organic compounds
N-(7-Dibromomethyl-5-methyl-1,8-naphthyridin-2-yl)acetamide–pyrrolidine-2,5-dione (1/1)
aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China, and bSchool of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
*Correspondence e-mail: chishaoming@gmail.com
In the title 12H11Br2N3O·C4H5NO2, the naphthyridine derivative and the pyrrolidine-2,5-dione molecules have crystallographic mirror-plane symmetry with all non-H atoms, except the Br atom, located on the mirror plane. In the crystal, N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds link the molecules into heterodimers. These dimers are further linked into a one-dimensional structure along [010] by weak C—Br⋯O interactions [Br⋯O = 3.028 (5) Å and C—Br⋯O = 158.52 (4)°].
CRelated literature
For coordination properties of 1,8-naphthyridine ligands, see: Gan et al. (2011); Chang et al. (2011); Das et al. (2012); Li et al. (2011). For similar structures, see: Li et al. (2011). For applications of similar compounds, see: Samadi et al. (2011); Li et al. (2012); Tanaka et al. (2012). For information on their synthesis, see: Henry & Hammond (1977); Wang et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg,1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812051112/gk2541sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812051112/gk2541Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812051112/gk2541Isup3.cml
7-Acetylamino-2,4-dimethyl-1,8-naphthyridine (Wang et al., 2008; Henry & Hammond, 1977) (500 mg, 2,32 mmol) and N-bromosuccinimide (0.49 g, 2.79 mmol) were added to an acetonitrile (20 ml) solution in the nitrogen atmosphere. The mixture was stirred at room temperature in the presence of light, a 250 W infrared lamp was used as a light source, for 4 hrs. Excess solvent was removed and the crude product was purified by δ=p.p.m. 8.86 (s, 1H NH), 8.59 (d, J = 9.1 Hz, 1H naphthyridyl proton), 8.40 (d, J = 9.1 Hz, 1H naphthyridyl proton), 7.81 (s, 1H naphthyridyl proton), 6.77 (s, 1H CH), 2.79 (s, 3H), 2.32 (s, 3H).
using dichloromethane/methanol (39:1) as the mobile phase to give a white powder. Yield: 250 mg (30%). Crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into the solution of the powder in dichloromethane. To remove succinimide from the sample several cycles of purification by had to be carried out. The pure white brominated naphthyridine compound was characterized by 1H NMR (500 MHz, CDCl3):All H atoms were placed in calculated positions. The H atoms were constrained to an ideal geometry with C—H distances of 0.93–0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) =1.2Ueq(C) for the remaining H atoms, and N—H distance of 0.86 Å, Uiso(H) = 1.2Ueq(N).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg,1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C12H11Br2N3O·C4H5NO2 | F(000) = 468 |
Mr = 472.15 | Dx = 1.739 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yb | Cell parameters from 25 reflections |
a = 11.537 (2) Å | θ = 3.4–25.0° |
b = 7.0093 (14) Å | µ = 4.52 mm−1 |
c = 11.632 (2) Å | T = 293 K |
β = 106.57 (3)° | Block, colourless |
V = 901.6 (3) Å3 | 0.21 × 0.19 × 0.18 mm |
Z = 2 |
Rigaku R-AXIS RAPID diffractometer | 1723 independent reflections |
Radiation source: fine-focus sealed tube | 1220 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scan | θmax = 25.0°, θmin = 3.4° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −13→13 |
Tmin = 0.450, Tmax = 0.497 | k = −8→7 |
7056 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0757P)2 + 1.6111P] where P = (Fo2 + 2Fc2)/3 |
1723 reflections | (Δ/σ)max < 0.001 |
148 parameters | Δρmax = 0.72 e Å−3 |
0 restraints | Δρmin = −0.92 e Å−3 |
C12H11Br2N3O·C4H5NO2 | V = 901.6 (3) Å3 |
Mr = 472.15 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 11.537 (2) Å | µ = 4.52 mm−1 |
b = 7.0093 (14) Å | T = 293 K |
c = 11.632 (2) Å | 0.21 × 0.19 × 0.18 mm |
β = 106.57 (3)° |
Rigaku R-AXIS RAPID diffractometer | 1723 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1220 reflections with I > 2σ(I) |
Tmin = 0.450, Tmax = 0.497 | Rint = 0.042 |
7056 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.72 e Å−3 |
1723 reflections | Δρmin = −0.92 e Å−3 |
148 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5310 (7) | 0.2500 | 0.7838 (6) | 0.0437 (17) | |
C2 | 0.4522 (7) | 0.2500 | 0.8575 (7) | 0.0486 (18) | |
H2A | 0.3689 | 0.2500 | 0.8226 | 0.058* | |
C3 | 0.4977 (7) | 0.2500 | 0.9803 (6) | 0.0452 (17) | |
C4 | 0.6257 (7) | 0.2500 | 1.0284 (6) | 0.0405 (16) | |
C5 | 0.6882 (7) | 0.2500 | 1.1520 (6) | 0.0482 (18) | |
H5A | 0.6446 | 0.2500 | 1.2080 | 0.058* | |
C6 | 0.8109 (7) | 0.2500 | 1.1903 (7) | 0.053 (2) | |
H6A | 0.8518 | 0.2500 | 1.2717 | 0.063* | |
C7 | 0.8749 (6) | 0.2500 | 1.1028 (6) | 0.0456 (18) | |
C8 | 0.6974 (7) | 0.2500 | 0.9487 (6) | 0.0415 (16) | |
C9 | 0.4859 (8) | 0.2500 | 0.6506 (7) | 0.058 (2) | |
H9A | 0.5554 | 0.2500 | 0.6180 | 0.069* | |
C10 | 0.4146 (7) | 0.2500 | 1.0597 (7) | 0.0491 (18) | |
H10A | 0.3319 | 0.2500 | 1.0112 | 0.074* | |
H10B | 0.4298 | 0.1382 | 1.1094 | 0.074* | |
C11 | 1.0841 (7) | 0.2500 | 1.2427 (7) | 0.055 (2) | |
C12 | 1.2128 (7) | 0.2500 | 1.2408 (8) | 0.067 (2) | |
H12A | 1.2652 | 0.2500 | 1.3214 | 0.101* | |
H12B | 1.2279 | 0.1382 | 1.1997 | 0.101* | |
C13 | 0.0377 (8) | 0.2500 | 0.8080 (8) | 0.057 (2) | |
C14 | 0.0885 (8) | 0.2500 | 0.7021 (8) | 0.069 (2) | |
H14A | 0.1368 | 0.1384 | 0.7023 | 0.082* | |
C15 | −0.0232 (9) | 0.2500 | 0.5948 (8) | 0.080 (3) | |
H15A | −0.0251 | 0.1387 | 0.5463 | 0.095* | |
C16 | −0.1280 (8) | 0.2500 | 0.6435 (8) | 0.056 (2) | |
N1 | 0.6503 (6) | 0.2500 | 0.8271 (5) | 0.0477 (15) | |
N2 | 0.8206 (6) | 0.2500 | 0.9860 (5) | 0.0461 (15) | |
N3 | 1.0008 (6) | 0.2500 | 1.1320 (5) | 0.0524 (16) | |
H3A | 1.0303 | 0.2500 | 1.0719 | 0.063* | |
N4 | −0.0857 (6) | 0.2500 | 0.7663 (5) | 0.0502 (16) | |
H4A | −0.1322 | 0.2500 | 0.8124 | 0.060* | |
O1 | 1.0553 (6) | 0.2500 | 1.3339 (5) | 0.093 (3) | |
O2 | 0.0955 (5) | 0.2500 | 0.9136 (5) | 0.0759 (19) | |
O3 | −0.2342 (6) | 0.2500 | 0.5882 (6) | 0.081 (2) | |
Br1 | 0.38805 (7) | 0.02689 (12) | 0.59139 (6) | 0.0801 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.041 (4) | 0.052 (4) | 0.042 (4) | 0.000 | 0.018 (3) | 0.000 |
C2 | 0.043 (4) | 0.060 (5) | 0.045 (4) | 0.000 | 0.018 (3) | 0.000 |
C3 | 0.045 (4) | 0.048 (4) | 0.050 (4) | 0.000 | 0.025 (4) | 0.000 |
C4 | 0.044 (4) | 0.044 (4) | 0.039 (4) | 0.000 | 0.020 (3) | 0.000 |
C5 | 0.053 (5) | 0.059 (5) | 0.041 (4) | 0.000 | 0.026 (3) | 0.000 |
C6 | 0.046 (5) | 0.079 (6) | 0.036 (4) | 0.000 | 0.016 (3) | 0.000 |
C7 | 0.041 (4) | 0.054 (4) | 0.044 (4) | 0.000 | 0.016 (3) | 0.000 |
C8 | 0.046 (5) | 0.046 (4) | 0.035 (4) | 0.000 | 0.018 (3) | 0.000 |
C9 | 0.054 (5) | 0.076 (6) | 0.047 (4) | 0.000 | 0.021 (4) | 0.000 |
C10 | 0.041 (4) | 0.062 (5) | 0.051 (4) | 0.000 | 0.024 (3) | 0.000 |
C11 | 0.046 (5) | 0.075 (6) | 0.041 (4) | 0.000 | 0.009 (4) | 0.000 |
C12 | 0.042 (5) | 0.102 (7) | 0.057 (5) | 0.000 | 0.012 (4) | 0.000 |
C13 | 0.059 (6) | 0.061 (5) | 0.058 (5) | 0.000 | 0.027 (4) | 0.000 |
C14 | 0.059 (6) | 0.083 (6) | 0.074 (6) | 0.000 | 0.034 (5) | 0.000 |
C15 | 0.091 (8) | 0.107 (8) | 0.052 (5) | 0.000 | 0.039 (5) | 0.000 |
C16 | 0.054 (5) | 0.061 (5) | 0.054 (5) | 0.000 | 0.017 (4) | 0.000 |
N1 | 0.047 (4) | 0.060 (4) | 0.043 (3) | 0.000 | 0.024 (3) | 0.000 |
N2 | 0.042 (4) | 0.062 (4) | 0.039 (3) | 0.000 | 0.020 (3) | 0.000 |
N3 | 0.043 (4) | 0.079 (5) | 0.041 (3) | 0.000 | 0.022 (3) | 0.000 |
N4 | 0.042 (4) | 0.070 (4) | 0.042 (3) | 0.000 | 0.017 (3) | 0.000 |
O1 | 0.051 (4) | 0.188 (8) | 0.041 (3) | 0.000 | 0.014 (3) | 0.000 |
O2 | 0.054 (4) | 0.114 (6) | 0.057 (4) | 0.000 | 0.012 (3) | 0.000 |
O3 | 0.067 (5) | 0.116 (6) | 0.057 (4) | 0.000 | 0.011 (3) | 0.000 |
Br1 | 0.0936 (7) | 0.0929 (6) | 0.0563 (5) | −0.0237 (4) | 0.0254 (4) | −0.0161 (3) |
C1—N1 | 1.324 (9) | C9—H9A | 0.9800 |
C1—C2 | 1.417 (10) | C10—H10A | 0.9600 |
C1—C9 | 1.487 (10) | C10—H10B | 0.9600 |
C2—C3 | 1.373 (10) | C11—O1 | 1.199 (10) |
C2—H2A | 0.9300 | C11—N3 | 1.370 (10) |
C3—C4 | 1.422 (10) | C11—C12 | 1.490 (11) |
C3—C10 | 1.509 (9) | C12—H12A | 0.9600 |
C4—C8 | 1.407 (10) | C12—H12B | 0.9601 |
C4—C5 | 1.413 (10) | C13—O2 | 1.220 (10) |
C5—C6 | 1.357 (11) | C13—N4 | 1.367 (10) |
C5—H5A | 0.9300 | C13—C14 | 1.508 (12) |
C6—C7 | 1.418 (10) | C14—C15 | 1.517 (13) |
C6—H6A | 0.9300 | C14—H14A | 0.9600 |
C7—N2 | 1.324 (9) | C15—C16 | 1.474 (13) |
C7—N3 | 1.394 (9) | C15—H15A | 0.9600 |
C8—N1 | 1.363 (9) | C16—O3 | 1.210 (10) |
C8—N2 | 1.363 (9) | C16—N4 | 1.372 (10) |
C9—Br1 | 1.936 (5) | N3—H3A | 0.8600 |
C9—Br1i | 1.936 (5) | N4—H4A | 0.8600 |
N1—C1—C2 | 123.1 (7) | C3—C10—H10A | 109.8 |
N1—C1—C9 | 114.4 (6) | C3—C10—H10B | 109.3 |
C2—C1—C9 | 122.4 (7) | H10A—C10—H10B | 109.5 |
C3—C2—C1 | 120.5 (7) | O1—C11—N3 | 122.3 (8) |
C3—C2—H2A | 119.7 | O1—C11—C12 | 122.8 (7) |
C1—C2—H2A | 119.7 | N3—C11—C12 | 114.9 (7) |
C2—C3—C4 | 117.1 (6) | C11—C12—H12A | 109.8 |
C2—C3—C10 | 121.0 (7) | C11—C12—H12B | 109.3 |
C4—C3—C10 | 121.9 (7) | H12A—C12—H12B | 109.5 |
C8—C4—C5 | 116.5 (7) | O2—C13—N4 | 124.9 (8) |
C8—C4—C3 | 118.7 (6) | O2—C13—C14 | 126.5 (8) |
C5—C4—C3 | 124.9 (6) | N4—C13—C14 | 108.6 (8) |
C6—C5—C4 | 121.0 (7) | C13—C14—C15 | 103.6 (7) |
C6—C5—H5A | 119.5 | C13—C14—H14A | 111.0 |
C4—C5—H5A | 119.5 | C15—C14—H14A | 111.0 |
C5—C6—C7 | 118.2 (7) | C16—C15—C14 | 106.4 (7) |
C5—C6—H6A | 120.9 | C16—C15—H15A | 110.0 |
C7—C6—H6A | 120.9 | C14—C15—H15A | 110.8 |
N2—C7—N3 | 113.9 (6) | O3—C16—N4 | 124.0 (8) |
N2—C7—C6 | 123.1 (7) | O3—C16—C15 | 127.8 (8) |
N3—C7—C6 | 123.1 (7) | N4—C16—C15 | 108.2 (8) |
N1—C8—N2 | 113.6 (6) | C1—N1—C8 | 117.3 (6) |
N1—C8—C4 | 123.3 (7) | C7—N2—C8 | 118.1 (6) |
N2—C8—C4 | 123.1 (6) | C11—N3—C7 | 129.2 (7) |
C1—C9—Br1 | 111.5 (3) | C11—N3—H3A | 115.4 |
C1—C9—Br1i | 111.5 (3) | C7—N3—H3A | 115.4 |
Br1—C9—Br1i | 107.7 (4) | C16—N4—C13 | 113.2 (7) |
C1—C9—H9A | 108.7 | C16—N4—H4A | 123.4 |
Br1—C9—H9A | 108.7 | C13—N4—H4A | 123.4 |
Br1i—C9—H9A | 108.7 |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···O1 | 0.93 | 2.25 | 2.838 (10) | 121 |
C9—H9A···O3ii | 0.98 | 2.55 | 3.507 (11) | 166 |
N4—H4A···N1iii | 0.86 | 2.56 | 3.317 (9) | 147 |
N4—H4A···N2iii | 0.86 | 2.24 | 3.045 (8) | 157 |
N3—H3A···O2ii | 0.86 | 2.18 | 3.038 (9) | 177 |
Symmetry codes: (ii) x+1, y, z; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C12H11Br2N3O·C4H5NO2 |
Mr | 472.15 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 293 |
a, b, c (Å) | 11.537 (2), 7.0093 (14), 11.632 (2) |
β (°) | 106.57 (3) |
V (Å3) | 901.6 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.52 |
Crystal size (mm) | 0.21 × 0.19 × 0.18 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.450, 0.497 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7056, 1723, 1220 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.164, 1.12 |
No. of reflections | 1723 |
No. of parameters | 148 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.72, −0.92 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg,1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···O1 | 0.93 | 2.25 | 2.838 (10) | 121 |
C9—H9A···O3i | 0.98 | 2.55 | 3.507 (11) | 166 |
N4—H4A···N1ii | 0.86 | 2.56 | 3.317 (9) | 147 |
N4—H4A···N2ii | 0.86 | 2.24 | 3.045 (8) | 157 |
N3—H3A···O2i | 0.86 | 2.18 | 3.038 (9) | 177 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
Acknowledgements
Support is acknowledged from the `Spring Sunshine' Plan of the Ministry of Education of China (grant No. Z2011125) and the National Natural Science Foundation of China (grant No. 21262049)
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chang, Y. H., Liu, Z. Y., Liu, Y. H., Peng, S. M., Chen, J. T. & Liu, S. T. (2011). Dalton Trans. 40, 489–494. Web of Science CSD CrossRef CAS PubMed Google Scholar
Das, R. K., Sarkar, M., Wahidur Rahaman, S. M., Doucet, H. & Bera, J. K. (2012). Eur. J. Inorg. Chem. pp. 1680–1687. Web of Science CSD CrossRef Google Scholar
Gan, X., Chi, S. M., Mu, W. H., Yao, J. C., Quan, L., Li, C., Bian, Z. Y., Chen, Y. & Fu, W. F. (2011). Dalton Trans. 40, 7365–7374. Web of Science CSD CrossRef CAS PubMed Google Scholar
Henry, R. A. & Hammond, P. R. (1977). J. Heterocycl. Chem. pp. 1109–1114. CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, Z. X., Li, C., Mu, W. H., Xiong, S. X. & Fu, W. F. (2011). Inorg. Chim. Acta, 379, 7–15. Web of Science CSD CrossRef CAS Google Scholar
Li, Z. X., Zhao, W. Y., Li, X. Y., Zhu, Y. Y., Liu, C. M., Wang, L. N., Yu, M. M., Wei, L. H., Tang, M. S. & Zhang, H. Y. (2012). Inorg. Chem. 51, 12444–12449. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Samadi, A., Valderas, C., Ríos, C. D. I., Bastida, A., Chioua, M., González-Lafuente, L., Colmena, I., Gandía, L., Romero, A., Barrio, L. D., Martín-de-Saavedra, M. D., López, M. G., Villarroya, M. & Marco-Contelles, J. (2011). Bioorg. Med. Chem. 19, 122–133. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanaka, K., Murakami, M., Jeon, J. H. & Chujo, Y. (2012). Org. Biomol. Chem. 10, 90–95. Web of Science CrossRef CAS PubMed Google Scholar
Wang, D.-H., Yu, Y.-M., Chen, J.-H. & Fu, W.-F. (2008). Acta Cryst. E64, o112. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Structures and chemical properties of 1,8-naphthyridine derivatives have been investigated owing to their interesting complexation properties, medical uses and chemical applications. They can act as the ligands linking to metals via several coordination modes (Gan et al., 2011; Chang et al., 2011; Das et al., 2012; Li et al., 2011), as drugs (Samadi et al., 2011) and as molecular probe (Li et al., 2012; Tanaka et al., 2012). Herein we report the synthesis and structure of the title co-crystal which was unintentionally obtained during the synthesis of the naphthiridine derivative.
The structure of the title co-crystal is shown in Figs. 1 and 2 and hydrogen-bond geometry is given in Table 1. Both molecules are located on a mirror plane. There are three (N—H···N, N—H···O and C—H···O) intermoleular hydrogen bonds between the crystal components linking the molecules to form heterodimers. The complementarity of hydrogen-bonding interactions stabilizes the dimeric structure, and, most probably, it is the reason why the two components were not easily separated during chromatographic procedure.