organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o153-o154

N-(7-Di­bromo­methyl-5-methyl-1,8-naphthyridin-2-yl)acetamide–pyrrolidine-2,5-dione (1/1)

aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China, and bSchool of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
*Correspondence e-mail: chishaoming@gmail.com

(Received 29 November 2012; accepted 18 December 2012; online 4 January 2013)

In the title co-crystal, C12H11Br2N3O·C4H5NO2, the naphthyridine derivative and the pyrrolidine-2,5-dione mol­ecules have crystallographic mirror-plane symmetry with all non-H atoms, except the Br atom, located on the mirror plane. In the crystal, N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into heterodimers. These dimers are further linked into a one-dimensional structure along [010] by weak C—Br⋯O inter­actions [Br⋯O = 3.028 (5) Å and C—Br⋯O = 158.52 (4)°].

Related literature

For coordination properties of 1,8-naphthyridine ligands, see: Gan et al. (2011[Gan, X., Chi, S. M., Mu, W. H., Yao, J. C., Quan, L., Li, C., Bian, Z. Y., Chen, Y. & Fu, W. F. (2011). Dalton Trans. 40, 7365-7374.]); Chang et al. (2011[Chang, Y. H., Liu, Z. Y., Liu, Y. H., Peng, S. M., Chen, J. T. & Liu, S. T. (2011). Dalton Trans. 40, 489-494.]); Das et al. (2012[Das, R. K., Sarkar, M., Wahidur Rahaman, S. M., Doucet, H. & Bera, J. K. (2012). Eur. J. Inorg. Chem. pp. 1680-1687.]); Li et al. (2011[Li, Z. X., Li, C., Mu, W. H., Xiong, S. X. & Fu, W. F. (2011). Inorg. Chim. Acta, 379, 7-15.]). For similar structures, see: Li et al. (2011[Li, Z. X., Li, C., Mu, W. H., Xiong, S. X. & Fu, W. F. (2011). Inorg. Chim. Acta, 379, 7-15.]). For applications of similar compounds, see: Samadi et al. (2011[Samadi, A., Valderas, C., Ríos, C. D. I., Bastida, A., Chioua, M., González-Lafuente, L., Colmena, I., Gandía, L., Romero, A., Barrio, L. D., Martín-de-Saavedra, M. D., López, M. G., Villarroya, M. & Marco-Contelles, J. (2011). Bioorg. Med. Chem. 19, 122-133.]); Li et al. (2012[Li, Z. X., Zhao, W. Y., Li, X. Y., Zhu, Y. Y., Liu, C. M., Wang, L. N., Yu, M. M., Wei, L. H., Tang, M. S. & Zhang, H. Y. (2012). Inorg. Chem. 51, 12444-12449.]); Tanaka et al. (2012[Tanaka, K., Murakami, M., Jeon, J. H. & Chujo, Y. (2012). Org. Biomol. Chem. 10, 90-95.]). For information on their synthesis, see: Henry & Hammond (1977[Henry, R. A. & Hammond, P. R. (1977). J. Heterocycl. Chem. pp. 1109-1114.]); Wang et al. (2008[Wang, D.-H., Yu, Y.-M., Chen, J.-H. & Fu, W.-F. (2008). Acta Cryst. E64, o112.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11Br2N3O·C4H5NO2

  • Mr = 472.15

  • Monoclinic, P 21 /m

  • a = 11.537 (2) Å

  • b = 7.0093 (14) Å

  • c = 11.632 (2) Å

  • β = 106.57 (3)°

  • V = 901.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.52 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.450, Tmax = 0.497

  • 7056 measured reflections

  • 1723 independent reflections

  • 1220 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.164

  • S = 1.12

  • 1723 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1 0.93 2.25 2.838 (10) 121
C9—H9A⋯O3i 0.98 2.55 3.507 (11) 166
N4—H4A⋯N1ii 0.86 2.56 3.317 (9) 147
N4—H4A⋯N2ii 0.86 2.24 3.045 (8) 157
N3—H3A⋯O2i 0.86 2.18 3.038 (9) 177
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg,1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Structures and chemical properties of 1,8-naphthyridine derivatives have been investigated owing to their interesting complexation properties, medical uses and chemical applications. They can act as the ligands linking to metals via several coordination modes (Gan et al., 2011; Chang et al., 2011; Das et al., 2012; Li et al., 2011), as drugs (Samadi et al., 2011) and as molecular probe (Li et al., 2012; Tanaka et al., 2012). Herein we report the synthesis and structure of the title co-crystal which was unintentionally obtained during the synthesis of the naphthiridine derivative.

The structure of the title co-crystal is shown in Figs. 1 and 2 and hydrogen-bond geometry is given in Table 1. Both molecules are located on a mirror plane. There are three (N—H···N, N—H···O and C—H···O) intermoleular hydrogen bonds between the crystal components linking the molecules to form heterodimers. The complementarity of hydrogen-bonding interactions stabilizes the dimeric structure, and, most probably, it is the reason why the two components were not easily separated during chromatographic procedure.

Related literature top

For coordination properties of 1,8-naphthyridine ligands, see: Gan et al. (2011); Chang et al. (2011); Das et al. (2012); Li et al. (2011). For similar structures, see: Li et al. (2011). For applications of similar compounds, see: Samadi et al. (2011); Li et al. (2012); Tanaka et al. (2012). For information on their synthesis, see: Henry & Hammond (1977); Wang et al. (2008).

Experimental top

7-Acetylamino-2,4-dimethyl-1,8-naphthyridine (Wang et al., 2008; Henry & Hammond, 1977) (500 mg, 2,32 mmol) and N-bromosuccinimide (0.49 g, 2.79 mmol) were added to an acetonitrile (20 ml) solution in the nitrogen atmosphere. The mixture was stirred at room temperature in the presence of light, a 250 W infrared lamp was used as a light source, for 4 hrs. Excess solvent was removed and the crude product was purified by column chromatography using dichloromethane/methanol (39:1) as the mobile phase to give a white powder. Yield: 250 mg (30%). Crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into the solution of the powder in dichloromethane. To remove succinimide from the sample several cycles of purification by column chromatography had to be carried out. The pure white brominated naphthyridine compound was characterized by 1H NMR (500 MHz, CDCl3): δ=p.p.m. 8.86 (s, 1H NH), 8.59 (d, J = 9.1 Hz, 1H naphthyridyl proton), 8.40 (d, J = 9.1 Hz, 1H naphthyridyl proton), 7.81 (s, 1H naphthyridyl proton), 6.77 (s, 1H CH), 2.79 (s, 3H), 2.32 (s, 3H).

Refinement top

All H atoms were placed in calculated positions. The H atoms were constrained to an ideal geometry with C—H distances of 0.93–0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) =1.2Ueq(C) for the remaining H atoms, and N—H distance of 0.86 Å, Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg,1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids, and the disorders of hydrogen atoms are shown.
[Figure 2] Fig. 2. A view of the crystal packing. Hydrogen bonds are shown as black dashed lines, while weak contacts as the blue ones.
N-(7-Dibromomethyl-5-methyl-1,8-naphthyridin-2-yl)acetamide– pyrrolidine-2,5-dione (1/1) top
Crystal data top
C12H11Br2N3O·C4H5NO2F(000) = 468
Mr = 472.15Dx = 1.739 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 25 reflections
a = 11.537 (2) Åθ = 3.4–25.0°
b = 7.0093 (14) ŵ = 4.52 mm1
c = 11.632 (2) ÅT = 293 K
β = 106.57 (3)°Block, colourless
V = 901.6 (3) Å30.21 × 0.19 × 0.18 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1723 independent reflections
Radiation source: fine-focus sealed tube1220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scanθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.450, Tmax = 0.497k = 87
7056 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0757P)2 + 1.6111P]
where P = (Fo2 + 2Fc2)/3
1723 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
C12H11Br2N3O·C4H5NO2V = 901.6 (3) Å3
Mr = 472.15Z = 2
Monoclinic, P21/mMo Kα radiation
a = 11.537 (2) ŵ = 4.52 mm1
b = 7.0093 (14) ÅT = 293 K
c = 11.632 (2) Å0.21 × 0.19 × 0.18 mm
β = 106.57 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1723 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1220 reflections with I > 2σ(I)
Tmin = 0.450, Tmax = 0.497Rint = 0.042
7056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.12Δρmax = 0.72 e Å3
1723 reflectionsΔρmin = 0.92 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5310 (7)0.25000.7838 (6)0.0437 (17)
C20.4522 (7)0.25000.8575 (7)0.0486 (18)
H2A0.36890.25000.82260.058*
C30.4977 (7)0.25000.9803 (6)0.0452 (17)
C40.6257 (7)0.25001.0284 (6)0.0405 (16)
C50.6882 (7)0.25001.1520 (6)0.0482 (18)
H5A0.64460.25001.20800.058*
C60.8109 (7)0.25001.1903 (7)0.053 (2)
H6A0.85180.25001.27170.063*
C70.8749 (6)0.25001.1028 (6)0.0456 (18)
C80.6974 (7)0.25000.9487 (6)0.0415 (16)
C90.4859 (8)0.25000.6506 (7)0.058 (2)
H9A0.55540.25000.61800.069*
C100.4146 (7)0.25001.0597 (7)0.0491 (18)
H10A0.33190.25001.01120.074*
H10B0.42980.13821.10940.074*
C111.0841 (7)0.25001.2427 (7)0.055 (2)
C121.2128 (7)0.25001.2408 (8)0.067 (2)
H12A1.26520.25001.32140.101*
H12B1.22790.13821.19970.101*
C130.0377 (8)0.25000.8080 (8)0.057 (2)
C140.0885 (8)0.25000.7021 (8)0.069 (2)
H14A0.13680.13840.70230.082*
C150.0232 (9)0.25000.5948 (8)0.080 (3)
H15A0.02510.13870.54630.095*
C160.1280 (8)0.25000.6435 (8)0.056 (2)
N10.6503 (6)0.25000.8271 (5)0.0477 (15)
N20.8206 (6)0.25000.9860 (5)0.0461 (15)
N31.0008 (6)0.25001.1320 (5)0.0524 (16)
H3A1.03030.25001.07190.063*
N40.0857 (6)0.25000.7663 (5)0.0502 (16)
H4A0.13220.25000.81240.060*
O11.0553 (6)0.25001.3339 (5)0.093 (3)
O20.0955 (5)0.25000.9136 (5)0.0759 (19)
O30.2342 (6)0.25000.5882 (6)0.081 (2)
Br10.38805 (7)0.02689 (12)0.59139 (6)0.0801 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (4)0.052 (4)0.042 (4)0.0000.018 (3)0.000
C20.043 (4)0.060 (5)0.045 (4)0.0000.018 (3)0.000
C30.045 (4)0.048 (4)0.050 (4)0.0000.025 (4)0.000
C40.044 (4)0.044 (4)0.039 (4)0.0000.020 (3)0.000
C50.053 (5)0.059 (5)0.041 (4)0.0000.026 (3)0.000
C60.046 (5)0.079 (6)0.036 (4)0.0000.016 (3)0.000
C70.041 (4)0.054 (4)0.044 (4)0.0000.016 (3)0.000
C80.046 (5)0.046 (4)0.035 (4)0.0000.018 (3)0.000
C90.054 (5)0.076 (6)0.047 (4)0.0000.021 (4)0.000
C100.041 (4)0.062 (5)0.051 (4)0.0000.024 (3)0.000
C110.046 (5)0.075 (6)0.041 (4)0.0000.009 (4)0.000
C120.042 (5)0.102 (7)0.057 (5)0.0000.012 (4)0.000
C130.059 (6)0.061 (5)0.058 (5)0.0000.027 (4)0.000
C140.059 (6)0.083 (6)0.074 (6)0.0000.034 (5)0.000
C150.091 (8)0.107 (8)0.052 (5)0.0000.039 (5)0.000
C160.054 (5)0.061 (5)0.054 (5)0.0000.017 (4)0.000
N10.047 (4)0.060 (4)0.043 (3)0.0000.024 (3)0.000
N20.042 (4)0.062 (4)0.039 (3)0.0000.020 (3)0.000
N30.043 (4)0.079 (5)0.041 (3)0.0000.022 (3)0.000
N40.042 (4)0.070 (4)0.042 (3)0.0000.017 (3)0.000
O10.051 (4)0.188 (8)0.041 (3)0.0000.014 (3)0.000
O20.054 (4)0.114 (6)0.057 (4)0.0000.012 (3)0.000
O30.067 (5)0.116 (6)0.057 (4)0.0000.011 (3)0.000
Br10.0936 (7)0.0929 (6)0.0563 (5)0.0237 (4)0.0254 (4)0.0161 (3)
Geometric parameters (Å, º) top
C1—N11.324 (9)C9—H9A0.9800
C1—C21.417 (10)C10—H10A0.9600
C1—C91.487 (10)C10—H10B0.9600
C2—C31.373 (10)C11—O11.199 (10)
C2—H2A0.9300C11—N31.370 (10)
C3—C41.422 (10)C11—C121.490 (11)
C3—C101.509 (9)C12—H12A0.9600
C4—C81.407 (10)C12—H12B0.9601
C4—C51.413 (10)C13—O21.220 (10)
C5—C61.357 (11)C13—N41.367 (10)
C5—H5A0.9300C13—C141.508 (12)
C6—C71.418 (10)C14—C151.517 (13)
C6—H6A0.9300C14—H14A0.9600
C7—N21.324 (9)C15—C161.474 (13)
C7—N31.394 (9)C15—H15A0.9600
C8—N11.363 (9)C16—O31.210 (10)
C8—N21.363 (9)C16—N41.372 (10)
C9—Br11.936 (5)N3—H3A0.8600
C9—Br1i1.936 (5)N4—H4A0.8600
N1—C1—C2123.1 (7)C3—C10—H10A109.8
N1—C1—C9114.4 (6)C3—C10—H10B109.3
C2—C1—C9122.4 (7)H10A—C10—H10B109.5
C3—C2—C1120.5 (7)O1—C11—N3122.3 (8)
C3—C2—H2A119.7O1—C11—C12122.8 (7)
C1—C2—H2A119.7N3—C11—C12114.9 (7)
C2—C3—C4117.1 (6)C11—C12—H12A109.8
C2—C3—C10121.0 (7)C11—C12—H12B109.3
C4—C3—C10121.9 (7)H12A—C12—H12B109.5
C8—C4—C5116.5 (7)O2—C13—N4124.9 (8)
C8—C4—C3118.7 (6)O2—C13—C14126.5 (8)
C5—C4—C3124.9 (6)N4—C13—C14108.6 (8)
C6—C5—C4121.0 (7)C13—C14—C15103.6 (7)
C6—C5—H5A119.5C13—C14—H14A111.0
C4—C5—H5A119.5C15—C14—H14A111.0
C5—C6—C7118.2 (7)C16—C15—C14106.4 (7)
C5—C6—H6A120.9C16—C15—H15A110.0
C7—C6—H6A120.9C14—C15—H15A110.8
N2—C7—N3113.9 (6)O3—C16—N4124.0 (8)
N2—C7—C6123.1 (7)O3—C16—C15127.8 (8)
N3—C7—C6123.1 (7)N4—C16—C15108.2 (8)
N1—C8—N2113.6 (6)C1—N1—C8117.3 (6)
N1—C8—C4123.3 (7)C7—N2—C8118.1 (6)
N2—C8—C4123.1 (6)C11—N3—C7129.2 (7)
C1—C9—Br1111.5 (3)C11—N3—H3A115.4
C1—C9—Br1i111.5 (3)C7—N3—H3A115.4
Br1—C9—Br1i107.7 (4)C16—N4—C13113.2 (7)
C1—C9—H9A108.7C16—N4—H4A123.4
Br1—C9—H9A108.7C13—N4—H4A123.4
Br1i—C9—H9A108.7
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O10.932.252.838 (10)121
C9—H9A···O3ii0.982.553.507 (11)166
N4—H4A···N1iii0.862.563.317 (9)147
N4—H4A···N2iii0.862.243.045 (8)157
N3—H3A···O2ii0.862.183.038 (9)177
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H11Br2N3O·C4H5NO2
Mr472.15
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)11.537 (2), 7.0093 (14), 11.632 (2)
β (°) 106.57 (3)
V3)901.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.52
Crystal size (mm)0.21 × 0.19 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.450, 0.497
No. of measured, independent and
observed [I > 2σ(I)] reflections
7056, 1723, 1220
Rint0.042
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.164, 1.12
No. of reflections1723
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.92

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg,1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O10.932.252.838 (10)121
C9—H9A···O3i0.982.553.507 (11)166
N4—H4A···N1ii0.862.563.317 (9)147
N4—H4A···N2ii0.862.243.045 (8)157
N3—H3A···O2i0.862.183.038 (9)177
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

Support is acknowledged from the `Spring Sunshine' Plan of the Ministry of Education of China (grant No. Z2011125) and the National Natural Science Foundation of China (grant No. 21262049)

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChang, Y. H., Liu, Z. Y., Liu, Y. H., Peng, S. M., Chen, J. T. & Liu, S. T. (2011). Dalton Trans. 40, 489–494.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDas, R. K., Sarkar, M., Wahidur Rahaman, S. M., Doucet, H. & Bera, J. K. (2012). Eur. J. Inorg. Chem. pp. 1680–1687.  Web of Science CSD CrossRef Google Scholar
First citationGan, X., Chi, S. M., Mu, W. H., Yao, J. C., Quan, L., Li, C., Bian, Z. Y., Chen, Y. & Fu, W. F. (2011). Dalton Trans. 40, 7365–7374.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHenry, R. A. & Hammond, P. R. (1977). J. Heterocycl. Chem. pp. 1109–1114.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, Z. X., Li, C., Mu, W. H., Xiong, S. X. & Fu, W. F. (2011). Inorg. Chim. Acta, 379, 7–15.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z. X., Zhao, W. Y., Li, X. Y., Zhu, Y. Y., Liu, C. M., Wang, L. N., Yu, M. M., Wei, L. H., Tang, M. S. & Zhang, H. Y. (2012). Inorg. Chem. 51, 12444–12449.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSamadi, A., Valderas, C., Ríos, C. D. I., Bastida, A., Chioua, M., González-Lafuente, L., Colmena, I., Gandía, L., Romero, A., Barrio, L. D., Martín-de-Saavedra, M. D., López, M. G., Villarroya, M. & Marco-Contelles, J. (2011). Bioorg. Med. Chem. 19, 122–133.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Murakami, M., Jeon, J. H. & Chujo, Y. (2012). Org. Biomol. Chem. 10, 90–95.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, D.-H., Yu, Y.-M., Chen, J.-H. & Fu, W.-F. (2008). Acta Cryst. E64, o112.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o153-o154
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds