organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o269-o270

2-(4-Meth­­oxy­phen­yl)-1-phenyl-1H-benzimidazole

aShri Angalamman College of Engineering and Technology, Siruganoor, Tiruchirappalli 621 105, India, bDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Tamilnadu, India, and cDepartment of Physics, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India
*Correspondence e-mail: sakthi2udc@gmail.com

(Received 20 November 2012; accepted 16 January 2013; online 23 January 2013)

In the title compound, C20H16N2O, the 1H-benzimidazole ring forms dihedral angles of 48.00 (6) and 64.48 (6)°, respectively with the benzene and phenyl rings, which are inclined to one another by 58.51 (7)°. In the crystal, weak C—H⋯π inter­actions are the only inter­molecular inter­actions present.

Related literature

For background to benzimidazole derivatives, see: Mason et al. (1999[Mason, J. S., Morize, I., Menard, P. R., Cheney, D. L., Hume, C. & Labaudiniere, R. F. (1999). J. Med. Chem. 42, 3251-3264.]). For their biological activities such as anti­microbial & anti­cancer, anti­diabetic, anti­fungal, anti HIV and anti­viral, see: Demirayak et al. (2002[Demirayak, S., Abu Mohsen, U. & Lagri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255-260.]); Minoura et al. (2004[Minoura, H., Takeshita, S., Ita, M., Hirosumi, J., Mabuchi, M., Kawamura, I., Nakajima, S., Nakayama, O., Kayakiri, H., Oku, T., Ohkubo-Suzuki, A., Fukagawa, M., Kojo, H., Hanioka, K., Yamasaki, N., Imoto, T., Kobayashi, Y. & Mutoh, S. (2004). Eur. J. Pharmacol. 494, 273-281.]); Pawar et al. (2004[Pawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2004). Eur. J. Pharm. Sci. 21, 115-118.]); Rao et al. (2003[Rao, A., Chimirri, A., De Clercq, E., Maria Monforte, A., Monforte, P., Pannecouque, C. & Zappala, M. (2003). Il Farmaco, 58, 259-263.]); Tomei et al. (2003[Tomei, L., Altamura, S., Bartholomew, L., Biroccio, A., Ceccacci, A., Pacini, L., Narjes, F., Gennari, N., Bisbocci, M., Incitti, I., Orsatti, L., Harper, S., Stansfield, I., Rowley, M., De Francesco, R. & Migliaccio, G. (2003). J. Virol. 77, 13225-13231.]). For their action as polymerase and transcriptase inhibitors, see: Beaulieu et al. (2004[Beaulieu, P. L., Bos, M., Bousquet, Y., Fazal, G., Gauthier, J., Gillard, J., Goulet, S., LaPlante, S., Poupart, M. A., Lefebvre, S., McKerche, G., Pellerin, C., Austel, V. & Kukolj, G. (2004). Bioorg. Med. Chem. Lett. 14, 119-124.]; Morningstar et al. (2007[Morningstar, M. L., Roth, T., Farnsworth, D. W., Smith, M. K., Watson, K., Buckheit, R. W., Das, K., Zhang, W., Arnold, E. & Julias, J. G. (2007). J. Med. Chem. 50, 4003-4015.]); Roth et al. (1997[Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, J. R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.]); For other related studies, see: Jayabharathi et al. (2012[Jayabharathi, J., Thanikachalam, V., Rajendraprasath, N., Saravanan, K. & Venkatesh Perumal, M. (2012). Med. Chem. Res. 21, 1850-1860.])

[Scheme 1]

Experimental

Crystal data
  • C20H16N2O

  • Mr = 300.35

  • Monoclinic, P 21 /c

  • a = 12.3220 (3) Å

  • b = 7.3030 (2) Å

  • c = 18.2450 (3) Å

  • β = 108.909 (1)°

  • V = 1553.22 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.999

  • 13787 measured reflections

  • 2728 independent reflections

  • 2283 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.03

  • 2728 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C2–C7 and C9–C14 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg2i 0.93 2.86 3.5361 (15) 130
C13—H13⋯Cg3ii 0.93 2.83 3.4594 (16) 126
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The benzimidazole core is classified by medicinal chemists as one of the 'privileged substructures' for drug design,in light of the affinity they display towards a variety of enzymes and protein receptors (Mason et al.,1999).

The synthesis of benzimidazoles has received much attention owing to the varied biological activity such as antifungal (Pawar et al., 2004), antiviral (Tomei et al., 2003), antiHIV (Rao et al., 2003), antidiabetic (Minoura et al., 2004), antimicrobial and anticancer (Demirayak et al., 2002), properties exhibited by a number of derivatives of these compounds.

Benzimidazole derivatives possess antioxidant activities (Jayabharathi et al.,2012).

They have emerged as potent non nucleoside inhibitors of HIV-1 reverse transcriptase (Roth et al.,1997, Morningstar et al.,2007)

It also acts as a specific inhibitors of the NS5B polymerase of the hepatitis C virus (HCV) (Beaulieu, et al., 2004).

The molecular structure of (I), is shown in Fig.1. The (N1/N2/C8—C14) 1H-benzimidazole ring is planar. It forms dihedral angles of 48.00 (6)° and 64.48 (6)° with the mean planes of the C2—C7 and C15—C20 phenyl rings respectively.

The C1—O1—C2—C7 and C3—C2—O1—C1 torsion angles are 2.8 (2)° and -176.42 (14)° respectively.

A C6—H6···π interaction involving the phenyl ring of methoxybenzene at the symmetry code [1 - x,1/2 + y,1/2 - z] and C13—H13···π interaction involving the benzene ring of benzimidazole at the symmetry code [2 - x,1/2 + y,1/2 - z] are also found.

Related literature top

For background to benzimidazole derivatives, see: Mason et al. (1999). For their biological activities such as antimicrobial & anticancer, antidiabetic, antifungal, anti HIV and antiviral, see: Demirayak et al. (2002); Minoura et al. (2004); Pawar et al. (2004); Rao et al. (2003); Tomei et al. (2003). For their action as polymerase and transcriptase inhibitors, see: Beaulieu et al. (2004;Morningstar et al. (2007); Roth et al. (1997); For other related studies, see:Jayabharathi et al. (2012)

Experimental top

To pure N-phenyl-0-phenylenediamine(17 mmol,3.128 g) in ethanol(10 ml), 4-methoxy benzaldehyde(17 mmol,2.1 ml) and ammonium acetate(3 g) was added for about 1 h while maintaining the temperature at 80°C. The reaction mixture was refluxed and the completion of reaction was monitored by TLC, finally the reactants extracted with dichloromethane. The solid separated was purified by column chromatography using petroleum ether as the eluent.Yield:2.65 g(50%) from which it was crystallized.

Refinement top

All the hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms with C—H = 0.93 - 0.97 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and labelling scheme for (I) with displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I) is shown. Intermolecular hydrogen bonds are shown as dashed lines.
2-(4-Methoxyphenyl)-1-phenyl-1H-benzimidazole top
Crystal data top
C20H16N2OF(000) = 632
Mr = 300.35Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6267 reflections
a = 12.3220 (3) Åθ = 2.8–31.8°
b = 7.3030 (2) ŵ = 0.08 mm1
c = 18.2450 (3) ÅT = 293 K
β = 108.909 (1)°Block, colourless
V = 1553.22 (6) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2728 independent reflections
Radiation source: fine-focus sealed tube2283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scanθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.956, Tmax = 0.999k = 88
13787 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.3566P]
where P = (Fo2 + 2Fc2)/3
2728 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H16N2OV = 1553.22 (6) Å3
Mr = 300.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3220 (3) ŵ = 0.08 mm1
b = 7.3030 (2) ÅT = 293 K
c = 18.2450 (3) Å0.30 × 0.30 × 0.20 mm
β = 108.909 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2728 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2283 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.999Rint = 0.024
13787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.11 e Å3
2728 reflectionsΔρmin = 0.21 e Å3
209 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15098 (14)0.1529 (3)0.11631 (12)0.0752 (5)
H1A0.15820.09170.16420.113*
H1B0.07560.13230.08030.113*
H1C0.16290.28190.12560.113*
C20.34701 (11)0.10389 (19)0.12724 (8)0.0448 (3)
C30.42477 (12)0.0429 (2)0.09213 (8)0.0486 (4)
H30.39830.01310.04380.058*
C40.54039 (12)0.0648 (2)0.12827 (7)0.0450 (3)
H40.59160.02550.10370.054*
C50.58222 (11)0.14511 (18)0.20131 (7)0.0385 (3)
C60.50382 (12)0.20005 (19)0.23664 (8)0.0443 (3)
H60.53020.25060.28600.053*
C70.38733 (12)0.1813 (2)0.20007 (8)0.0477 (3)
H70.33600.22090.22450.057*
C80.70531 (11)0.17362 (18)0.24035 (7)0.0375 (3)
C90.87357 (11)0.18293 (18)0.32458 (7)0.0404 (3)
C100.96985 (13)0.1720 (2)0.39081 (8)0.0513 (4)
H100.96460.12280.43660.062*
C111.07235 (13)0.2354 (2)0.38684 (9)0.0557 (4)
H111.13730.22940.43060.067*
C121.08135 (13)0.3089 (2)0.31854 (9)0.0546 (4)
H121.15230.35040.31780.066*
C130.98813 (12)0.3218 (2)0.25235 (8)0.0468 (3)
H130.99400.37160.20690.056*
C140.88502 (11)0.25677 (18)0.25688 (7)0.0377 (3)
C150.74297 (10)0.32860 (18)0.12689 (7)0.0365 (3)
C160.78572 (13)0.2560 (2)0.07224 (7)0.0478 (4)
H160.83630.15760.08450.057*
C170.75247 (15)0.3317 (2)0.00127 (8)0.0589 (4)
H170.78070.28330.03870.071*
C180.67873 (15)0.4765 (3)0.01939 (8)0.0626 (5)
H180.65650.52590.06900.075*
C190.63744 (13)0.5492 (2)0.03560 (9)0.0601 (4)
H190.58770.64880.02330.072*
C200.66926 (11)0.4754 (2)0.10932 (8)0.0479 (4)
H200.64110.52450.14660.057*
O10.23425 (8)0.08312 (16)0.08496 (6)0.0636 (3)
N10.77587 (9)0.24986 (15)0.20301 (5)0.0375 (3)
N20.76084 (9)0.13147 (17)0.31277 (6)0.0438 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0447 (6)0.0665 (8)0.0712 (7)0.0034 (5)0.0074 (5)0.0040 (6)
N10.0387 (6)0.0421 (6)0.0310 (5)0.0019 (5)0.0105 (4)0.0038 (4)
N20.0489 (7)0.0512 (7)0.0316 (5)0.0002 (5)0.0134 (5)0.0035 (5)
C10.0459 (9)0.0666 (12)0.1100 (15)0.0005 (8)0.0207 (9)0.0018 (11)
C20.0426 (7)0.0394 (8)0.0483 (8)0.0036 (6)0.0091 (6)0.0057 (6)
C30.0548 (8)0.0520 (9)0.0370 (7)0.0121 (7)0.0121 (6)0.0045 (6)
C40.0504 (8)0.0507 (9)0.0382 (7)0.0071 (7)0.0203 (6)0.0039 (6)
C50.0442 (7)0.0388 (7)0.0336 (6)0.0036 (6)0.0142 (5)0.0030 (5)
C60.0505 (8)0.0461 (8)0.0377 (7)0.0018 (6)0.0164 (6)0.0038 (6)
C70.0478 (8)0.0461 (8)0.0532 (8)0.0027 (7)0.0220 (7)0.0007 (7)
C80.0443 (7)0.0389 (7)0.0320 (6)0.0010 (6)0.0160 (5)0.0002 (5)
C90.0468 (8)0.0394 (8)0.0333 (6)0.0038 (6)0.0105 (6)0.0006 (5)
C100.0566 (9)0.0547 (9)0.0376 (7)0.0092 (7)0.0080 (6)0.0033 (6)
C110.0471 (8)0.0577 (10)0.0498 (8)0.0081 (7)0.0015 (7)0.0036 (7)
C120.0417 (8)0.0514 (9)0.0656 (10)0.0010 (7)0.0103 (7)0.0015 (8)
C130.0460 (8)0.0442 (8)0.0496 (8)0.0006 (6)0.0147 (6)0.0032 (6)
C140.0405 (7)0.0351 (7)0.0360 (6)0.0029 (6)0.0103 (5)0.0005 (5)
C150.0380 (7)0.0403 (7)0.0301 (6)0.0067 (6)0.0095 (5)0.0032 (5)
C160.0587 (9)0.0471 (9)0.0419 (7)0.0050 (7)0.0225 (7)0.0000 (6)
C170.0781 (11)0.0663 (11)0.0376 (8)0.0233 (9)0.0260 (7)0.0047 (7)
C180.0695 (10)0.0707 (12)0.0367 (8)0.0261 (9)0.0024 (7)0.0136 (8)
C190.0506 (9)0.0592 (10)0.0594 (9)0.0021 (8)0.0024 (7)0.0211 (8)
C200.0455 (8)0.0510 (9)0.0461 (7)0.0003 (7)0.0136 (6)0.0050 (7)
Geometric parameters (Å, º) top
O1—C11.421 (2)C15—C201.374 (2)
O1—C21.3616 (18)C16—C171.3842 (19)
N1—C81.3835 (17)C17—C181.363 (3)
N1—C141.3859 (17)C18—C191.371 (2)
N1—C151.4349 (15)C19—C201.383 (2)
N2—C81.3126 (16)C1—H1A0.9599
N2—C91.3868 (18)C1—H1B0.9599
C2—C31.387 (2)C1—H1C0.9600
C2—C71.380 (2)C3—H30.9301
C3—C41.371 (2)C4—H40.9299
C4—C51.3930 (18)C6—H60.9300
C5—C61.383 (2)C7—H70.9301
C5—C81.4666 (19)C10—H100.9301
C6—C71.380 (2)C11—H110.9299
C9—C101.395 (2)C12—H120.9302
C9—C141.3962 (18)C13—H130.9301
C10—C111.369 (2)C16—H160.9298
C11—C121.394 (2)C17—H170.9299
C12—C131.374 (2)C18—H180.9301
C13—C141.384 (2)C19—H190.9297
C15—C161.3759 (19)C20—H200.9301
C1—O1—C2117.99 (13)C18—C19—C20120.33 (15)
C8—N1—C14106.60 (10)C15—C20—C19119.28 (13)
C8—N1—C15127.76 (11)O1—C1—H1A109.47
C14—N1—C15125.22 (11)O1—C1—H1B109.47
C8—N2—C9105.19 (11)O1—C1—H1C109.47
O1—C2—C3115.69 (12)H1A—C1—H1B109.48
O1—C2—C7125.03 (13)H1A—C1—H1C109.47
C3—C2—C7119.28 (13)H1B—C1—H1C109.47
C2—C3—C4120.41 (13)C2—C3—H3119.80
C3—C4—C5120.90 (13)C4—C3—H3119.80
C4—C5—C6118.05 (13)C3—C4—H4119.56
C4—C5—C8121.88 (13)C5—C4—H4119.55
C6—C5—C8120.07 (12)C5—C6—H6119.33
C5—C6—C7121.34 (13)C7—C6—H6119.33
C2—C7—C6119.99 (14)C2—C7—H7120.01
N1—C8—N2112.60 (12)C6—C7—H7120.00
N1—C8—C5122.28 (11)C9—C10—H10120.82
N2—C8—C5125.12 (12)C11—C10—H10120.81
N2—C9—C10130.33 (12)C10—C11—H11119.36
N2—C9—C14110.52 (11)C12—C11—H11119.33
C10—C9—C14119.16 (13)C11—C12—H12119.14
C9—C10—C11118.37 (13)C13—C12—H12119.12
C10—C11—C12121.31 (15)C12—C13—H13121.75
C11—C12—C13121.75 (15)C14—C13—H13121.74
C12—C13—C14116.50 (13)C15—C16—H16120.49
N1—C14—C9105.09 (12)C17—C16—H16120.46
N1—C14—C13131.99 (12)C16—C17—H17119.69
C9—C14—C13122.91 (12)C18—C17—H17119.68
N1—C15—C16119.51 (12)C17—C18—H18120.02
N1—C15—C20119.77 (11)C19—C18—H18120.00
C16—C15—C20120.72 (12)C18—C19—H19119.83
C15—C16—C17119.05 (14)C20—C19—H19119.83
C16—C17—C18120.63 (15)C15—C20—H20120.35
C17—C18—C19119.98 (14)C19—C20—H20120.37
C1—O1—C2—C3176.41 (14)C8—C5—C6—C7177.52 (13)
C1—O1—C2—C72.8 (2)C4—C5—C8—N147.29 (19)
C15—N1—C8—N2173.11 (12)C4—C5—C8—N2132.70 (15)
C14—N1—C8—C5179.73 (12)C4—C5—C6—C71.9 (2)
C8—N1—C14—C90.04 (14)C6—C5—C8—N247.9 (2)
C8—N1—C15—C16120.52 (15)C5—C6—C7—C21.0 (2)
C14—N1—C15—C1667.90 (18)C14—C9—C10—C110.3 (2)
C8—N1—C15—C2059.48 (18)C10—C9—C14—C130.6 (2)
C14—N1—C15—C20112.11 (15)N2—C9—C14—N10.19 (15)
C15—N1—C8—C56.9 (2)C10—C9—C14—N1179.49 (12)
C15—N1—C14—C9173.11 (12)N2—C9—C10—C11179.29 (14)
C8—N1—C14—C13178.74 (15)N2—C9—C14—C13179.12 (13)
C15—N1—C14—C135.7 (2)C9—C10—C11—C120.2 (2)
C14—N1—C8—N20.28 (15)C10—C11—C12—C130.3 (2)
C8—N2—C9—C10179.28 (14)C11—C12—C13—C140.5 (2)
C9—N2—C8—C5179.62 (13)C12—C13—C14—N1179.23 (14)
C9—N2—C8—N10.39 (15)C12—C13—C14—C90.6 (2)
C8—N2—C9—C140.35 (15)N1—C15—C16—C17179.30 (13)
C7—C2—C3—C42.1 (2)C16—C15—C20—C190.5 (2)
C3—C2—C7—C61.0 (2)C20—C15—C16—C170.7 (2)
O1—C2—C7—C6178.14 (13)N1—C15—C20—C19179.51 (13)
O1—C2—C3—C4177.13 (13)C15—C16—C17—C180.2 (2)
C2—C3—C4—C51.2 (2)C16—C17—C18—C190.5 (3)
C3—C4—C5—C8178.60 (13)C17—C18—C19—C200.7 (3)
C3—C4—C5—C60.8 (2)C18—C19—C20—C150.2 (2)
C6—C5—C8—N1132.09 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C2–C7 and C9–C14 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg2i0.932.863.5361 (15)130
C13—H13···Cg3ii0.932.833.4594 (16)126
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16N2O
Mr300.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.3220 (3), 7.3030 (2), 18.2450 (3)
β (°) 108.909 (1)
V3)1553.22 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.956, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
13787, 2728, 2283
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.03
No. of reflections2728
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.21

Computer programs: APEX2 (Bruker, 2008), APEX2 and SAINT (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C2–C7 and C9–C14 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg2i0.93002.86043.5361 (15)130
C13—H13···Cg3ii0.93002.82683.4594 (16)126
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
 

References

First citationBeaulieu, P. L., Bos, M., Bousquet, Y., Fazal, G., Gauthier, J., Gillard, J., Goulet, S., LaPlante, S., Poupart, M. A., Lefebvre, S., McKerche, G., Pellerin, C., Austel, V. & Kukolj, G. (2004). Bioorg. Med. Chem. Lett. 14, 119–124.  CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirayak, S., Abu Mohsen, U. & Lagri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255–260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJayabharathi, J., Thanikachalam, V., Rajendraprasath, N., Saravanan, K. & Venkatesh Perumal, M. (2012). Med. Chem. Res. 21, 1850–1860.  Web of Science CSD CrossRef CAS Google Scholar
First citationMason, J. S., Morize, I., Menard, P. R., Cheney, D. L., Hume, C. & Labaudiniere, R. F. (1999). J. Med. Chem. 42, 3251–3264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMinoura, H., Takeshita, S., Ita, M., Hirosumi, J., Mabuchi, M., Kawamura, I., Nakajima, S., Nakayama, O., Kayakiri, H., Oku, T., Ohkubo-Suzuki, A., Fukagawa, M., Kojo, H., Hanioka, K., Yamasaki, N., Imoto, T., Kobayashi, Y. & Mutoh, S. (2004). Eur. J. Pharmacol. 494, 273–281.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMorningstar, M. L., Roth, T., Farnsworth, D. W., Smith, M. K., Watson, K., Buckheit, R. W., Das, K., Zhang, W., Arnold, E. & Julias, J. G. (2007). J. Med. Chem. 50, 4003–4015.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2004). Eur. J. Pharm. Sci. 21, 115–118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, A., Chimirri, A., De Clercq, E., Maria Monforte, A., Monforte, P., Pannecouque, C. & Zappala, M. (2003). Il Farmaco, 58, 259–263.  CrossRef PubMed Google Scholar
First citationRoth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, J. R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomei, L., Altamura, S., Bartholomew, L., Biroccio, A., Ceccacci, A., Pacini, L., Narjes, F., Gennari, N., Bisbocci, M., Incitti, I., Orsatti, L., Harper, S., Stansfield, I., Rowley, M., De Francesco, R. & Migliaccio, G. (2003). J. Virol. 77, 13225–13231.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o269-o270
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds