organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Benzoyl-4-(4-fluoro­phen­yl)-3,4-di­hydro­pyrimidin-2(1H)-one

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur 416 004(MS), India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 27 December 2012; accepted 31 December 2012; online 9 January 2013)

In the title mol­ecule, C17H13FN2O2, the 3,4-dihydro­pyrimidine ring adopts a flattened sofa conformation with the flap atom (which bears the fluoro­phenyl substituent) deviating from the plane defined by the remaining five ring atoms by 0.281 (2) Å. This plane forms dihedral angles of 85.98 (6) and 60.63 (6)° with the 4-fluoro­phenyl and benzoyl-phenyl rings, respectively. The dihedral angle between the 4-fluoro­phenyl group and the benzene ring is 71.78 (6)°. In the crystal, N—H⋯O hydrogen bonds link mol­ecules into inversion dimers that are further connected by another N—H⋯O inter­action into a two-dimensional supra­molecular structure parallel to (101).

Related literature

For general background to and pharmaceutical applications of pyrimidino­nes, see: Ghorab et al. (2000[Ghorab, M. M., Abdel-Gawad, S. M. & El-Gaby, M. S. A. (2000). Il Farmaco, 55, 249-255.]); Shivarama Holla et al. (2004[Shivarama Holla, B., Sooryanarayana Rao, B., Sarojini, B. K. & Akberali, P. M. (2004). Eur. J. Med. Chem. 39, 777-783.]); Stefani et al. (2006[Stefani, H. A., Oliveira, C. B., Almeida, R. B., Pereira, C. M. P., Braga, R. C., Cella, R., Borges, V. C., Savegnago, L. & Nogueira, C. W. (2006). Eur. J. Med. Chem. 41, 513-518.]). For related structures, see: Fun et al. (2009[Fun, H.-K., Yeap, C. S., Babu, M. & Kalluraya, B. (2009). Acta Cryst. E65, o1188-o1189.]); Chitra et al. (2009[Chitra, S., Pandiarajan, K., Anuradha, N. & Thiruvalluvar, A. (2009). Acta Cryst. E65, o23.]). For asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13FN2O2

  • Mr = 296.29

  • Monoclinic, P 21 /n

  • a = 12.7911 (5) Å

  • b = 8.1862 (3) Å

  • c = 13.7325 (5) Å

  • β = 98.850 (4)°

  • V = 1420.82 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.777, Tmax = 1.000

  • 27552 measured reflections

  • 2786 independent reflections

  • 1836 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.131

  • S = 1.04

  • 2786 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.96 2.777 (2) 159
N3—H3⋯O1ii 0.86 2.12 2.937 (2) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Dihydropyrimidinones exhibit a wide range of biological effects including antifungal, antiviral, anticancer, antibacterial, anti-inflammatory and antihypertensive (Ghorab et al., 2000; Shivarama Holla et al., 2004). Dihydropyrimidin-2(1H)-ones can also be used as antioxidant agents (Stefani et al., 2006). This paper reports the crystal structure of the title dihydropyrimidinone derivative.

In the title compound (Fig.1) all bond lengths and angles are normal and correspond to those observed in related structures (Fun et al., 2009; Chitra et al., 2009). The dihydropyrimidine ring adopts a sofa conformation (ΔCs(C4) = 5.436)(Duax & Norton, 1975) and the plane of the five essentially coplanar atoms (C5/C6/N1/C2/N3) of this ring (maximum deviation -0.045 (2) Å for all atoms) forms a dihedral angle of 85.98 (6)° and 60.63 (6)° with fluorophenyl and benzene ring respectively. In the crystal, N1—H1···O2 hydrogen bonds link molecules into dimers that are further connected by N3—H3···O1 and (Table 1) interactions into two dimensional supramolecular structure (Fig. 2).

Related literature top

For general background to and pharmaceutical applications of pyrimidinones, see: Ghorab et al. (2000); Shivarama Holla et al. (2004); Stefani et al. (2006). For related structures, see: Fun et al. (2009); Chitra et al. (2009). For asymmetry parameters, see: Duax & Norton (1975).

Experimental top

A mixture of 3-(dimethylamino)-1-phenylprop-2-en-1-one (1mmol), 4-fluorobenzaldehyde (1mmol), urea (1.2 mmol) and PTSA (30 mol%) in 5 ml ethanol was stirred at 78 °C till the completion of the reaction monitored by TLC. Then reaction mixture was gradually cooled down to room temperature. The precipitate was filtered and washed with cold ethanol (m.p.: 555-557 K, yield: 81%). IR(KBr): 3268, 2964,1682, 1641 ,1592, 1371, 1200, 1151 cm-1; 1H NMR(300 MHz, DMSO-d6): δ = 5.45-5.46(d,1H,CH);7.03-7.14(m,3H,Ar-H); 7.35-7.50(m,6H,Ar-H);7.86-7.87(d,1H,NH); 8.21 ( s,1H,CH ); 9.38 ( s,1H,NH );

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent atoms, with C—H distances of 0.93–0.98 Å and N—H distances of 0.86 Å with Uiso(H) = 1.2Ueq(C/N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the b axis. The dotted lines show intermolecular N—H···O hydrogen bonds.
5-Benzoyl-4-(4-fluorophenyl)-3,4-dihydropyrimidin-2(1H)-one top
Crystal data top
C17H13FN2O2F(000) = 616
Mr = 296.29Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9924 reflections
a = 12.7911 (5) Åθ = 3.4–29.0°
b = 8.1862 (3) ŵ = 0.10 mm1
c = 13.7325 (5) ÅT = 293 K
β = 98.850 (4)°Block, colourless
V = 1420.82 (9) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2786 independent reflections
Radiation source: fine-focus sealed tube1836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.777, Tmax = 1.000l = 1616
27552 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.117P]
where P = (Fo2 + 2Fc2)/3
2786 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C17H13FN2O2V = 1420.82 (9) Å3
Mr = 296.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7911 (5) ŵ = 0.10 mm1
b = 8.1862 (3) ÅT = 293 K
c = 13.7325 (5) Å0.3 × 0.2 × 0.2 mm
β = 98.850 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2786 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1836 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 1.000Rint = 0.075
27552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
2786 reflectionsΔρmin = 0.14 e Å3
199 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39760 (11)0.04963 (17)0.86034 (11)0.0532 (4)
O20.37270 (12)0.57074 (18)0.52393 (11)0.0584 (5)
F10.33786 (14)0.71433 (18)1.06679 (11)0.0932 (5)
N10.48454 (13)0.3865 (2)0.60718 (13)0.0497 (5)
H10.53520.41890.57740.060*
C20.38882 (16)0.4658 (2)0.58943 (15)0.0428 (5)
N30.31734 (13)0.42049 (19)0.64458 (12)0.0436 (4)
H30.25390.45560.62670.052*
C40.33496 (15)0.3167 (2)0.73290 (14)0.0386 (5)
H40.27460.24220.72990.046*
C50.43279 (15)0.2146 (2)0.72997 (14)0.0383 (5)
C60.50143 (16)0.2583 (2)0.67049 (15)0.0429 (5)
H60.56350.19830.67250.051*
C70.45121 (15)0.0738 (2)0.79487 (15)0.0401 (5)
C80.53687 (15)0.0452 (2)0.78012 (15)0.0406 (5)
C90.54036 (17)0.1174 (2)0.68944 (16)0.0506 (6)
H90.49150.08670.63520.061*
C100.61561 (19)0.2345 (3)0.67854 (19)0.0603 (6)
H100.61640.28360.61760.072*
C110.6889 (2)0.2778 (3)0.7576 (2)0.0674 (7)
H110.73980.35620.75030.081*
C120.68740 (19)0.2060 (3)0.8473 (2)0.0642 (7)
H120.73820.23480.90050.077*
C130.61117 (18)0.0912 (2)0.85984 (17)0.0502 (6)
H130.60980.04500.92150.060*
C140.33820 (15)0.4208 (2)0.82489 (14)0.0374 (5)
C150.41687 (18)0.5364 (3)0.85035 (16)0.0507 (6)
H150.47040.54740.81200.061*
C160.4170 (2)0.6356 (3)0.93181 (17)0.0598 (6)
H160.46980.71310.94850.072*
C170.3384 (2)0.6174 (3)0.98687 (17)0.0578 (6)
C180.2588 (2)0.5067 (3)0.96424 (17)0.0582 (6)
H180.20490.49861.00240.070*
C190.26005 (17)0.4065 (2)0.88326 (16)0.0480 (5)
H190.20730.32830.86800.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0473 (9)0.0574 (9)0.0592 (9)0.0000 (7)0.0219 (8)0.0136 (7)
O20.0593 (10)0.0675 (10)0.0529 (9)0.0202 (8)0.0223 (8)0.0227 (8)
F10.1272 (14)0.0846 (10)0.0730 (10)0.0053 (10)0.0323 (10)0.0299 (8)
N10.0388 (10)0.0546 (10)0.0600 (11)0.0094 (8)0.0215 (9)0.0197 (9)
C20.0419 (12)0.0473 (12)0.0407 (11)0.0065 (9)0.0113 (9)0.0021 (10)
N30.0329 (9)0.0572 (10)0.0415 (9)0.0100 (8)0.0084 (8)0.0092 (8)
C40.0318 (11)0.0403 (10)0.0454 (11)0.0005 (8)0.0114 (9)0.0059 (9)
C50.0333 (11)0.0390 (10)0.0434 (11)0.0007 (8)0.0085 (9)0.0023 (9)
C60.0356 (11)0.0436 (11)0.0510 (12)0.0056 (9)0.0113 (10)0.0075 (9)
C70.0352 (11)0.0398 (10)0.0457 (12)0.0046 (9)0.0076 (9)0.0013 (9)
C80.0356 (11)0.0356 (10)0.0518 (12)0.0036 (9)0.0104 (9)0.0043 (9)
C90.0443 (13)0.0534 (13)0.0539 (14)0.0003 (10)0.0068 (11)0.0008 (10)
C100.0544 (15)0.0568 (14)0.0713 (17)0.0000 (12)0.0145 (13)0.0135 (12)
C110.0524 (16)0.0509 (14)0.099 (2)0.0110 (11)0.0109 (15)0.0053 (14)
C120.0471 (15)0.0578 (14)0.0825 (18)0.0111 (12)0.0063 (13)0.0104 (13)
C130.0499 (14)0.0440 (12)0.0548 (13)0.0032 (10)0.0022 (11)0.0048 (10)
C140.0361 (11)0.0353 (10)0.0418 (11)0.0028 (9)0.0089 (9)0.0067 (8)
C150.0477 (14)0.0549 (13)0.0522 (13)0.0060 (10)0.0160 (11)0.0003 (10)
C160.0679 (17)0.0523 (13)0.0589 (14)0.0110 (12)0.0091 (13)0.0048 (12)
C170.0790 (18)0.0484 (13)0.0480 (13)0.0049 (12)0.0159 (12)0.0062 (11)
C180.0688 (17)0.0569 (14)0.0566 (14)0.0052 (12)0.0346 (13)0.0029 (12)
C190.0468 (13)0.0436 (12)0.0571 (13)0.0019 (9)0.0190 (11)0.0030 (10)
Geometric parameters (Å, º) top
O1—C71.228 (2)C9—H90.9300
O2—C21.238 (2)C10—C111.367 (3)
F1—C171.355 (2)C10—H100.9300
N1—C61.359 (2)C11—C121.369 (3)
N1—C21.374 (3)C11—H110.9300
N1—H10.8600C12—C131.384 (3)
C2—N31.327 (2)C12—H120.9300
N3—C41.470 (2)C13—H130.9300
N3—H30.8600C14—C191.379 (3)
C4—C51.511 (3)C14—C151.387 (3)
C4—C141.519 (3)C15—C161.382 (3)
C4—H40.9800C15—H150.9300
C5—C61.337 (3)C16—C171.356 (3)
C5—C71.454 (3)C16—H160.9300
C6—H60.9300C17—C181.362 (3)
C7—C81.503 (3)C18—C191.384 (3)
C8—C91.385 (3)C18—H180.9300
C8—C131.387 (3)C19—H190.9300
C9—C101.383 (3)
C6—N1—C2121.89 (17)C11—C10—C9119.9 (2)
C6—N1—H1119.1C11—C10—H10120.1
C2—N1—H1119.1C9—C10—H10120.1
O2—C2—N3123.82 (18)C10—C11—C12120.0 (2)
O2—C2—N1120.08 (18)C10—C11—H11120.0
N3—C2—N1116.09 (17)C12—C11—H11120.0
C2—N3—C4126.95 (16)C11—C12—C13120.7 (2)
C2—N3—H3116.5C11—C12—H12119.6
C4—N3—H3116.5C13—C12—H12119.6
N3—C4—C5108.69 (15)C12—C13—C8119.8 (2)
N3—C4—C14110.09 (14)C12—C13—H13120.1
C5—C4—C14114.58 (16)C8—C13—H13120.1
N3—C4—H4107.7C19—C14—C15118.29 (19)
C5—C4—H4107.7C19—C14—C4120.43 (18)
C14—C4—H4107.7C15—C14—C4121.23 (17)
C6—C5—C7121.81 (17)C16—C15—C14121.0 (2)
C6—C5—C4119.51 (17)C16—C15—H15119.5
C7—C5—C4118.64 (16)C14—C15—H15119.5
C5—C6—N1122.90 (18)C17—C16—C15118.6 (2)
C5—C6—H6118.6C17—C16—H16120.7
N1—C6—H6118.6C15—C16—H16120.7
O1—C7—C5121.36 (17)F1—C17—C16118.9 (2)
O1—C7—C8119.69 (17)F1—C17—C18118.5 (2)
C5—C7—C8118.95 (17)C16—C17—C18122.5 (2)
C9—C8—C13118.75 (19)C17—C18—C19118.5 (2)
C9—C8—C7121.50 (19)C17—C18—H18120.7
C13—C8—C7119.67 (19)C19—C18—H18120.7
C10—C9—C8120.8 (2)C14—C19—C18121.0 (2)
C10—C9—H9119.6C14—C19—H19119.5
C8—C9—H9119.6C18—C19—H19119.5
C6—N1—C2—O2172.51 (19)C7—C8—C9—C10175.79 (18)
C6—N1—C2—N36.3 (3)C8—C9—C10—C111.2 (3)
O2—C2—N3—C4169.86 (18)C9—C10—C11—C120.3 (4)
N1—C2—N3—C411.4 (3)C10—C11—C12—C131.1 (4)
C2—N3—C4—C522.5 (3)C11—C12—C13—C81.5 (3)
C2—N3—C4—C14103.8 (2)C9—C8—C13—C120.6 (3)
N3—C4—C5—C617.7 (3)C7—C8—C13—C12177.22 (19)
C14—C4—C5—C6105.9 (2)N3—C4—C14—C19113.42 (19)
N3—C4—C5—C7164.33 (16)C5—C4—C14—C19123.7 (2)
C14—C4—C5—C772.1 (2)N3—C4—C14—C1564.1 (2)
C7—C5—C6—N1178.06 (18)C5—C4—C14—C1558.8 (2)
C4—C5—C6—N14.0 (3)C19—C14—C15—C160.3 (3)
C2—N1—C6—C59.6 (3)C4—C14—C15—C16177.24 (19)
C6—C5—C7—O1167.94 (19)C14—C15—C16—C170.1 (3)
C4—C5—C7—O110.0 (3)C15—C16—C17—F1179.9 (2)
C6—C5—C7—C812.9 (3)C15—C16—C17—C180.8 (4)
C4—C5—C7—C8169.22 (17)F1—C17—C18—C19179.3 (2)
O1—C7—C8—C9125.5 (2)C16—C17—C18—C191.6 (4)
C5—C7—C8—C953.7 (2)C15—C14—C19—C181.1 (3)
O1—C7—C8—C1351.0 (3)C4—C14—C19—C18176.45 (18)
C5—C7—C8—C13129.8 (2)C17—C18—C19—C141.7 (3)
C13—C8—C9—C100.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.962.777 (2)159
N3—H3···O1ii0.862.122.937 (2)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H13FN2O2
Mr296.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.7911 (5), 8.1862 (3), 13.7325 (5)
β (°) 98.850 (4)
V3)1420.82 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.777, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27552, 2786, 1836
Rint0.075
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.04
No. of reflections2786
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.962.777 (2)159
N3—H3···O1ii0.862.122.937 (2)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationChitra, S., Pandiarajan, K., Anuradha, N. & Thiruvalluvar, A. (2009). Acta Cryst. E65, o23.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Babu, M. & Kalluraya, B. (2009). Acta Cryst. E65, o1188–o1189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhorab, M. M., Abdel-Gawad, S. M. & El-Gaby, M. S. A. (2000). Il Farmaco, 55, 249–255.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivarama Holla, B., Sooryanarayana Rao, B., Sarojini, B. K. & Akberali, P. M. (2004). Eur. J. Med. Chem. 39, 777–783.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStefani, H. A., Oliveira, C. B., Almeida, R. B., Pereira, C. M. P., Braga, R. C., Cella, R., Borges, V. C., Savegnago, L. & Nogueira, C. W. (2006). Eur. J. Med. Chem. 41, 513–518.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds