organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{(Z)-[2-Meth­­oxy-5-(tri­fluoro­meth­yl)anilino]methyl­­idene}naphthalen-2(1H)-one

aDepartment of Physics, Faculty of Arts and Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and cDepartment of Medical Services and Techniques, Vocational School of Health Services, Giresun University, TR-28200 Giresun, Turkey
*Correspondence e-mail: gokhan.alpaslan@giresun.edu.tr

(Received 4 December 2012; accepted 20 December 2012; online 4 January 2013)

The title compound, C19H14F3NO2, crystallizes in the keto–amine tautomeric form, with a strong intra­molecular N—H⋯O hydrogen bond. The mol­ecule is almost planar; the dihedral angle between the naphthalene ring system and the benzene ring is 4.60 (7)°. In the crystal, mol­ecules are linked into chains along the c axis by C—H⋯O hydrogen bonds. The F atoms of the trifluoro­methyl group are disordered over two positions with refined site occupancies of 0.668 (9) and 0.332 (9).

Related literature

For the biological properties of Schiff bases, see: Lozier et al. (1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). For the coordination chemistry of Schiff bases, see: Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For Schiff base tautomerism, see: Hökelek et al. (2000[Hökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61-69.]); Odabaşoğlu et al. (2005[Odabąsogˇlu, M., Albayrak, C. & Büyükgüngör, O. (2005). Acta Cryst. E61, o425-o426.]). For related strucures, see: Özek et al. (2004[Özek, A., Yüce, S., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o828-o830.]); Temel et al. (2010[Temel, E., Ağar, E. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1131.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14F3NO2

  • Mr = 345.31

  • Monoclinic, P 21 /c

  • a = 16.3922 (10) Å

  • b = 5.7201 (2) Å

  • c = 17.7632 (10) Å

  • β = 106.284 (5)°

  • V = 1598.75 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.58 × 0.35 × 0.13 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.949, Tmax = 0.984

  • 19794 measured reflections

  • 3129 independent reflections

  • 1722 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.097

  • S = 0.95

  • 3129 reflections

  • 258 parameters

  • 72 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.51 3.423 (3) 166
N1—H1⋯O1 1.00 (3) 1.70 (3) 2.554 (3) 140 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). Schiff bases have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). There are two types of intramolecular hydrogen bonds in Schiff bases, namely N—H···O in keto (NH) (Hökelek et al., 2000) and N···H—O in enol (OH) (Odabaşoǧlu et al., 2005) tautomeric forms. The present X-ray investigation shows that the title compound is a Schiff base and exists in the keto-amine form in the solid state. An ORTEP-3 (Farrugia, 2012) plot of the molecule of (I) is shown in Fig. 1. The C2—O1 bond length of 1.272 (3) Å indicates double-bond character while the N1—C11 bond length of 1.322 (3) Å indicates single-bond character. These bond distances are comparable with those of compounds previously reported as keto–amine (Özek et al., 2004; Temel et al., 2010). The dihedral angle between the naphthalene ring system and the benzene ring is 4.60 (7)°. In the crystal, molecules are linked into chains (Fig. 2) along the c axis by intermolecular C-H···O hydrogen bonds (Table 1).

Related literature top

For the biological properties of Schiff bases, see: Lozier et al. (1975). For the coordination chemistry of Schiff bases, see: Kargar et al. (2009); Yeap et al. (2009). For Schiff base tautomerism, see: Hökelek et al. (2000); Odabaşoǧlu et al. (2005). For related strucures, see: Özek et al. (2004); Temel et al. (2010).

Experimental top

(Z)-1-[(2-Methoxy-5-(trifluoromethyl)phenylamino)methylene]naphthalen-2(1H)-one was prepared by refluxing a mixture of a solution containing 2-hydroxy-1-naphthaldehyde (17.22 mg, 0.1 mmol) in ethanol (20 ml) and a solution containing 2-methoxy-5-(trifluoromethyl)aniline (19.12 mg, 0.1 mmol) in ethanol (20 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution (Yield 84%; m.p. 472–475 K).

Refinement top

All H atoms (except for H1) were placed in calculated positions and constrained to ride on their parent atoms, with C–H = 0.93-0.96 Å and Uiso(H) = 1.2 Ueq(C)[1.5Ueq(C)for the methyl H atoms]. The CF3 group showed rotational disorder. For atoms F1A, F2A and F3A the site occupancy factor is 0.668 (9) and for F1B, F2B and F3B the site occupancy factor is 0.332 (9). The disorder was refined using the commands DFIX, ISOR and SIMU. DFIX was used to restrain all C—F bond lengths to 1.322 (15) Å, while the ISOR and SIMU restraints were applied for all F atoms with effective standard deviation values of 0.01 and 0.04 Å2, respectively.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound; dashed lines indicate intermolecular hydrogen bonds.
1-{(Z)-[2-Methoxy-5-(trifluoromethyl)anilino]methylidene}naphthalen- 2(1H)-one top
Crystal data top
C19H14F3NO2F(000) = 712
Mr = 345.31Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15281 reflections
a = 16.3922 (10) Åθ = 1.5–28.0°
b = 5.7201 (2) ŵ = 0.12 mm1
c = 17.7632 (10) ÅT = 296 K
β = 106.284 (5)°Prism, brown
V = 1598.75 (14) Å30.58 × 0.35 × 0.13 mm
Z = 4
Data collection top
Stoe IPDSII
diffractometer
3129 independent reflections
Radiation source: fine-focus sealed tube1722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 2020
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 77
Tmin = 0.949, Tmax = 0.984l = 2121
19794 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0399P)2]
where P = (Fo2 + 2Fc2)/3
3129 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.15 e Å3
72 restraintsΔρmin = 0.17 e Å3
Crystal data top
C19H14F3NO2V = 1598.75 (14) Å3
Mr = 345.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.3922 (10) ŵ = 0.12 mm1
b = 5.7201 (2) ÅT = 296 K
c = 17.7632 (10) Å0.58 × 0.35 × 0.13 mm
β = 106.284 (5)°
Data collection top
Stoe IPDSII
diffractometer
3129 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1722 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.984Rint = 0.057
19794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04872 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.15 e Å3
3129 reflectionsΔρmin = 0.17 e Å3
258 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.17645 (13)0.2354 (4)0.18859 (12)0.0443 (6)
C20.15233 (15)0.1866 (5)0.10590 (13)0.0527 (6)
C30.10170 (16)0.0181 (5)0.07934 (13)0.0589 (7)
H30.08530.05300.02610.071*
C40.07736 (15)0.1601 (5)0.12881 (13)0.0573 (7)
H40.04500.29130.10880.069*
C50.09943 (13)0.1173 (4)0.21140 (13)0.0459 (6)
C60.07423 (15)0.2706 (4)0.26206 (14)0.0568 (6)
H60.04360.40410.24170.068*
C70.09358 (16)0.2288 (5)0.34056 (14)0.0625 (7)
H70.07650.33260.37350.075*
C80.13909 (17)0.0297 (5)0.37078 (13)0.0611 (7)
H80.15190.00100.42420.073*
C90.16550 (15)0.1225 (4)0.32305 (12)0.0543 (6)
H90.19600.25500.34470.065*
C100.14750 (13)0.0831 (4)0.24208 (12)0.0424 (5)
C110.22965 (14)0.4238 (4)0.21675 (13)0.0466 (6)
H110.24490.45300.27040.056*
C120.31391 (14)0.7553 (4)0.19682 (13)0.0470 (6)
C130.33425 (15)0.8888 (4)0.13842 (13)0.0518 (6)
C140.38600 (16)1.0818 (5)0.15828 (15)0.0611 (7)
H140.39951.16960.11940.073*
C150.41778 (15)1.1448 (5)0.23597 (16)0.0616 (7)
H150.45251.27570.24920.074*
C160.39861 (15)1.0159 (4)0.29414 (14)0.0526 (6)
C170.34681 (14)0.8209 (4)0.27413 (13)0.0531 (6)
H170.33410.73300.31340.064*
C180.43282 (19)1.0816 (6)0.37746 (17)0.0706 (8)
C190.3127 (2)0.9460 (5)0.00083 (15)0.0800 (9)
H19A0.28530.87080.04800.120*
H19B0.37250.95780.00660.120*
H19C0.28931.09970.00140.120*
F1A0.3844 (4)1.0304 (15)0.4230 (2)0.112 (2)0.668 (9)
F2A0.5162 (2)1.0948 (14)0.3989 (3)0.1156 (18)0.668 (9)
F3A0.4413 (6)1.3154 (9)0.3887 (3)0.139 (2)0.668 (9)
F1B0.4342 (10)0.897 (2)0.4242 (4)0.108 (4)0.332 (9)
F2B0.4937 (8)0.945 (3)0.4172 (5)0.113 (4)0.332 (9)
F3B0.3934 (8)1.252 (3)0.3936 (6)0.126 (5)0.332 (9)
N10.25997 (12)0.5641 (3)0.17194 (11)0.0489 (5)
O10.17545 (12)0.3149 (3)0.05715 (9)0.0707 (5)
O20.29915 (11)0.8115 (3)0.06414 (9)0.0651 (5)
H10.2375 (18)0.521 (5)0.1153 (17)0.100 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0468 (13)0.0434 (15)0.0421 (12)0.0046 (11)0.0116 (10)0.0010 (11)
C20.0547 (14)0.0570 (16)0.0451 (13)0.0073 (13)0.0120 (11)0.0037 (13)
C30.0589 (16)0.0727 (19)0.0403 (12)0.0039 (14)0.0064 (11)0.0073 (13)
C40.0540 (15)0.0602 (17)0.0557 (15)0.0027 (13)0.0117 (12)0.0125 (13)
C50.0426 (13)0.0439 (14)0.0516 (13)0.0045 (11)0.0141 (10)0.0030 (11)
C60.0534 (15)0.0492 (16)0.0699 (16)0.0039 (12)0.0207 (13)0.0024 (13)
C70.0706 (17)0.0593 (18)0.0631 (16)0.0044 (15)0.0281 (13)0.0099 (14)
C80.0710 (17)0.0699 (19)0.0436 (13)0.0054 (15)0.0179 (12)0.0046 (13)
C90.0596 (15)0.0574 (17)0.0458 (13)0.0090 (13)0.0144 (11)0.0018 (12)
C100.0391 (12)0.0447 (14)0.0431 (12)0.0036 (11)0.0113 (9)0.0015 (11)
C110.0485 (13)0.0489 (15)0.0447 (12)0.0066 (12)0.0167 (11)0.0070 (12)
C120.0470 (13)0.0420 (14)0.0551 (14)0.0081 (12)0.0195 (11)0.0077 (12)
C130.0521 (14)0.0543 (17)0.0534 (15)0.0044 (12)0.0221 (12)0.0049 (12)
C140.0652 (16)0.0610 (18)0.0643 (17)0.0004 (15)0.0298 (13)0.0125 (14)
C150.0542 (16)0.0566 (17)0.0786 (18)0.0081 (13)0.0259 (14)0.0024 (15)
C160.0476 (14)0.0523 (16)0.0598 (15)0.0011 (12)0.0180 (11)0.0005 (13)
C170.0549 (14)0.0540 (16)0.0538 (14)0.0009 (13)0.0206 (12)0.0088 (12)
C180.065 (2)0.070 (2)0.077 (2)0.0131 (18)0.0216 (16)0.0105 (18)
C190.099 (2)0.090 (2)0.0601 (16)0.0002 (18)0.0382 (15)0.0151 (16)
F1A0.114 (3)0.164 (5)0.0654 (19)0.055 (3)0.036 (2)0.023 (2)
F2A0.072 (2)0.171 (5)0.091 (2)0.037 (3)0.0024 (16)0.023 (3)
F3A0.222 (6)0.094 (3)0.104 (3)0.050 (4)0.048 (4)0.029 (2)
F1B0.144 (8)0.118 (6)0.058 (3)0.058 (6)0.024 (5)0.008 (4)
F2B0.086 (6)0.154 (8)0.080 (5)0.052 (6)0.006 (4)0.029 (5)
F3B0.129 (7)0.140 (9)0.100 (5)0.047 (6)0.018 (5)0.061 (6)
N10.0534 (12)0.0474 (13)0.0470 (11)0.0008 (10)0.0156 (9)0.0033 (10)
O10.0933 (14)0.0756 (13)0.0442 (9)0.0021 (11)0.0208 (9)0.0103 (9)
O20.0776 (12)0.0706 (13)0.0525 (10)0.0053 (10)0.0273 (9)0.0083 (9)
Geometric parameters (Å, º) top
C1—C111.388 (3)C12—C131.402 (3)
C1—C21.437 (3)C13—O21.357 (3)
C1—C101.463 (3)C13—C141.377 (3)
C2—O11.272 (3)C14—C151.379 (3)
C2—C31.436 (3)C14—H140.9300
C3—C41.337 (3)C15—C161.376 (3)
C3—H30.9300C15—H150.9300
C4—C51.430 (3)C16—C171.387 (3)
C4—H40.9300C16—C181.477 (4)
C5—C61.399 (3)C17—H170.9300
C5—C101.411 (3)C18—F3B1.248 (8)
C6—C71.362 (3)C18—F2B1.308 (8)
C6—H60.9300C18—F1A1.315 (4)
C7—C81.385 (3)C18—F2A1.315 (4)
C7—H70.9300C18—F1B1.339 (8)
C8—C91.367 (3)C18—F3A1.354 (5)
C8—H80.9300C19—O21.430 (3)
C9—C101.403 (3)C19—H19A0.9600
C9—H90.9300C19—H19B0.9600
C11—N11.322 (3)C19—H19C0.9600
C11—H110.9300F2A—F3A1.735 (10)
C12—C171.379 (3)F1B—F2B1.05 (2)
C12—N11.398 (3)N1—H11.00 (3)
C11—C1—C2119.0 (2)C13—C14—C15119.9 (2)
C11—C1—C10120.90 (19)C13—C14—H14120.0
C2—C1—C10120.1 (2)C15—C14—H14120.0
O1—C2—C3120.1 (2)C16—C15—C14120.7 (2)
O1—C2—C1122.3 (2)C16—C15—H15119.7
C3—C2—C1117.5 (2)C14—C15—H15119.7
C4—C3—C2122.1 (2)C15—C16—C17119.4 (2)
C4—C3—H3119.0C15—C16—C18120.9 (3)
C2—C3—H3119.0C17—C16—C18119.7 (2)
C3—C4—C5122.3 (2)C12—C17—C16121.0 (2)
C3—C4—H4118.9C12—C17—H17119.5
C5—C4—H4118.9C16—C17—H17119.5
C6—C5—C10119.6 (2)F3B—C18—F2B135.2 (6)
C6—C5—C4121.1 (2)F1A—C18—F2A126.4 (4)
C10—C5—C4119.2 (2)F3B—C18—F1B113.3 (7)
C7—C6—C5121.5 (2)F2B—C18—F1B46.8 (11)
C7—C6—H6119.3F1A—C18—F3A100.6 (4)
C5—C6—H6119.3F2A—C18—F3A81.1 (6)
C6—C7—C8119.1 (2)F3B—C18—C16110.7 (5)
C6—C7—H7120.4F2B—C18—C16114.0 (4)
C8—C7—H7120.4F1A—C18—C16115.8 (3)
C9—C8—C7120.9 (2)F2A—C18—C16112.1 (3)
C9—C8—H8119.6F1B—C18—C16110.9 (4)
C7—C8—H8119.6F3A—C18—C16113.2 (4)
C8—C9—C10121.4 (2)O2—C19—H19A109.5
C8—C9—H9119.3O2—C19—H19B109.5
C10—C9—H9119.3H19A—C19—H19B109.5
C9—C10—C5117.4 (2)O2—C19—H19C109.5
C9—C10—C1123.9 (2)H19A—C19—H19C109.5
C5—C10—C1118.73 (19)H19B—C19—H19C109.5
N1—C11—C1124.0 (2)C18—F2A—F3A50.4 (3)
N1—C11—H11118.0C18—F3A—F2A48.5 (3)
C1—C11—H11118.0F2B—F1B—C1865.0 (8)
C17—C12—N1124.3 (2)F1B—F2B—C1868.1 (8)
C17—C12—C13118.8 (2)C11—N1—C12126.6 (2)
N1—C12—C13116.9 (2)C11—N1—H1111.3 (17)
O2—C13—C14125.0 (2)C12—N1—H1122.1 (17)
O2—C13—C12114.7 (2)C13—O2—C19118.2 (2)
C14—C13—C12120.3 (2)
C11—C1—C2—O12.7 (3)C18—C16—C17—C12180.0 (2)
C10—C1—C2—O1179.5 (2)C15—C16—C18—F3B76.5 (10)
C11—C1—C2—C3176.1 (2)C17—C16—C18—F3B103.8 (10)
C10—C1—C2—C31.7 (3)C15—C16—C18—F2B106.0 (11)
O1—C2—C3—C4178.8 (2)C17—C16—C18—F2B73.6 (11)
C1—C2—C3—C40.1 (3)C15—C16—C18—F1A149.0 (5)
C2—C3—C4—C50.5 (4)C17—C16—C18—F1A31.4 (6)
C3—C4—C5—C6179.0 (2)C15—C16—C18—F2A55.9 (5)
C3—C4—C5—C100.9 (3)C17—C16—C18—F2A123.7 (5)
C10—C5—C6—C71.3 (3)C15—C16—C18—F1B156.9 (9)
C4—C5—C6—C7178.7 (2)C17—C16—C18—F1B22.8 (10)
C5—C6—C7—C80.1 (4)C15—C16—C18—F3A33.6 (6)
C6—C7—C8—C90.8 (4)C17—C16—C18—F3A146.8 (5)
C7—C8—C9—C100.1 (4)F3B—C18—F2A—F3A17.8 (9)
C8—C9—C10—C51.3 (3)F2B—C18—F2A—F3A145.9 (6)
C8—C9—C10—C1177.9 (2)F1A—C18—F2A—F3A96.6 (6)
C6—C5—C10—C92.0 (3)F1B—C18—F2A—F3A135.1 (6)
C4—C5—C10—C9178.0 (2)C16—C18—F2A—F3A111.5 (4)
C6—C5—C10—C1177.3 (2)F3B—C18—F3A—F2A154.8 (11)
C4—C5—C10—C12.7 (3)F2B—C18—F3A—F2A27.3 (7)
C11—C1—C10—C94.5 (3)F1A—C18—F3A—F2A125.6 (4)
C2—C1—C10—C9177.7 (2)F1B—C18—F3A—F2A83.5 (10)
C11—C1—C10—C5174.70 (19)C16—C18—F3A—F2A110.3 (4)
C2—C1—C10—C53.1 (3)F3B—C18—F1B—F2B131.0 (8)
C2—C1—C11—N10.2 (3)F1A—C18—F1B—F2B149.5 (8)
C10—C1—C11—N1178.1 (2)F2A—C18—F1B—F2B10.6 (7)
C17—C12—C13—O2180.0 (2)F3A—C18—F1B—F2B89.7 (11)
N1—C12—C13—O20.8 (3)C16—C18—F1B—F2B103.9 (6)
C17—C12—C13—C140.1 (3)F3B—C18—F2B—F1B79.9 (17)
N1—C12—C13—C14179.0 (2)F1A—C18—F2B—F1B22.7 (7)
O2—C13—C14—C15179.6 (2)F2A—C18—F2B—F1B165.1 (10)
C12—C13—C14—C150.2 (4)F3A—C18—F2B—F1B126.0 (8)
C13—C14—C15—C160.3 (4)C16—C18—F2B—F1B96.7 (8)
C14—C15—C16—C170.0 (4)C1—C11—N1—C12179.7 (2)
C14—C15—C16—C18179.6 (2)C17—C12—N1—C112.8 (3)
N1—C12—C17—C16178.7 (2)C13—C12—N1—C11176.3 (2)
C13—C12—C17—C160.4 (3)C14—C13—O2—C193.5 (3)
C15—C16—C17—C120.4 (3)C12—C13—O2—C19176.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.513.423 (3)166
N1—H1···O11.00 (3)1.70 (3)2.554 (3)140 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H14F3NO2
Mr345.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.3922 (10), 5.7201 (2), 17.7632 (10)
β (°) 106.284 (5)
V3)1598.75 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.58 × 0.35 × 0.13
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.949, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
19794, 3129, 1722
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.097, 0.95
No. of reflections3129
No. of parameters258
No. of restraints72
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.513.423 (3)165.7
N1—H1···O11.00 (3)1.70 (3)2.554 (3)140 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Science, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Kılıç, Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOdabąsogˇlu, M., Albayrak, C. & Büyükgüngör, O. (2005). Acta Cryst. E61, o425–o426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzek, A., Yüce, S., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o828–o830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTemel, E., Ağar, E. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds