains running along the b-axis direction.

Related literature

For the preparation of the title compound and other 4-hy­droxy­quinolin-2-ones, see: Baumgarten & Kärgel (1927[Baumgarten, P. & Kärgel, W. (1927). Ber. Dtsch Chem. Ges. B, 60, 832-842.]); Lange et al., (2001[Lange, J. H. M., Verveer, P. C., Osnabrug, S. J. M. & Visser, G. M. (2001). Tetrahedron Lett. 42, 1367-1369.]); Martensson & Nilsson (1960[Martensson, O. & Nilsson, E. (1960). Acta Chem. Scand. 14, 1129-1150.]); Bezuglyi et al. (1992[Bezuglyi, P. A., Ukrainets, I. V., Treskach, V. I. & Turov, A. V. (1992). Khim. Geterotsikl. Soedin. pp. 522-524.]). For synthetic utilization of the title compound, see: Kafka et al. (2002[Kafka, S., Klásek, A., Polis, J. & Košmrlj, J. (2002). Heterocycles, 57, 1659-1682.]); Klásek et al. (2002[Klásek, A., Polis, J., Mrkvička, V. & Košmrlj, J. (2002). J. Heterocycl. Chem. 39, 1315-1320.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO2

  • Mr = 251.27

  • Monoclinic, P 21

  • a = 6.1787 (2) Å

  • b = 8.2696 (2) Å

  • c = 12.3665 (4) Å

  • β = 101.632 (2)°

  • V = 618.89 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.50 × 0.25 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.957, Tmax = 0.991

  • 2580 measured reflections

  • 1479 independent reflections

  • 1235 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.02

  • 1479 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.82 1.89 2.655 (2) 156
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+2].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound, (I) (Fig. 1), was first prepared by the thermal condensation of diethyl phenylmalonate with N-methylaniline (Baumgarten & Kärgel 1927). This reaction, performed with various malonates and anilines, is still the most widely used general method for the preparation of 4-hydroxyquinolin-2-ones, including compound I. The performance of the reaction under microwave irradiation was described by Lange et al. (2001). Among other approaches to the preparation of compound I and other 4-hydroxyquinoline-2-diones, intramolecular condensations of 2-acylaminobenzoates could be particularly feasible (Martensson & Nilsson, 1960; Bezuglyi et al., 1992). Recently, compound I was utilized for the preparation of the corresponding 3-bromo- and 3-chloro-1-methyl-3-phenylquinoline-2,4(1H,3H)-diones, from which other compounds were prepared by nucleophilic substitution of the halogen atom (Kafka et al., 2002; Klásek et al., 2002).

In the crystal structure of the title compound (I) (Fig. 2) 4-hydroxy-1-methyl-3-phenylquinolin-2(1H)-one molecules are connected by intermolecular O—H···O hydrogen bonds between the hydroxyl and carbonyl groups (Table 1). These connections form linear chains along the b-axis in the crystal structure.

Related literature top

For the preparation of the title compound and other 4-hydroxyquinolin-2-ones, see: Baumgarten & Kärgel (1927); Lange et al., (2001); Martensson & Nilsson (1960); Bezuglyi et al. (1992). For recent synthetic utilization of the title compound, see: Kafka et al. (2002); Klásek et al. (2002).

Experimental top

Title compound was prepared according to a modified procedure published by Baumgarten & Kärgel (1927). A mixture of N-methylaniline (10.7 g, 100 mmol) and diethyl phenylmalonate (24.8 g, 105 mmol) was gradually heated in a Wood's metal bath at 200–290 °C for 4.5 h (until the distillation of ethanol stopped; reached 8.57 g, i.e. 93% of theoretical mass of distillate). The hot reaction mixture was poured into a mortar, crushed after cooling and dissolved in the mixture of aqueous sodium hydroxide solution (0.5 M, 300 ml) and toluene (50 ml). The aqueous phase was separated, washed with toluene, shortly stirred with active carbon, filtered and acidified by addition of 10% hydrochloric acid to Kongo red. The precipitated white solid was filtered off, washed with water and air dried affording 23.4 g (93% of theory) of crude product, m. p. 223–225 C. Crystallization of the crude product from ethanol afforded 20.1 g (80% of theoretical yield) of the title compound (I), m. p. 222–226 °C. In the literature (Martensson & Nilsson, 1960), the same m. p. is given.

Refinement top

All H atoms were included in the model at geometrically calculated positions and refined using a riding model, with C—H bond lengths constrained to 0.93 Å (aromatic CH), 0.96 Å (methyl CH3), and O—H = 0.82 Å, and with Uiso(H) values of 1.2Ueq(C) [for aromatic CH] or 1.5Ueq(C) [for OH and methyl groups]. In the absence of significant anomalous scattering, the Flack parameter could not be determined reliably. Therefore Friedel-pairs were merged prior to the final refinement cycle. 16 low angle reflections were dropped by the integration routines because of detector saturation.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of (I), with the O—H···O hydrogen bonds. [Symmetry code: (i) -x, y + 1/2, -z + 2.]
4-Hydroxy-1-methyl-3-phenylquinolin-2(1H)-one top
Crystal data top
C16H13NO2F(000) = 264
Mr = 251.27Dx = 1.348 Mg m3
Monoclinic, P21Melting point = 495–499 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 6.1787 (2) ÅCell parameters from 1471 reflections
b = 8.2696 (2) Åθ = 1.0–27.5°
c = 12.3665 (4) ŵ = 0.09 mm1
β = 101.632 (2)°T = 293 K
V = 618.89 (3) Å3Prism, colorless
Z = 20.50 × 0.25 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1479 independent reflections
Radiation source: fine-focus sealed tube1235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ scans + ω scansθmax = 27.4°, θmin = 5.5°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.957, Tmax = 0.991k = 108
2580 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.0786P]
where P = (Fo2 + 2Fc2)/3
1479 reflections(Δ/σ)max = 0.0001
174 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C16H13NO2V = 618.89 (3) Å3
Mr = 251.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.1787 (2) ŵ = 0.09 mm1
b = 8.2696 (2) ÅT = 293 K
c = 12.3665 (4) Å0.50 × 0.25 × 0.10 mm
β = 101.632 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1479 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1235 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.991Rint = 0.017
2580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.102H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
1479 reflectionsΔρmin = 0.16 e Å3
174 parameters
Special details top

Experimental. 216 frames in 4 sets of ϕ scans + ω scans. Rotation/frame = 2.0 °. Crystal-detector distance = 31 mm. Measuring time = 200 s/°.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3506 (3)0.6870 (2)0.76995 (14)0.0421 (5)
O10.3484 (2)0.6084 (2)0.94498 (12)0.0461 (4)
O20.2230 (3)0.9476 (3)0.86700 (12)0.0527 (5)
H2O0.24330.97510.93200.079*
C10.2491 (4)0.7574 (3)0.69150 (17)0.0408 (5)
C20.3367 (5)0.7420 (4)0.57760 (19)0.0563 (7)
H20.46590.68330.55360.068*
C30.2321 (5)0.8131 (4)0.50211 (19)0.0640 (8)
H30.29030.80040.42720.077*
C40.0430 (6)0.9027 (4)0.5350 (2)0.0631 (7)
H40.02510.95120.48270.076*
C50.0453 (5)0.9202 (3)0.64626 (19)0.0531 (6)
H50.17200.98210.66880.064*
C60.0539 (4)0.8458 (3)0.72531 (17)0.0408 (5)
C70.0393 (4)0.8579 (3)0.84224 (17)0.0392 (5)
C80.0553 (4)0.7782 (3)0.91735 (16)0.0374 (5)
C90.2559 (3)0.6871 (3)0.88098 (16)0.0374 (5)
C100.5599 (4)0.6003 (4)0.7363 (2)0.0558 (6)
H10A0.53300.49730.70570.084*
H10B0.65790.66250.68170.084*
H10C0.62610.58430.79940.084*
C110.0412 (3)0.7767 (3)1.03788 (15)0.0374 (5)
C120.2473 (4)0.7070 (3)1.07702 (19)0.0456 (5)
H120.32880.66691.02740.055*
C130.3319 (4)0.6971 (4)1.1895 (2)0.0537 (6)
H130.46820.64831.21510.064*
C140.2142 (5)0.7594 (4)1.26318 (19)0.0568 (7)
H140.27090.75231.33860.068*
C150.0133 (4)0.8321 (4)1.22571 (19)0.0535 (6)
H150.06400.87641.27580.064*
C160.0749 (4)0.8396 (3)1.11342 (18)0.0460 (6)
H160.21240.88711.08860.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0427 (10)0.0467 (10)0.0362 (9)0.0025 (9)0.0062 (7)0.0040 (9)
O10.0438 (8)0.0554 (10)0.0408 (8)0.0007 (8)0.0124 (6)0.0101 (7)
O20.0653 (10)0.0598 (10)0.0366 (8)0.0198 (9)0.0191 (8)0.0084 (8)
C10.0524 (12)0.0392 (11)0.0311 (10)0.0092 (10)0.0095 (9)0.0020 (9)
C20.0630 (15)0.0639 (17)0.0397 (12)0.0002 (13)0.0047 (11)0.0030 (12)
C30.087 (2)0.0729 (19)0.0299 (11)0.0020 (17)0.0058 (12)0.0045 (12)
C40.0925 (19)0.0656 (17)0.0352 (11)0.0053 (16)0.0220 (12)0.0065 (12)
C50.0719 (15)0.0535 (15)0.0376 (11)0.0069 (13)0.0201 (11)0.0013 (12)
C60.0531 (13)0.0377 (11)0.0339 (10)0.0027 (10)0.0143 (9)0.0009 (9)
C70.0472 (12)0.0402 (12)0.0325 (10)0.0009 (9)0.0136 (9)0.0039 (9)
C80.0448 (11)0.0383 (11)0.0312 (10)0.0041 (9)0.0128 (8)0.0010 (9)
C90.0418 (11)0.0392 (11)0.0327 (10)0.0083 (10)0.0115 (8)0.0030 (9)
C100.0476 (12)0.0669 (16)0.0497 (13)0.0029 (13)0.0022 (10)0.0035 (13)
C110.0432 (11)0.0398 (11)0.0315 (10)0.0029 (10)0.0127 (9)0.0005 (9)
C120.0439 (12)0.0535 (14)0.0410 (11)0.0019 (11)0.0126 (9)0.0017 (11)
C130.0470 (13)0.0618 (15)0.0492 (13)0.0024 (12)0.0019 (10)0.0052 (13)
C140.0621 (15)0.0732 (17)0.0317 (11)0.0115 (14)0.0017 (10)0.0033 (11)
C150.0594 (15)0.0693 (16)0.0353 (11)0.0037 (13)0.0177 (10)0.0062 (12)
C160.0483 (12)0.0557 (14)0.0354 (11)0.0045 (11)0.0118 (9)0.0011 (11)
Geometric parameters (Å, º) top
N1—C91.380 (3)C7—C81.363 (3)
N1—C11.385 (3)C8—C91.443 (3)
N1—C101.464 (3)C8—C111.490 (3)
O1—C91.248 (3)C10—H10A0.9600
O2—C71.339 (3)C10—H10B0.9600
O2—H2O0.8200C10—H10C0.9600
C1—C61.400 (3)C11—C161.389 (3)
C1—C21.409 (3)C11—C121.393 (3)
C2—C31.370 (4)C12—C131.386 (3)
C2—H20.9300C12—H120.9300
C3—C41.374 (4)C13—C141.376 (4)
C3—H30.9300C13—H130.9300
C4—C51.382 (3)C14—C151.373 (4)
C4—H40.9300C14—H140.9300
C5—C61.397 (3)C15—C161.387 (3)
C5—H50.9300C15—H150.9300
C6—C71.448 (3)C16—H160.9300
C9—N1—C1122.40 (19)O1—C9—N1118.3 (2)
C9—N1—C10117.14 (19)O1—C9—C8123.29 (18)
C1—N1—C10120.37 (18)N1—C9—C8118.40 (18)
C7—O2—H2O109.5N1—C10—H10A109.5
N1—C1—C6119.64 (18)N1—C10—H10B109.5
N1—C1—C2121.7 (2)H10A—C10—H10B109.5
C6—C1—C2118.7 (2)N1—C10—H10C109.5
C3—C2—C1120.2 (2)H10A—C10—H10C109.5
C3—C2—H2119.9H10B—C10—H10C109.5
C1—C2—H2119.9C16—C11—C12118.78 (19)
C2—C3—C4121.3 (2)C16—C11—C8120.87 (19)
C2—C3—H3119.3C12—C11—C8120.32 (18)
C4—C3—H3119.3C13—C12—C11120.4 (2)
C3—C4—C5119.5 (2)C13—C12—H12119.8
C3—C4—H4120.3C11—C12—H12119.8
C5—C4—H4120.3C14—C13—C12120.0 (2)
C4—C5—C6120.7 (2)C14—C13—H13120.0
C4—C5—H5119.7C12—C13—H13120.0
C6—C5—H5119.7C15—C14—C13120.2 (2)
C5—C6—C1119.60 (19)C15—C14—H14119.9
C5—C6—C7121.7 (2)C13—C14—H14119.9
C1—C6—C7118.66 (19)C14—C15—C16120.2 (2)
O2—C7—C8124.90 (19)C14—C15—H15119.9
O2—C7—C6114.51 (18)C16—C15—H15119.9
C8—C7—C6120.6 (2)C15—C16—C11120.3 (2)
C7—C8—C9119.96 (18)C15—C16—H16119.8
C7—C8—C11123.1 (2)C11—C16—H16119.8
C9—C8—C11116.93 (18)
C9—N1—C1—C66.3 (3)C6—C7—C8—C11175.7 (2)
C10—N1—C1—C6177.3 (2)C1—N1—C9—O1173.6 (2)
C9—N1—C1—C2173.3 (2)C10—N1—C9—O12.9 (3)
C10—N1—C1—C23.0 (3)C1—N1—C9—C86.6 (3)
N1—C1—C2—C3180.0 (2)C10—N1—C9—C8177.0 (2)
C6—C1—C2—C30.3 (4)C7—C8—C9—O1178.3 (2)
C1—C2—C3—C41.1 (5)C11—C8—C9—O10.4 (3)
C2—C3—C4—C50.7 (5)C7—C8—C9—N11.8 (3)
C3—C4—C5—C61.0 (5)C11—C8—C9—N1179.48 (19)
C4—C5—C6—C12.3 (4)C7—C8—C11—C16118.9 (3)
C4—C5—C6—C7178.0 (3)C9—C8—C11—C1662.4 (3)
N1—C1—C6—C5178.4 (2)C7—C8—C11—C1263.2 (3)
C2—C1—C6—C51.9 (3)C9—C8—C11—C12115.5 (2)
N1—C1—C6—C71.4 (3)C16—C11—C12—C131.7 (4)
C2—C1—C6—C7178.3 (2)C8—C11—C12—C13176.3 (2)
C5—C6—C7—O21.2 (3)C11—C12—C13—C141.4 (4)
C1—C6—C7—O2178.5 (2)C12—C13—C14—C150.2 (5)
C5—C6—C7—C8177.1 (2)C13—C14—C15—C161.6 (5)
C1—C6—C7—C83.2 (3)C14—C15—C16—C111.3 (4)
O2—C7—C8—C9179.0 (2)C12—C11—C16—C150.3 (4)
C6—C7—C8—C92.9 (3)C8—C11—C16—C15177.6 (2)
O2—C7—C8—C112.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.821.892.655 (2)156
Symmetry code: (i) x, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC16H13NO2
Mr251.27
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.1787 (2), 8.2696 (2), 12.3665 (4)
β (°) 101.632 (2)
V3)618.89 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.25 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.957, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2580, 1479, 1235
Rint0.017
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.02
No. of reflections1479
No. of parameters174
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.821.892.655 (2)155.9
Symmetry code: (i) x, y+1/2, z+2.
 

Acknowledgements

This study was supported by the inter­nal grant of the TBU in Zlin (No. IGA/FT/2012/043) funded from the resources of specific university research and the Slovenian Research Agency (Project P1–0230–0103 and Joint Project BI—CZ/07–08–018). This work was also partly supported through the infrastructure of the EN–FIST Centre of Excellence, Ljubljana.

References

First citationBaumgarten, P. & Kärgel, W. (1927). Ber. Dtsch Chem. Ges. B, 60, 832–842.  CrossRef Google Scholar
First citationBezuglyi, P. A., Ukrainets, I. V., Treskach, V. I. & Turov, A. V. (1992). Khim. Geterotsikl. Soedin. pp. 522–524.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKafka, S., Klásek, A., Polis, J. & Košmrlj, J. (2002). Heterocycles, 57, 1659–1682.  CAS Google Scholar
First citationKlásek, A., Polis, J., Mrkvička, V. & Košmrlj, J. (2002). J. Heterocycl. Chem. 39, 1315–1320.  Google Scholar
First citationLange, J. H. M., Verveer, P. C., Osnabrug, S. J. M. & Visser, G. M. (2001). Tetrahedron Lett. 42, 1367–1369.  Web of Science CrossRef CAS Google Scholar
First citationMartensson, O. & Nilsson, E. (1960). Acta Chem. Scand. 14, 1129–1150.  CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds