organic compounds
A correction has been published for this article. To view the correction, click here.
(E)-3-Amino-4-(2-phenylhydrazinylidene)-1H-pyrazol-5(4H)-one
aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany
*Correspondence e-mail: elgemeie@yahoo.com
The molecule of the title compound, C9H9N5O, is essentially planar (r.m.s. deviation of all atoms = 0.02 Å) except for the NH2 H atoms. An intramolecular hydrazinylidene–carbonyl N—H⋯O=C hydrogen bond is present. In the crystal, molecules are connected via N—H⋯N/O hydrogen bonds, forming thick layers parallel to (100).
Related literature
The synthesis, chemistry and biological/medical activity of related compounds is described in: Elgemeie (2003); Elgemeie & El-Aziz (2002); Elgemeie & Sood (2003, 2006); Elgemeie et al. (2001, 2007, 2008, 2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812050854/gg2105sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812050854/gg2105Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536812050854/gg2105Isup3.cml
The title compound was obtained by refluxing an ethanolic solution of 2-hydrazinyl-2-oxo-N-phenylacetohydrazonoyl cyanide containing a few drops of piperidine for 1 h. After cooling, the precipitate was filtered off and recrystallized from ethanol. Yield (85%); m.p. 245 °C; IR (KBr) ν = 3450, 3350, 3300 (NH2, NH), 1660 (C═O, s) cm-1; 1H NMR (DMSO) δ = 6.88 (s, br, 2H, NH2), 7.23 (s, br, 1H, NH), 7.41–7.92 (m, 5H, C6H5); MS, m/z = 203; Calc. for C9H9N5O: C, 53.19; H, 4.46; N, 34.46; O, 7.87. Found: C, 53.56; H, 4.57; N, 34.62; O, 7.61%.
The NH H atoms were refined freely. Other H atoms were placed in calculated positions and refined using a riding model with C—Harom 0.95 Å; the hydrogen U values were fixed at 1.2 × U(eq) of the parent atom.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound. Ellipsoids represent 50% probability levels. | |
Fig. 2. Packing diagram of the title compound projected along the b axis, showing the layer structure side-on. | |
Fig. 3. Packing diagram of the title compound, viewed perpendicular to (100). Thick dashed bonds represent classical H bonds. Atom names correspond to the asymmetric unit; hydrogen bonds are numbered according to the Table on page Sup-7 (#4, the weaker part of a three-centre interaction, is omitted, as is the intramolecular interaction #5). | |
Fig. 4. The formation of the title compound |
C9H9N5O | F(000) = 424 |
Mr = 203.21 | Dx = 1.464 Mg m−3 |
Monoclinic, P21/c | Melting point: 518 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54184 Å |
a = 6.7380 (2) Å | Cell parameters from 18413 reflections |
b = 13.4310 (4) Å | θ = 3.3–75.6° |
c = 10.4563 (3) Å | µ = 0.86 mm−1 |
β = 103.094 (3)° | T = 100 K |
V = 921.67 (5) Å3 | Tablet, orange-brown |
Z = 4 | 0.15 × 0.10 × 0.03 mm |
Oxford Diffraction Xcalibur (Atlas, Nova) diffractometer | 1914 independent reflections |
Radiation source: Nova (Cu) X-ray Source | 1807 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 10.3543 pixels mm-1 | θmax = 75.8°, θmin = 5.5° |
ω–scan | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −16→16 |
Tmin = 0.668, Tmax = 1.000 | l = −13→13 |
26682 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2869P] where P = (Fo2 + 2Fc2)/3 |
1914 reflections | (Δ/σ)max < 0.001 |
152 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C9H9N5O | V = 921.67 (5) Å3 |
Mr = 203.21 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 6.7380 (2) Å | µ = 0.86 mm−1 |
b = 13.4310 (4) Å | T = 100 K |
c = 10.4563 (3) Å | 0.15 × 0.10 × 0.03 mm |
β = 103.094 (3)° |
Oxford Diffraction Xcalibur (Atlas, Nova) diffractometer | 1914 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 1807 reflections with I > 2σ(I) |
Tmin = 0.668, Tmax = 1.000 | Rint = 0.029 |
26682 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.17 e Å−3 |
1914 reflections | Δρmin = −0.26 e Å−3 |
152 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 6.7047 (0.0004) x + 0.5009 (0.0024) y + 3.2946 (0.0013) z = 0.2057 (0.0017) * -0.0265 (0.0007) O1 * -0.0015 (0.0008) N1 * 0.0248 (0.0008) N2 * 0.0064 (0.0007) N3 * -0.0035 (0.0008) N4 * 0.0047 (0.0008) N5 * 0.0127 (0.0009) C3 * -0.0173 (0.0009) C4 * -0.0155 (0.0009) C5 * 0.0096 (0.0009) C11 * 0.0334 (0.0009) C12 * 0.0207 (0.0009) C13 * -0.0104 (0.0009) C14 * -0.0239 (0.0009) C15 * -0.0136 (0.0009) C16 0.3618 (0.0145) H03A 0.2676 (0.0152) H03B Rms deviation of fitted atoms = 0.0175 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.09284 (11) | 0.44649 (5) | 0.17545 (7) | 0.02234 (19) | |
N1 | 0.06030 (14) | 0.60858 (6) | 0.09217 (8) | 0.0210 (2) | |
H01 | 0.008 (2) | 0.5972 (11) | 0.0053 (16) | 0.036 (4)* | |
N2 | 0.08679 (13) | 0.70841 (6) | 0.13887 (8) | 0.0210 (2) | |
C3 | 0.15061 (15) | 0.70044 (7) | 0.26628 (10) | 0.0188 (2) | |
C4 | 0.16773 (15) | 0.59729 (7) | 0.30772 (10) | 0.0182 (2) | |
C5 | 0.10365 (15) | 0.53946 (8) | 0.18664 (9) | 0.0190 (2) | |
N3 | 0.19896 (14) | 0.77858 (7) | 0.35089 (9) | 0.0230 (2) | |
H03B | 0.202 (2) | 0.7633 (12) | 0.4385 (16) | 0.041 (4)* | |
H03A | 0.135 (2) | 0.8364 (12) | 0.3206 (15) | 0.036 (4)* | |
N4 | 0.22316 (12) | 0.56774 (6) | 0.42917 (8) | 0.0180 (2) | |
N5 | 0.22648 (13) | 0.47167 (6) | 0.45303 (8) | 0.0193 (2) | |
H05 | 0.189 (2) | 0.4280 (12) | 0.3870 (15) | 0.034 (4)* | |
C11 | 0.28700 (14) | 0.43692 (8) | 0.58298 (10) | 0.0190 (2) | |
C12 | 0.28637 (16) | 0.33470 (8) | 0.60446 (11) | 0.0229 (2) | |
H12 | 0.2442 | 0.2901 | 0.5329 | 0.028* | |
C13 | 0.34813 (16) | 0.29858 (8) | 0.73178 (11) | 0.0268 (3) | |
H13 | 0.3487 | 0.2289 | 0.7473 | 0.032* | |
C14 | 0.40897 (16) | 0.36360 (9) | 0.83626 (11) | 0.0283 (3) | |
H14 | 0.4516 | 0.3386 | 0.9232 | 0.034* | |
C15 | 0.40732 (17) | 0.46548 (9) | 0.81331 (10) | 0.0271 (3) | |
H15 | 0.4484 | 0.5099 | 0.8851 | 0.033* | |
C16 | 0.34645 (16) | 0.50330 (8) | 0.68682 (10) | 0.0223 (2) | |
H16 | 0.3454 | 0.5730 | 0.6715 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0293 (4) | 0.0182 (4) | 0.0181 (4) | −0.0032 (3) | 0.0024 (3) | −0.0003 (3) |
N1 | 0.0273 (5) | 0.0194 (4) | 0.0149 (4) | −0.0021 (3) | 0.0018 (3) | 0.0002 (3) |
N2 | 0.0249 (4) | 0.0182 (4) | 0.0193 (4) | −0.0005 (3) | 0.0038 (3) | 0.0006 (3) |
C3 | 0.0188 (5) | 0.0190 (5) | 0.0189 (5) | 0.0015 (4) | 0.0045 (4) | 0.0008 (4) |
C4 | 0.0188 (5) | 0.0189 (5) | 0.0166 (5) | 0.0006 (4) | 0.0036 (4) | −0.0002 (4) |
C5 | 0.0199 (5) | 0.0205 (5) | 0.0164 (5) | −0.0012 (4) | 0.0038 (4) | 0.0008 (4) |
N3 | 0.0310 (5) | 0.0173 (4) | 0.0199 (4) | 0.0032 (4) | 0.0042 (4) | −0.0004 (3) |
N4 | 0.0190 (4) | 0.0179 (4) | 0.0172 (4) | 0.0019 (3) | 0.0042 (3) | 0.0012 (3) |
N5 | 0.0237 (4) | 0.0178 (4) | 0.0155 (4) | 0.0001 (3) | 0.0028 (3) | −0.0002 (3) |
C11 | 0.0170 (4) | 0.0228 (5) | 0.0170 (5) | 0.0015 (4) | 0.0039 (4) | 0.0034 (4) |
C12 | 0.0216 (5) | 0.0225 (5) | 0.0246 (5) | 0.0002 (4) | 0.0049 (4) | 0.0016 (4) |
C13 | 0.0229 (5) | 0.0262 (6) | 0.0316 (6) | 0.0021 (4) | 0.0071 (4) | 0.0107 (4) |
C14 | 0.0239 (5) | 0.0384 (7) | 0.0220 (5) | 0.0025 (5) | 0.0040 (4) | 0.0111 (5) |
C15 | 0.0272 (5) | 0.0360 (6) | 0.0175 (5) | −0.0002 (5) | 0.0034 (4) | 0.0008 (4) |
C16 | 0.0238 (5) | 0.0242 (5) | 0.0188 (5) | 0.0006 (4) | 0.0045 (4) | 0.0010 (4) |
O1—C5 | 1.2548 (13) | C13—C14 | 1.3861 (17) |
N1—C5 | 1.3387 (13) | C14—C15 | 1.3890 (17) |
N1—N2 | 1.4242 (12) | C15—C16 | 1.3891 (15) |
N2—C3 | 1.3083 (13) | N1—H01 | 0.909 (16) |
C3—N3 | 1.3637 (13) | N3—H03B | 0.934 (17) |
C3—C4 | 1.4484 (13) | N3—H03A | 0.908 (16) |
C4—N4 | 1.3019 (13) | N5—H05 | 0.897 (16) |
C4—C5 | 1.4645 (13) | C12—H12 | 0.9500 |
N4—N5 | 1.3134 (12) | C13—H13 | 0.9500 |
N5—C11 | 1.4069 (13) | C14—H14 | 0.9500 |
C11—C12 | 1.3914 (15) | C15—H15 | 0.9500 |
C11—C16 | 1.3918 (15) | C16—H16 | 0.9500 |
C12—C13 | 1.3892 (15) | ||
C5—N1—N2 | 114.23 (8) | C14—C15—C16 | 120.92 (10) |
C3—N2—N1 | 105.00 (8) | C15—C16—C11 | 118.64 (10) |
N2—C3—N3 | 124.94 (9) | C5—N1—H01 | 126.2 (10) |
N2—C3—C4 | 111.62 (9) | N2—N1—H01 | 119.4 (10) |
N3—C3—C4 | 123.43 (9) | C3—N3—H03B | 114.5 (10) |
N4—C4—C3 | 124.69 (9) | C3—N3—H03A | 114.0 (9) |
N4—C4—C5 | 130.16 (9) | H03B—N3—H03A | 115.7 (14) |
C3—C4—C5 | 105.11 (8) | N4—N5—H05 | 120.4 (10) |
O1—C5—N1 | 128.54 (9) | C11—N5—H05 | 119.7 (10) |
O1—C5—C4 | 127.43 (9) | C13—C12—H12 | 120.4 |
N1—C5—C4 | 104.03 (9) | C11—C12—H12 | 120.4 |
C4—N4—N5 | 118.26 (9) | C14—C13—H13 | 119.8 |
N4—N5—C11 | 119.87 (8) | C12—C13—H13 | 119.8 |
C12—C11—C16 | 121.13 (9) | C13—C14—H14 | 120.2 |
C12—C11—N5 | 118.19 (9) | C15—C14—H14 | 120.2 |
C16—C11—N5 | 120.67 (9) | C14—C15—H15 | 119.5 |
C13—C12—C11 | 119.21 (10) | C16—C15—H15 | 119.5 |
C14—C13—C12 | 120.42 (10) | C15—C16—H16 | 120.7 |
C13—C14—C15 | 119.68 (10) | C11—C16—H16 | 120.7 |
C5—N1—N2—C3 | 0.65 (12) | C3—C4—N4—N5 | 178.06 (9) |
N1—N2—C3—N3 | 178.81 (9) | C5—C4—N4—N5 | 0.52 (16) |
N1—N2—C3—C4 | −0.17 (11) | C4—N4—N5—C11 | 179.53 (9) |
N2—C3—C4—N4 | −178.34 (9) | N4—N5—C11—C12 | 179.30 (8) |
N3—C3—C4—N4 | 2.66 (16) | N4—N5—C11—C16 | −0.93 (14) |
N2—C3—C4—C5 | −0.29 (12) | C16—C11—C12—C13 | −0.62 (15) |
N3—C3—C4—C5 | −179.29 (9) | N5—C11—C12—C13 | 179.15 (9) |
N2—N1—C5—O1 | 179.27 (9) | C11—C12—C13—C14 | 0.23 (16) |
N2—N1—C5—C4 | −0.81 (11) | C12—C13—C14—C15 | 0.24 (16) |
N4—C4—C5—O1 | −1.54 (18) | C13—C14—C15—C16 | −0.33 (17) |
C3—C4—C5—O1 | −179.44 (10) | C14—C15—C16—C11 | −0.05 (16) |
N4—C4—C5—N1 | 178.55 (10) | C12—C11—C16—C15 | 0.53 (15) |
C3—C4—C5—N1 | 0.65 (10) | N5—C11—C16—C15 | −179.24 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H01···O1i | 0.909 (16) | 1.949 (16) | 2.8521 (11) | 172.0 (14) |
N3—H03B···N2ii | 0.934 (17) | 2.424 (16) | 3.2711 (12) | 150.8 (13) |
N3—H03A···O1iii | 0.908 (16) | 2.141 (15) | 2.9635 (11) | 150.2 (13) |
N3—H03B···N1ii | 0.934 (17) | 2.674 (16) | 3.2562 (13) | 121.1 (12) |
N5—H05···O1 | 0.897 (16) | 2.174 (16) | 2.8575 (11) | 132.5 (13) |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+3/2, z+1/2; (iii) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H9N5O |
Mr | 203.21 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 6.7380 (2), 13.4310 (4), 10.4563 (3) |
β (°) | 103.094 (3) |
V (Å3) | 921.67 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.86 |
Crystal size (mm) | 0.15 × 0.10 × 0.03 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur (Atlas, Nova) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.668, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26682, 1914, 1807 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.629 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.087, 1.05 |
No. of reflections | 1914 |
No. of parameters | 152 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.26 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H01···O1i | 0.909 (16) | 1.949 (16) | 2.8521 (11) | 172.0 (14) |
N3—H03B···N2ii | 0.934 (17) | 2.424 (16) | 3.2711 (12) | 150.8 (13) |
N3—H03A···O1iii | 0.908 (16) | 2.141 (15) | 2.9635 (11) | 150.2 (13) |
N3—H03B···N1ii | 0.934 (17) | 2.674 (16) | 3.2562 (13) | 121.1 (12) |
N5—H05···O1 | 0.897 (16) | 2.174 (16) | 2.8575 (11) | 132.5 (13) |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+3/2, z+1/2; (iii) −x, y+1/2, −z+1/2. |
References
Elgemeie, G. H. (2003). Curr. Pharm. Des. 9, 2627–2642. Web of Science CrossRef PubMed CAS Google Scholar
Elgemeie, G. H. & El-Aziz, H. A. (2002). Synth. Commun. 32, 253–261. Web of Science CSD CrossRef CAS Google Scholar
Elgemeie, G. H., El-Ezbawy, S. R. & El-Aziz, H. A. (2001). Synth. Commun. 31, 3453–3451. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2007). Synth. Commun. 37, 2827–2834. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H. & Sood, S. A. (2003). Synth. Commun. 33, 2095–2105. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H. & Sood, S. A. (2006). Synth. Commun. 36, 743–753. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2008). J. Carbohydr. Chem. 27, 345–355. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Zaghary, W. A., Amin, K. A. & Nasr, T. M. (2009). J. Carbohydr. Chem. 28, 161–170. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chemically synthesized purine analogues find numerous applications in clinical medicine and medical research (Elgemeie, 2003; Elgemeie et al., 2008). The pharmacological approach involves analogues in which the heterocyclic ring system has been modified so as to induce toxic effects when the analogue is incorporated into specific cell constituents (Elgemeie & El-Aziz, 2002). As part of our program directed towards the synthesis of purines and other antimetabolites (Elgemeie et al., 2001, 2009), we have recently reported various successful approaches to the syntheses of purine analogues. Derivatives of these ring systems are of interest as antimetabolites in biochemical reactions (Elgemeie & Sood, 2003). We have described several novel syntheses of functionalized pyrazoles (Elgemeie et al., 2007). These compounds are considered important intermediates for the synthesis of various purine ring systems (Elgemeie & Sood, 2006). As a continuation of this work, the title pyrazole compound (2), was prepared as a precursor for the synthesis of other purines. 2-Hydrazinyl-2-oxo-N-phenylacetohydrazonoyl cyanide (1) undergoes intramolecular cyclization by refluxing in ethanol containing catalytic amounts of piperidine to give the novel pyrazole derivative (2). The title compound can potentially exist in two other tautomeric forms with hydroxyl groups, (3) and (4). Spectral studies, however, indicated the presence of the ketonic tautomer (2) in solution (e.g. the 13C NMR signal at δ = 174.00, indicating a carbonyl carbon rather than C—OH.
The X-ray analysis of (2) (Fig. 1) establishes the exclusive presence of the keto tautomer in the solid state; all H atoms could be located unambiguously and bond lengths are also consistent with the keto form. The entire molecule is planar (r.m.s. deviation of all non-C atoms: 0.02 Å), except for the H atoms of the NH2 group; H03A lies 0.36 (2) and H03B 0.27 (2) Å outside the plane. Consistent with the E configuration, an intramolecular hydrogen bond N5—H05···O1 is observed.
The molecules are connected by hydrogen bonds #1–#3 to form thick hydrogen-bonded layers parallel to (100); the individual molecules are to a good approximation oriented in the planes (042) (Figs. 2, 3). Hydrogen bond #4 is the second and appreciably less linear branch of a three-centre interaction.