organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Desoxyhemigossypol 6-methyl ether

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek str. 83, Tashkent, 100125 Uzbekistan, and bSouthern Plains Agricultural Research Center, Agricultural Research, Service, USDA, College Station, TX 77845, USA
*Correspondence e-mail: via74@yandex.ru

(Received 24 October 2012; accepted 23 January 2013; online 31 January 2013)

The title sesquiterpene [systematic name: 6-methoxy-10-methyl-7-(propan-2-yl)-2-oxatricyclo[6.3.1.04,12]dodeca-1(11),4,6,8(12),9-pentaen-5-ol], C16H18O3, was isolated from pathogen-infected stele tissue of Gossypium barbadense. There are two mol­ecules in the asymmetric unit and the dihedral angle between their naphtho­furan systems is 86.48 (2)°. In the crystal, O—H⋯O hydrogen bonds between the hy­droxy groups and etheric O atoms link the mol­ecules into centrosymmetric tetra­mers. These tetra­mers are assembled into (010) layers via stacking inter­actions between the naphtho­furan systems [inter­planar distance 3.473 (3) Å] and short C—H⋯O contacts.

Related literature

For the isolation and chemical structure determination of related cotton sesquiterpenoid phytoalexins and their inter­mediates, see: Bell et al. (1975[Bell, A. A., Stipanovic, R. D., Howell, C. R. & Fryxell, P. A. (1975). Phytochemistry, 14, 225-231.]); Stipanovic et al. (1975[Stipanovic, R. D., Bell, A. A. & Howell, C. R. (1975). Phytochemistry, 14, 1809-1811.]). For the role of terpenoid aldehydes as phytoalexins (active defense agents) in response to infection by wilt fungi, see: Mace (1978[Mace, M. E. (1978). Physiol. Plant Path. 12, 1-11.]). For information on the mechanism of action, see: Mace et al. (1995[Mace, M. E. & Stipanovic, R. D. (1995). Pestic. Biochem. Physiol. 53, 205-209.]). For the mechanism of O-methyl­ation of desoxy­hemigossypol, see: Liu et al. (2002[Liu, J., Benedict, C. R., Stipanovic, R. D., Magill, C. W. & Bell, A. A. (2002). J. Agric. Food Chem. 50, 3165-3172.]). For general information about anti­microbial compounds produced by cotton, see: Bell (1995[Bell, A. A. (1995). in Challenging the Future: Proceedings of the World Cotton Research Conference-1, edited by G. A. Constable & N. W. Forrester, pp. 225-235. Melbourne: CSIRO.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18O3

  • Mr = 258.30

  • Triclinic, [P \overline 1]

  • a = 10.0275 (5) Å

  • b = 11.1058 (6) Å

  • c = 13.2938 (8) Å

  • α = 107.797 (5)°

  • β = 103.896 (5)°

  • γ = 90.435 (4)°

  • V = 1363.08 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 293 K

  • 0.40 × 0.34 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.925, Tmax = 1.000

  • 10119 measured reflections

  • 5476 independent reflections

  • 3775 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.158

  • S = 1.04

  • 5476 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.82 2.28 2.723 (2) 114
O2—H2A⋯O4i 0.82 2.11 2.809 (2) 144
O5—H5⋯O3 0.82 2.13 2.7843 (19) 137
O5—H5⋯O6 0.82 2.27 2.719 (2) 115
C12—H12B⋯O2ii 0.97 2.48 3.445 (3) 171
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title sesquiterpene compound with systematic name 3-hydroxy-5-(1-methylethyl)-4-methoxy-7-methyl-2H-naphtho[1,8-bc]furan, was isolated from pathogen-infected stele tissue of Gossypium barbadense (fine-fibre Egyptian cotton) where it plays a role as a phytoalexin (active defense agent in response to infection by wilt fungi). The plant is widely cultivated in cotton-producing countries such as USA, Mexico, China, Uzbekistan and Egypt. Here we report its crystal structure.

The numbering scheme of atoms is shown in Fig. 1. The 12 non-hydrogen atoms of the naphthofuran system in each of the two symmetry independent molecules are virtually coplanar with r.m.s. values of 0.020 and 0.028 Å. Hydrogen bonds between hydroxy group and etheric oxygen atom link the molecules into centrosymmetric tertramers (Table 1, Fig. 2). These tertramers are assembled into (010) layers via stacking interactions between the naphthofuran systems [interplanar distance 3.473 (3) Å] and short C—H···O interactions.

Related literature top

For the isolation and chemical structure determination of related cotton sesquiterpenoid phytoalexins and their intermediates, see: Bell et al. (1975); Stipanovic et al. (1975). For the role of terpenoid aldehydes as phytoalexins (active defense agents) in response to infection by wilt fungi, see: Mace (1978). For information on the mechanism of action, see: Mace et al. (1995). For the mechanism of O-methylation of desoxyhemigossypol, see: Liu et al. (2002). For general information about antimicrobial compounds produced by cotton, see: Bell (1995).

Experimental top

The title compound was extracted from V. dahliae infected cotton stems and the crude extract, was purified by column and TLC chromatography as described by Bell et al.(1975), and crystalized from CHCl3 and hexane to give crystals (m.p. 429-433 K). These crystals were further purified by semi-preparative reverse phase HPLC (Agilent 1100 HPLC system; Zorbax Eclipse XDB C8 column; Agilent Technologies Inc., USA) with dimensions 9.4 × 250 mm and particle size 5 µm. The column was eluted using a linear gradient of H2O(A)/CH3CN(B) [LC grade, Sigma-Aldrich, DE], both with 0.01% ortho-phosphoric acid pH 2.5 (from 55 to 95% B for 20 minutes) at a flow rate of 4 ml/min. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the HPLC eluent.

Refinement top

All H atoms were included in calculated positions, with C—H bond distances of 0.98 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), 0.93 Å (aromatic) and O—H = 0.82 Å and refined in a riding model approximation with Uiso(H) = 1.5Ueq(Cmethyl,O) and Uiso(H) = 1.2Ueq(C) for the remaining H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonded tetramer of the title compound. Atoms with the A label are generated by the symmetry operation 2-x, 1-y, -z.
[Figure 3] Fig. 3. A packing diagram for the title compound. Short contacts are represented by dashed lines.
6-Methoxy-10-methyl-7-(propan-2-yl)-2-oxatricyclo[6.3.1.04,12]dodeca-1(11),4,6,8(12),9-pentaen-5-ol top
Crystal data top
C16H18O3Z = 4
Mr = 258.30F(000) = 552
Triclinic, P1Dx = 1.259 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 10.0275 (5) ÅCell parameters from 3316 reflections
b = 11.1058 (6) Åθ = 3.6–75.7°
c = 13.2938 (8) ŵ = 0.69 mm1
α = 107.797 (5)°T = 293 K
β = 103.896 (5)°Block, colourless
γ = 90.435 (4)°0.40 × 0.34 × 0.28 mm
V = 1363.08 (13) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
5476 independent reflections
Radiation source: fine-focus sealed tube3775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.2576 pixels mm-1θmax = 75.9°, θmin = 3.6°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1312
Tmin = 0.925, Tmax = 1.000l = 1616
10119 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0881P)2 + 0.0965P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5476 reflectionsΔρmax = 0.45 e Å3
354 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (6)
Crystal data top
C16H18O3γ = 90.435 (4)°
Mr = 258.30V = 1363.08 (13) Å3
Triclinic, P1Z = 4
a = 10.0275 (5) ÅCu Kα radiation
b = 11.1058 (6) ŵ = 0.69 mm1
c = 13.2938 (8) ÅT = 293 K
α = 107.797 (5)°0.40 × 0.34 × 0.28 mm
β = 103.896 (5)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
5476 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3775 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 1.000Rint = 0.027
10119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
5476 reflectionsΔρmin = 0.22 e Å3
354 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6372 (2)0.6300 (2)0.60266 (16)0.0584 (5)
C20.5457 (3)0.7031 (2)0.64751 (18)0.0701 (7)
H20.54400.71540.71960.084*
C30.4517 (3)0.7608 (2)0.5804 (2)0.0673 (6)
C40.4535 (2)0.7425 (2)0.47364 (18)0.0583 (5)
H40.39270.78310.43280.070*
C50.56004 (19)0.62981 (17)0.31437 (15)0.0461 (4)
C60.65818 (18)0.54699 (17)0.28745 (14)0.0448 (4)
C70.74826 (19)0.49542 (18)0.36144 (16)0.0479 (4)
C80.73732 (19)0.52956 (19)0.46605 (16)0.0492 (4)
C90.63691 (19)0.61040 (18)0.49337 (15)0.0487 (4)
C100.54617 (19)0.66320 (18)0.42417 (15)0.0486 (4)
C110.3488 (3)0.8409 (3)0.6302 (3)0.0941 (9)
H11A0.30840.89050.58480.141*
H11B0.39470.89650.70160.141*
H11C0.27770.78680.63590.141*
C120.8076 (2)0.4986 (2)0.56747 (18)0.0641 (6)
H12A0.79770.40790.55510.077*
H12B0.90500.52720.59000.077*
C130.4747 (2)0.6820 (2)0.22867 (18)0.0594 (5)
H130.50460.64270.16190.071*
C140.3207 (2)0.6418 (3)0.1997 (2)0.0762 (7)
H14A0.30720.55170.18430.114*
H14B0.27470.66400.13650.114*
H14C0.28350.68450.26000.114*
C150.5064 (3)0.8232 (2)0.2559 (3)0.0853 (8)
H15A0.48510.86680.32380.128*
H15B0.45170.85150.19890.128*
H15C0.60240.84110.26230.128*
C160.5963 (2)0.4046 (2)0.10614 (18)0.0665 (6)
H16A0.62330.38300.03870.100*
H16B0.50170.42380.09350.100*
H16C0.60650.33420.13420.100*
O10.73758 (17)0.56665 (17)0.64974 (12)0.0721 (5)
O20.84360 (15)0.41512 (15)0.33045 (13)0.0626 (4)
H2A0.83350.39700.26430.094*
O30.68208 (14)0.51333 (13)0.18394 (10)0.0530 (3)
C171.1325 (2)0.81302 (19)0.05314 (15)0.0498 (4)
C181.2223 (2)0.9049 (2)0.05337 (17)0.0561 (5)
H181.25990.89660.11240.067*
C191.2561 (2)1.0143 (2)0.04066 (18)0.0555 (5)
C201.2035 (2)1.02680 (19)0.12981 (17)0.0530 (5)
H201.23001.09940.19030.064*
C211.04433 (19)0.92410 (18)0.21481 (16)0.0480 (4)
C220.9539 (2)0.81841 (18)0.19220 (15)0.0485 (4)
C230.9187 (2)0.71749 (18)0.09065 (15)0.0490 (4)
C240.9836 (2)0.72145 (17)0.01286 (15)0.0480 (4)
C251.07617 (18)0.82592 (17)0.03528 (15)0.0452 (4)
C261.10907 (18)0.93059 (17)0.13117 (15)0.0456 (4)
C271.3522 (3)1.1198 (2)0.0407 (2)0.0745 (7)
H27A1.32711.20020.08090.112*
H27B1.34521.11770.03320.112*
H27C1.44531.10880.07430.112*
C280.9801 (2)0.6354 (2)0.09991 (17)0.0599 (5)
H28A1.00570.55180.09830.072*
H28B0.88910.62690.14880.072*
C291.0730 (2)1.0259 (2)0.32693 (17)0.0585 (5)
H291.01560.99710.36670.070*
C301.2201 (2)1.0329 (2)0.39328 (19)0.0680 (6)
H30A1.24130.95020.39770.102*
H30B1.23051.09100.46550.102*
H30C1.28181.06190.35870.102*
C311.0288 (3)1.1533 (2)0.3244 (2)0.0766 (7)
H31A1.08321.18760.28760.115*
H31B1.04171.20910.39780.115*
H31C0.93321.14500.28630.115*
C320.9621 (3)0.7427 (3)0.3406 (2)0.0781 (7)
H32A0.97890.65960.29890.117*
H32B0.91040.73540.39080.117*
H32C1.04850.79140.38040.117*
O41.08204 (16)0.69916 (14)0.13428 (11)0.0607 (4)
O50.82418 (17)0.61951 (15)0.07111 (12)0.0663 (4)
H50.79760.62700.12630.099*
O60.88542 (15)0.80485 (15)0.26829 (12)0.0612 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0624 (13)0.0646 (13)0.0392 (10)0.0247 (10)0.0058 (9)0.0100 (9)
C20.0794 (16)0.0761 (15)0.0450 (11)0.0301 (12)0.0200 (11)0.0029 (10)
C30.0718 (14)0.0577 (13)0.0658 (14)0.0165 (10)0.0293 (12)0.0015 (11)
C40.0589 (12)0.0535 (11)0.0606 (12)0.0032 (9)0.0210 (10)0.0111 (10)
C50.0459 (10)0.0477 (10)0.0435 (10)0.0038 (8)0.0066 (8)0.0166 (8)
C60.0453 (10)0.0487 (10)0.0402 (9)0.0074 (8)0.0095 (7)0.0150 (8)
C70.0433 (10)0.0492 (10)0.0505 (11)0.0040 (8)0.0096 (8)0.0168 (8)
C80.0435 (9)0.0562 (11)0.0468 (10)0.0083 (8)0.0035 (8)0.0213 (8)
C90.0492 (10)0.0532 (11)0.0391 (9)0.0138 (8)0.0065 (8)0.0123 (8)
C100.0478 (10)0.0487 (10)0.0468 (10)0.0070 (8)0.0111 (8)0.0125 (8)
C110.112 (2)0.0758 (18)0.097 (2)0.0006 (15)0.0625 (18)0.0033 (15)
C120.0561 (12)0.0803 (15)0.0551 (12)0.0094 (11)0.0004 (10)0.0319 (11)
C130.0608 (12)0.0671 (13)0.0563 (12)0.0090 (10)0.0128 (10)0.0295 (10)
C140.0596 (13)0.0940 (18)0.0718 (15)0.0061 (12)0.0010 (11)0.0353 (14)
C150.0937 (19)0.0731 (17)0.108 (2)0.0165 (14)0.0338 (17)0.0493 (16)
C160.0740 (14)0.0662 (14)0.0494 (12)0.0038 (11)0.0119 (10)0.0072 (10)
O10.0736 (10)0.0946 (12)0.0453 (8)0.0151 (9)0.0010 (7)0.0295 (8)
O20.0562 (8)0.0723 (10)0.0627 (9)0.0146 (7)0.0165 (7)0.0249 (8)
O30.0590 (8)0.0579 (8)0.0434 (7)0.0053 (6)0.0169 (6)0.0151 (6)
C170.0510 (10)0.0525 (11)0.0445 (10)0.0036 (8)0.0108 (8)0.0145 (8)
C180.0536 (11)0.0669 (13)0.0525 (11)0.0010 (9)0.0184 (9)0.0220 (10)
C190.0473 (10)0.0590 (12)0.0614 (12)0.0027 (9)0.0104 (9)0.0234 (10)
C200.0490 (10)0.0488 (10)0.0564 (12)0.0015 (8)0.0088 (9)0.0134 (9)
C210.0468 (10)0.0492 (10)0.0462 (10)0.0066 (8)0.0114 (8)0.0130 (8)
C220.0501 (10)0.0530 (11)0.0443 (10)0.0060 (8)0.0139 (8)0.0166 (8)
C230.0517 (10)0.0465 (10)0.0475 (10)0.0015 (8)0.0087 (8)0.0162 (8)
C240.0526 (10)0.0457 (10)0.0433 (10)0.0005 (8)0.0076 (8)0.0140 (8)
C250.0427 (9)0.0488 (10)0.0457 (10)0.0035 (7)0.0091 (8)0.0189 (8)
C260.0451 (9)0.0444 (9)0.0467 (10)0.0045 (7)0.0094 (8)0.0151 (8)
C270.0697 (15)0.0747 (16)0.0810 (16)0.0162 (12)0.0205 (13)0.0268 (13)
C280.0707 (13)0.0555 (12)0.0496 (11)0.0083 (10)0.0152 (10)0.0116 (9)
C290.0632 (13)0.0551 (12)0.0500 (11)0.0036 (9)0.0145 (10)0.0065 (9)
C300.0680 (14)0.0671 (14)0.0559 (13)0.0026 (11)0.0024 (11)0.0113 (10)
C310.0866 (17)0.0659 (15)0.0707 (15)0.0164 (12)0.0193 (13)0.0126 (12)
C320.0918 (18)0.0867 (17)0.0575 (13)0.0204 (14)0.0101 (12)0.0328 (13)
O40.0726 (9)0.0588 (8)0.0475 (8)0.0071 (7)0.0220 (7)0.0076 (6)
O50.0794 (10)0.0641 (9)0.0538 (8)0.0213 (8)0.0213 (8)0.0138 (7)
O60.0636 (9)0.0718 (9)0.0521 (8)0.0019 (7)0.0222 (7)0.0197 (7)
Geometric parameters (Å, º) top
C1—C21.354 (3)C17—C181.357 (3)
C1—O11.370 (3)C17—O41.383 (2)
C1—C91.401 (3)C17—C251.392 (3)
C2—C31.432 (4)C18—C191.420 (3)
C2—H20.9300C18—H180.9300
C3—C41.376 (3)C19—C201.380 (3)
C3—C111.510 (3)C19—C271.511 (3)
C4—C101.422 (3)C20—C261.429 (3)
C4—H40.9300C20—H200.9300
C5—C61.387 (3)C21—C221.388 (3)
C5—C101.433 (3)C21—C261.435 (3)
C5—C131.520 (3)C21—C291.530 (3)
C6—O31.391 (2)C22—O61.394 (2)
C6—C71.427 (3)C22—C231.429 (3)
C7—C81.357 (3)C23—O51.358 (2)
C7—O21.363 (2)C23—C241.359 (3)
C8—C91.393 (3)C24—C251.391 (3)
C8—C121.504 (3)C24—C281.504 (3)
C9—C101.398 (3)C25—C261.404 (3)
C11—H11A0.9600C27—H27A0.9600
C11—H11B0.9600C27—H27B0.9600
C11—H11C0.9600C27—H27C0.9600
C12—O11.460 (3)C28—O41.472 (2)
C12—H12A0.9700C28—H28A0.9700
C12—H12B0.9700C28—H28B0.9700
C13—C151.510 (3)C29—C311.494 (3)
C13—C141.526 (3)C29—C301.514 (3)
C13—H130.9800C29—H290.9800
C14—H14A0.9600C30—H30A0.9600
C14—H14B0.9600C30—H30B0.9600
C14—H14C0.9600C30—H30C0.9600
C15—H15A0.9600C31—H31A0.9600
C15—H15B0.9600C31—H31B0.9600
C15—H15C0.9600C31—H31C0.9600
C16—O31.436 (2)C32—O61.432 (3)
C16—H16A0.9600C32—H32A0.9600
C16—H16B0.9600C32—H32B0.9600
C16—H16C0.9600C32—H32C0.9600
O2—H2A0.8200O5—H50.8200
C2—C1—O1128.9 (2)C18—C17—O4128.27 (18)
C2—C1—C9120.4 (2)C18—C17—C25121.37 (19)
O1—C1—C9110.6 (2)O4—C17—C25110.36 (17)
C1—C2—C3117.9 (2)C17—C18—C19116.92 (19)
C1—C2—H2121.1C17—C18—H18121.5
C3—C2—H2121.1C19—C18—H18121.5
C4—C3—C2121.3 (2)C20—C19—C18122.20 (19)
C4—C3—C11120.9 (3)C20—C19—C27119.9 (2)
C2—C3—C11117.8 (2)C18—C19—C27117.9 (2)
C3—C4—C10121.6 (2)C19—C20—C26121.41 (19)
C3—C4—H4119.2C19—C20—H20119.3
C10—C4—H4119.2C26—C20—H20119.3
C6—C5—C10117.24 (17)C22—C21—C26117.52 (17)
C6—C5—C13119.53 (17)C22—C21—C29119.33 (18)
C10—C5—C13123.23 (18)C26—C21—C29123.13 (18)
C5—C6—O3121.02 (16)C21—C22—O6121.39 (17)
C5—C6—C7124.92 (17)C21—C22—C23124.49 (18)
O3—C6—C7113.94 (16)O6—C22—C23114.09 (17)
C8—C7—O2119.94 (18)O5—C23—C24120.13 (17)
C8—C7—C6117.77 (18)O5—C23—C22121.93 (18)
O2—C7—C6122.29 (17)C24—C23—C22117.94 (17)
C7—C8—C9117.79 (18)C23—C24—C25118.00 (17)
C7—C8—C12135.5 (2)C23—C24—C28134.59 (18)
C9—C8—C12106.72 (18)C25—C24—C28107.41 (17)
C8—C9—C10126.68 (18)C24—C25—C17109.77 (17)
C8—C9—C1109.45 (19)C24—C25—C26126.36 (18)
C10—C9—C1123.9 (2)C17—C25—C26123.87 (18)
C9—C10—C4114.85 (18)C25—C26—C20114.18 (17)
C9—C10—C5115.56 (18)C25—C26—C21115.56 (17)
C4—C10—C5129.58 (19)C20—C26—C21130.26 (18)
C3—C11—H11A109.5C19—C27—H27A109.5
C3—C11—H11B109.5C19—C27—H27B109.5
H11A—C11—H11B109.5H27A—C27—H27B109.5
C3—C11—H11C109.5C19—C27—H27C109.5
H11A—C11—H11C109.5H27A—C27—H27C109.5
H11B—C11—H11C109.5H27B—C27—H27C109.5
O1—C12—C8104.78 (18)O4—C28—C24103.99 (15)
O1—C12—H12A110.8O4—C28—H28A111.0
C8—C12—H12A110.8C24—C28—H28A111.0
O1—C12—H12B110.8O4—C28—H28B111.0
C8—C12—H12B110.8C24—C28—H28B111.0
H12A—C12—H12B108.9H28A—C28—H28B109.0
C15—C13—C5112.45 (19)C31—C29—C30112.4 (2)
C15—C13—C14113.3 (2)C31—C29—C21114.58 (19)
C5—C13—C14113.28 (18)C30—C29—C21112.46 (17)
C15—C13—H13105.6C31—C29—H29105.5
C5—C13—H13105.6C30—C29—H29105.5
C14—C13—H13105.6C21—C29—H29105.5
C13—C14—H14A109.5C29—C30—H30A109.5
C13—C14—H14B109.5C29—C30—H30B109.5
H14A—C14—H14B109.5H30A—C30—H30B109.5
C13—C14—H14C109.5C29—C30—H30C109.5
H14A—C14—H14C109.5H30A—C30—H30C109.5
H14B—C14—H14C109.5H30B—C30—H30C109.5
C13—C15—H15A109.5C29—C31—H31A109.5
C13—C15—H15B109.5C29—C31—H31B109.5
H15A—C15—H15B109.5H31A—C31—H31B109.5
C13—C15—H15C109.5C29—C31—H31C109.5
H15A—C15—H15C109.5H31A—C31—H31C109.5
H15B—C15—H15C109.5H31B—C31—H31C109.5
O3—C16—H16A109.5O6—C32—H32A109.5
O3—C16—H16B109.5O6—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
O3—C16—H16C109.5O6—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
C1—O1—C12108.40 (16)C17—O4—C28108.37 (15)
C7—O2—H2A109.5C23—O5—H5109.5
C6—O3—C16114.15 (14)C22—O6—C32112.83 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.822.282.723 (2)114
O2—H2A···O4i0.822.112.809 (2)144
O5—H5···O30.822.132.7843 (19)137
O5—H5···O60.822.272.719 (2)115
C12—H12B···O2ii0.972.483.445 (3)171
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H18O3
Mr258.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.0275 (5), 11.1058 (6), 13.2938 (8)
α, β, γ (°)107.797 (5), 103.896 (5), 90.435 (4)
V3)1363.08 (13)
Z4
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.40 × 0.34 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.925, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10119, 5476, 3775
Rint0.027
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.158, 1.04
No. of reflections5476
No. of parameters354
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.822.282.723 (2)114
O2—H2A···O4i0.822.112.809 (2)144
O5—H5···O30.822.132.7843 (19)137
O5—H5···O60.822.272.719 (2)115
C12—H12B···O2ii0.972.483.445 (3)171
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the CRDF project UZB2–31001-TA02.

References

First citationBell, A. A. (1995). in Challenging the Future: Proceedings of the World Cotton Research Conference-1, edited by G. A. Constable & N. W. Forrester, pp. 225–235. Melbourne: CSIRO.  Google Scholar
First citationBell, A. A., Stipanovic, R. D., Howell, C. R. & Fryxell, P. A. (1975). Phytochemistry, 14, 225–231.  CrossRef CAS Web of Science Google Scholar
First citationLiu, J., Benedict, C. R., Stipanovic, R. D., Magill, C. W. & Bell, A. A. (2002). J. Agric. Food Chem. 50, 3165–3172.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMace, M. E. (1978). Physiol. Plant Path. 12, 1–11.  CrossRef CAS Web of Science Google Scholar
First citationMace, M. E. & Stipanovic, R. D. (1995). Pestic. Biochem. Physiol. 53, 205–209.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStipanovic, R. D., Bell, A. A. & Howell, C. R. (1975). Phytochemistry, 14, 1809–1811.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds