organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Acet­­oxy­meth­yl)benzoic acid

aCarbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 28 November 2012; accepted 8 January 2013; online 19 January 2013)

The title compound, C10H10O4, crystallizes with the well-known carb­oxy­lic acid dimer-forming R22(8) hydrogen-bond motif. Chains approximately parallel to (-1-12) are then built through C(methyl­ene,phen­yl)–H⋯O(carbon­yl) inter­actions [C(6) and C(8) motifs] with one (meth­yl)C—H⋯π inter­action providing inter­planar binding. The weakness of the latter inter­action is consistent with the difficulty experienced in obtaining suitable single crystals.

Related literature

For details of the synthesis, see: Gorter-Laroij & Kooyman (1972[Gorter-Laroij, G. M. & Kooyman, E. C. (1972). J. Catal. 25, 230-237.]). For related structures, see Kan et al. (2012[Kan, W.-Q., Ma, J.-F., Liu, Y.-L. & Yang, J. (2012). CrystEngComm, 14, 2316-2326.]); Liu et al. (2002[Liu, R., Valiyaveettil, S., Mok, K.-F., Vittal, J. J. & Hoong, A. K. M. (2002). CrystEngComm, 4, 574-579.]); Valentine et al. (1992[Valentine, J. J., Nakanishi, S., Hageman, D. L., Snider, R. M., Spencer, R. W. & Vinicj, F. J. (1992). Bioorg. Med. Chem. Lett. 2, 233-338.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database (CSD), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O4

  • Mr = 194.18

  • Triclinic, [P \overline 1]

  • a = 6.2134 (9) Å

  • b = 8.2415 (9) Å

  • c = 9.6280 (11) Å

  • α = 77.54 (1)°

  • β = 83.364 (11)°

  • γ = 73.081 (12)°

  • V = 459.84 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.92 mm−1

  • T = 120 K

  • 0.58 × 0.28 × 0.18 mm

Data collection
  • Oxford Diffraction SuperNova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.848, Tmax = 1.000

  • 2819 measured reflections

  • 1767 independent reflections

  • 1678 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.093

  • S = 1.08

  • 1767 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.971 (16) 1.667 (15) 2.6316 (12) 171.6 (12)
C4—H4⋯O4ii 0.95 2.43 3.3685 (15) 168
C8—H8A⋯O2iii 0.99 2.67 3.5747 (14) 152
C10—H10BCg1iii 0.98 2.82 3.5703 (13) 134
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y-1, z; (iii) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP in WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was synthesized during our studies on substituted benzoyl protecting groups that could be selectively cleaved in the presence of other benzoate esters. We believe the structure has not been reported previously because of difficulties, which we experienced, in obtaining suitable non-twinned single crystals and the tendency of the title compound to cyclize with formation of phthalide. The compound crystallizes with one independent C10H10O4 molecule in the asymmetric unit (Fig. 1). Only two closely related structures with similar carboxylic acid hydrogen bonding links [R22(8) (Bernstein et al.,1995)] were found in the CSD (Allen, 2002): JOWTIY (Valentine et al., 1992) and UHELOI (Liu et al., 2002). The rather short intermolecular H2···O1 contact distance [1.667 (15) Å] (Table 1) is replicated in these two reports as 1.752 & 1.569 Å, respectively. A series of metal complexes containing the acetoxymethyl- moiety have been reported by Kan et al. (2012).

The crystal packing (Table 1) consists of the above-mentioned strong carboxylic acid hydrogen bonding in the plane of the molecule. This is coupled with C(methylene,phenyl)—H···O(carbonyl) interactions [C(6) & C(8) motifs] forming planar chains. One weak (methyl)C8—H10B···π interaction (labelled in Figure 2) crosslinks the planes of molecules, which are approximately parallel to the (-1,-1,2) crystal plane. This weak interplanar interaction is consistent with the difficulty in obtaining adequate non-twinned crystals.

Related literature top

For details of the synthesis, see: Gorter-Laroij & Kooyman (1972). For related structures, see Kan et al. (2012); Liu et al. (2002); Valentine et al. (1992). For hydrogen-bonding motifs, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database (CSD), see: Allen (2002).

Experimental top

The synthesis of the title compound has been reported previously by Gorter-Laroij & Kooyman (1972). Crystals for analysis were obtained by dissolving the title compound in a minimal amount of ethyl acetate, followed by addition of petroleum ether 60–80.

Refinement top

Eight outlier reflections, identified by large delta/sigma ratio (>4.8), were OMITted from the dataset (four were omitted on the basis of inconsistent equivalents). All methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bond. All other C bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 1.00 (primary), 0.99 (methylene) or 0.95 (phenyl) Å and with Uiso(H) = 1.2Ueq(C). The hydroxyl hydrogen on O2 was refined with Uiso(H) = 1.2Ueq(O2)

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the asymmetric unit with 30% ellipsoid probabilities. H atoms are of arbitrary size.
[Figure 2] Fig. 2. Cell contents view down the c axis. Contact atoms are shown as balls; intermolecular bonding contacts are shown as blue dotted lines. Symmetry: (i) 1 - x,2 - y, 1 - z (ii) 1 - x, 1 - y, 1 - z (iii) 2 - x, 1 - y, 1 - z.
2-(Acetoxymethyl)benzoic acid top
Crystal data top
C10H10O4Z = 2
Mr = 194.18F(000) = 204
Triclinic, P1Dx = 1.402 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.2134 (9) ÅCell parameters from 1939 reflections
b = 8.2415 (9) Åθ = 4.7–73.5°
c = 9.6280 (11) ŵ = 0.92 mm1
α = 77.54 (1)°T = 120 K
β = 83.364 (11)°Plate, colourless
γ = 73.081 (12)°0.58 × 0.28 × 0.18 mm
V = 459.84 (10) Å3
Data collection top
Oxford Diffraction SuperNova
diffractometer
1767 independent reflections
Radiation source: fine-focus sealed tube1678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 10.6501 pixels mm-1θmax = 73.6°, θmin = 8.1°
ω scansh = 75
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 109
Tmin = 0.848, Tmax = 1.000l = 1110
2819 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.0727P]
where P = (Fo2 + 2Fc2)/3
1767 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H10O4γ = 73.081 (12)°
Mr = 194.18V = 459.84 (10) Å3
Triclinic, P1Z = 2
a = 6.2134 (9) ÅCu Kα radiation
b = 8.2415 (9) ŵ = 0.92 mm1
c = 9.6280 (11) ÅT = 120 K
α = 77.54 (1)°0.58 × 0.28 × 0.18 mm
β = 83.364 (11)°
Data collection top
Oxford Diffraction SuperNova
diffractometer
1767 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
1678 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 1.000Rint = 0.012
2819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.22 e Å3
1767 reflectionsΔρmin = 0.19 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36320 (13)0.93020 (10)0.39619 (8)0.0303 (2)
O20.71012 (13)0.80677 (11)0.47419 (8)0.0317 (2)
H20.671 (2)0.909 (2)0.5167 (15)0.038*
O30.07354 (12)0.72594 (9)0.12998 (8)0.0267 (2)
O40.20437 (13)0.97266 (10)0.12417 (8)0.0313 (2)
C10.56622 (17)0.65287 (13)0.34491 (11)0.0249 (2)
C20.40134 (17)0.63516 (13)0.26421 (10)0.0239 (2)
C30.44020 (18)0.48029 (14)0.21710 (11)0.0285 (2)
H30.33060.46610.16310.034*
C40.6346 (2)0.34570 (15)0.24670 (13)0.0325 (3)
H40.65590.24130.21360.039*
C50.79735 (19)0.36433 (15)0.32480 (12)0.0330 (3)
H50.93100.27330.34510.040*
C60.76242 (19)0.51722 (15)0.37275 (12)0.0307 (3)
H60.87410.53040.42570.037*
C70.53578 (17)0.80933 (14)0.40604 (11)0.0260 (2)
C80.18911 (17)0.77882 (13)0.22692 (11)0.0251 (2)
H8A0.09190.79880.31400.030*
H8B0.22740.88740.18120.030*
C90.12281 (17)0.83631 (13)0.08618 (11)0.0246 (2)
C100.22257 (18)0.76614 (14)0.01435 (12)0.0291 (3)
H10A0.37480.84010.03470.044*
H10B0.22970.64870.02910.044*
H10C0.12840.76370.10330.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0287 (4)0.0314 (4)0.0345 (4)0.0057 (3)0.0068 (3)0.0149 (3)
O20.0268 (4)0.0386 (5)0.0348 (4)0.0073 (3)0.0075 (3)0.0172 (3)
O30.0254 (4)0.0252 (4)0.0323 (4)0.0038 (3)0.0085 (3)0.0120 (3)
O40.0306 (4)0.0274 (4)0.0362 (4)0.0014 (3)0.0064 (3)0.0129 (3)
C10.0251 (5)0.0287 (5)0.0217 (5)0.0074 (4)0.0017 (4)0.0066 (4)
C20.0247 (5)0.0262 (5)0.0218 (5)0.0079 (4)0.0011 (4)0.0060 (4)
C30.0294 (5)0.0280 (5)0.0306 (5)0.0073 (4)0.0049 (4)0.0098 (4)
C40.0351 (6)0.0269 (5)0.0347 (6)0.0035 (4)0.0035 (5)0.0104 (4)
C50.0296 (6)0.0316 (6)0.0329 (6)0.0011 (4)0.0052 (4)0.0073 (4)
C60.0270 (5)0.0376 (6)0.0276 (5)0.0056 (4)0.0057 (4)0.0086 (4)
C70.0259 (5)0.0325 (5)0.0225 (5)0.0100 (4)0.0027 (4)0.0076 (4)
C80.0257 (5)0.0262 (5)0.0273 (5)0.0073 (4)0.0056 (4)0.0110 (4)
C90.0234 (5)0.0260 (5)0.0248 (5)0.0064 (4)0.0019 (4)0.0058 (4)
C100.0282 (5)0.0317 (5)0.0301 (5)0.0072 (4)0.0060 (4)0.0103 (4)
Geometric parameters (Å, º) top
O1—C71.2297 (14)C3—H30.9500
O2—C71.3226 (12)C4—C51.3885 (16)
O2—H20.974 (16)C4—H40.9500
O3—C91.3421 (13)C5—C61.3844 (17)
O3—C81.4454 (11)C5—H50.9500
O4—C91.2068 (13)C6—H60.9500
C1—C61.4003 (15)C8—H8A0.9900
C1—C21.4123 (14)C8—H8B0.9900
C1—C71.4848 (15)C9—C101.4981 (14)
C2—C31.3922 (15)C10—H10A0.9800
C2—C81.5122 (14)C10—H10B0.9800
C3—C41.3905 (16)C10—H10C0.9800
C7—O2—H2108.3 (8)C1—C6—H6119.3
C9—O3—C8116.34 (8)O1—C7—O2122.58 (10)
C6—C1—C2119.53 (10)O1—C7—C1123.34 (9)
C6—C1—C7118.30 (10)O2—C7—C1114.07 (9)
C2—C1—C7122.14 (9)O3—C8—C2107.39 (8)
C3—C2—C1117.96 (10)O3—C8—H8A110.2
C3—C2—C8119.97 (9)C2—C8—H8A110.2
C1—C2—C8122.07 (9)O3—C8—H8B110.2
C4—C3—C2122.02 (10)C2—C8—H8B110.2
C4—C3—H3119.0H8A—C8—H8B108.5
C2—C3—H3119.0O4—C9—O3123.58 (9)
C5—C4—C3119.84 (10)O4—C9—C10125.78 (9)
C5—C4—H4120.1O3—C9—C10110.65 (9)
C3—C4—H4120.1C9—C10—H10A109.5
C6—C5—C4119.18 (10)C9—C10—H10B109.5
C6—C5—H5120.4H10A—C10—H10B109.5
C4—C5—H5120.4C9—C10—H10C109.5
C5—C6—C1121.47 (10)H10A—C10—H10C109.5
C5—C6—H6119.3H10B—C10—H10C109.5
C6—C1—C2—C30.99 (15)C7—C1—C6—C5176.98 (10)
C7—C1—C2—C3176.96 (9)C6—C1—C7—O1174.82 (10)
C6—C1—C2—C8178.20 (9)C2—C1—C7—O13.15 (16)
C7—C1—C2—C83.86 (15)C6—C1—C7—O24.31 (14)
C1—C2—C3—C40.29 (16)C2—C1—C7—O2177.72 (9)
C8—C2—C3—C4178.91 (10)C9—O3—C8—C2178.87 (8)
C2—C3—C4—C50.38 (17)C3—C2—C8—O36.19 (13)
C3—C4—C5—C60.34 (17)C1—C2—C8—O3172.98 (9)
C4—C5—C6—C10.37 (18)C8—O3—C9—O40.53 (14)
C2—C1—C6—C51.05 (17)C8—O3—C9—C10179.49 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.971 (16)1.667 (15)2.6316 (12)171.6 (12)
C4—H4···O4ii0.952.433.3685 (15)168
C8—H8A···O2iii0.992.673.5747 (14)152
C10—H10B···Cg1iii0.982.823.5703 (13)134
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H10O4
Mr194.18
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.2134 (9), 8.2415 (9), 9.6280 (11)
α, β, γ (°)77.54 (1), 83.364 (11), 73.081 (12)
V3)459.84 (10)
Z2
Radiation typeCu Kα
µ (mm1)0.92
Crystal size (mm)0.58 × 0.28 × 0.18
Data collection
DiffractometerOxford Diffraction SuperNova
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.848, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2819, 1767, 1678
Rint0.012
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.08
No. of reflections1767
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP in WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.971 (16)1.667 (15)2.6316 (12)171.6 (12)
C4—H4···O4ii0.952.433.3685 (15)168
C8—H8A···O2iii0.992.673.5747 (14)152
C10—H10B···Cg1iii0.982.823.5703 (13)134
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1, z; (iii) x1, y, z.
 

Acknowledgements

We thank Dr J Wikaira of the University of Canterbury, New Zealand, for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGorter-Laroij, G. M. & Kooyman, E. C. (1972). J. Catal. 25, 230–237.  CrossRef CAS Web of Science Google Scholar
First citationKan, W.-Q., Ma, J.-F., Liu, Y.-L. & Yang, J. (2012). CrystEngComm, 14, 2316–2326.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, R., Valiyaveettil, S., Mok, K.-F., Vittal, J. J. & Hoong, A. K. M. (2002). CrystEngComm, 4, 574–579.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValentine, J. J., Nakanishi, S., Hageman, D. L., Snider, R. M., Spencer, R. W. & Vinicj, F. J. (1992). Bioorg. Med. Chem. Lett. 2, 233–338.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds