organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o213-o214

Bis(4-meth­­oxy­benzyl­ammonium) di­hydrogen diphosphate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud, University, Riyadh, Saudi Arabia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn

(Received 27 November 2012; accepted 21 December 2012; online 9 January 2013)

In the title compound, 2C8H12NO+·H2P2O72−, the linked PO4 groups of the diphosphate anion are almost eclipsed and the P—O—P angle is 134.45 (7)°. In the crystal, infinite ribbons of H2P2O72− anions propagate in [100], being linked by strong O—H⋯O hydrogen bonds. The 4-meth­oxy­benzyl­ammonium cations bond to the diphosphate chains by N—H⋯O and C—H⋯O links, and are themselves linked by C—H⋯π inter­actions.

Related literature

For background to diphosphates, see: Ballarini et al. (2006[Ballarini, N., Cavani, F., Cortelli, C., Ligi, S., Pierelli, F., Trifiro, F., Fumagalli, C., Mazzoni, G. & Monti, T. (2006). Top. Catal. 38, 147-156.]); For inter­molecular inter­actions, see: Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]); Tiekink & Zukerman-Schpector (2012[Tiekink, E. R. T. & Zukerman-Schpector, J. (2012). In Importance of π-Interactions in Crystal Engineering, 1st ed. London: Wiley.]). For a related structure, see: Ahmed et al. (2006[Ahmed, S., Samah, A. & Mohamed, R. (2006). Acta Cryst. E62, m1796-m1798.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H12NO+·H2P2O72−

  • Mr = 452.33

  • Triclinic, [P \overline 1]

  • a = 9.184 (3) Å

  • b = 6.737 (4) Å

  • c = 17.066 (2) Å

  • α = 97.61 (2)°

  • β = 91.39 (4)°

  • γ = 85.72 (3)°

  • V = 1043.6 (7) Å3

  • Z = 2

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.17 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 12631 measured reflections

  • 10225 independent reflections

  • 5553 reflections with I > 2σ(I)

  • Rint = 0.026

  • 2 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.143

  • S = 0.98

  • 10225 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6i 0.82 1.82 2.6347 (18) 176
O5—H5⋯O2ii 0.82 1.75 2.5535 (18) 164
N1—H1A⋯O3iii 0.89 2.09 2.941 (2) 160
N1—H1B⋯O3ii 0.89 1.97 2.857 (2) 172
N1—H1C⋯O2 0.89 2.03 2.915 (2) 173
N2—H2B⋯O6 0.89 2.35 3.156 (2) 151
N2—H2A⋯O6iv 0.89 1.89 2.734 (2) 157
N2—H2B⋯O4 0.89 2.38 3.150 (2) 145
N2—H2C⋯O7i 0.89 1.85 2.724 (2) 168
C1—H1D⋯O7ii 0.97 2.49 3.242 (3) 134
C7—H7⋯O2 0.93 2.54 3.195 (2) 127
C16—H16CCg1v 0.96 2.93 3.73 (7) 142
C8—H8ACg2 0.96 2.97 3.72 (7) 137
C1—H1DCg2vi 0.97 2.90 3.54 (7) 124
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) x+1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Diphosphates are known to play an important role as catalysts (Ballarini et al., 2006). As part of our studies in this area, we report the synthesis and the crystal structure of the title compound, (I) (Fig. 1).

In this structure, [H2P2O7]2- species are connected by means of strong hydrogen bonds of type O—H···O with O···O distances less than 2.7 Å, limit as recommended by Brown (1976). This infinite sequence forms ribbons extending along a axis.

Except the H atoms, the P2O7 group, has an eclipsed conformation evidenced by the torsion angle O3—P1—P2—O7 = -1.5°. As usually observed for diphosphate groups (Ahmed et al., 2006), there are three different types of P—O distances, the longest one corresponds to the bridging oxygen atom with average value d(P—O4) = 1,608 (1) Å, the intermediate ones are the P—OH bonding [d(P1—O1) = 1.566 (1) Å, d(P2—O5) = 1.552 (1) Å], whereas the shortest ones, spreading between 1.474 (1) Å and 1.503 (1) Å are related to the external oxygen atoms. The average values of the P—O distances and O—P—O angles are 1,536 (1) Å and 109,24 (7)° respectively.

The organic cations linked by C–H···π interaction (Tiekink and Zukerman-Schpector, 2012) into chains along a axis, are anchored onto successive inorganic ribbons [H2P2O7]n2n- through hydrogen bonds of type N—H···O and C—H···O with donor-acceptor distances varying between 2.724 (2) Å and 3.156 (2) Å.

It should be noticed that another diphosphate with the same organic molecule, [4-(OCH3)C6H4CH2NH3]4P2O7.6H2O, has been reported by Ahmed et al. (2006). Structure of this hydrated diphosphate is different from that of the non-hydrated one described here. This difference may be explained by the role of water of crystallization as directing structure agent.

Related literature top

For background to diphosphates, see: Ballarini et al. (2006); For intermolecular interactions, see: Brown (1976); Tiekink & Zukerman-Schpector (2012). For a related structure, see: Ahmed et al. (2006).

Experimental top

An aqueous solution of diphosphoric acid H4P2O7 was first obtained by passing a solution of Na4P2O7 (3 g, 11.2 mmol), through an ion exchange resin (Amberlite IR 120) in its H-state. To 20 ml of this acidic solution (1.5 mmol) cooled to 5°C, a solution of 4-methoxybenzylamine (3 mmol) in ethanol (3 mL),was added drop by drop with slow stirring. The obtained solution was slowly evapored at room temperature until crystallization of colourless prisms.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å and N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C or N).The water H atoms were refined using restraints [O— H = 0.85 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are represented as dashed lines.
[Figure 2] Fig. 2. Perspective view of the packing of (I). The H-atoms not involved in H-bonding are omitted.
Bis(4-methoxybenzylammonium) dihydrogen diphosphate top
Crystal data top
2C8H12NO+·H2O7P22Z = 2
Mr = 452.33F(000) = 476
Triclinic, P1Dx = 1.439 Mg m3
a = 9.184 (3) ÅAg Kα radiation, λ = 0.56087 Å
b = 6.737 (4) ÅCell parameters from 25 reflections
c = 17.066 (2) Åθ = 9–11°
α = 97.61 (2)°µ = 0.14 mm1
β = 91.39 (4)°T = 296 K
γ = 85.72 (3)°Prism, colorless
V = 1043.6 (7) Å30.30 × 0.25 × 0.17 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.0°
Graphite monochromatorh = 1515
non–profiled ω scansk = 1111
12631 measured reflectionsl = 428
10225 independent reflections2 standard reflections every 120 min
5553 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0674P)2]
where P = (Fo2 + 2Fc2)/3
10225 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
2C8H12NO+·H2O7P22γ = 85.72 (3)°
Mr = 452.33V = 1043.6 (7) Å3
Triclinic, P1Z = 2
a = 9.184 (3) ÅAg Kα radiation, λ = 0.56087 Å
b = 6.737 (4) ŵ = 0.14 mm1
c = 17.066 (2) ÅT = 296 K
α = 97.61 (2)°0.30 × 0.25 × 0.17 mm
β = 91.39 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
12631 measured reflections2 standard reflections every 120 min
10225 independent reflections intensity decay: none
5553 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.98Δρmax = 0.38 e Å3
10225 reflectionsΔρmin = 0.51 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.77375 (4)0.16843 (5)0.42717 (2)0.02283 (9)
P20.71445 (4)0.14070 (5)0.56549 (2)0.02389 (9)
O10.65658 (11)0.21336 (18)0.36026 (7)0.0321 (2)
H10.58150.24280.37960.048*
O20.90518 (11)0.09884 (18)0.39193 (7)0.0347 (3)
O30.80044 (12)0.33687 (15)0.47500 (7)0.0309 (2)
O40.69102 (12)0.02214 (16)0.47816 (7)0.0327 (3)
O50.85320 (11)0.25556 (17)0.55945 (8)0.0361 (3)
H50.92180.20060.58190.054*
O60.58394 (11)0.29007 (16)0.57185 (7)0.0341 (3)
O70.73241 (13)0.00463 (17)0.62306 (7)0.0359 (3)
O80.65303 (18)0.1234 (3)0.06727 (9)0.0624 (4)
O90.14301 (19)0.4144 (3)0.07212 (10)0.0663 (5)
N10.98380 (14)0.31496 (19)0.40133 (8)0.0301 (3)
H1A0.91100.40560.41650.045*
H1B1.05680.32660.43650.045*
H1C0.95230.19230.39800.045*
N20.45655 (14)0.30089 (19)0.39890 (8)0.0323 (3)
H2A0.41830.42640.41060.048*
H2B0.51810.27070.43740.048*
H2C0.38540.21710.39410.048*
C11.03636 (18)0.3492 (3)0.32239 (10)0.0365 (4)
H1D1.12770.26970.31130.044*
H1E1.05540.48950.32420.044*
C20.92910 (18)0.2956 (3)0.25659 (10)0.0327 (3)
C30.8548 (2)0.4405 (3)0.21786 (12)0.0419 (4)
H30.86760.57510.23480.050*
C40.7619 (2)0.3905 (3)0.15447 (12)0.0473 (5)
H40.71440.49060.12860.057*
C50.7401 (2)0.1919 (3)0.12986 (11)0.0443 (4)
C60.8102 (3)0.0456 (3)0.16945 (12)0.0507 (5)
H60.79300.08850.15430.061*
C70.9056 (2)0.0964 (3)0.23126 (11)0.0447 (4)
H70.95480.00410.25620.054*
C80.5843 (3)0.2674 (5)0.02229 (15)0.0744 (8)
H8A0.51980.35910.05550.112*
H8B0.52930.20040.02050.112*
H8C0.65720.34020.00150.112*
C90.53647 (18)0.2817 (3)0.32319 (11)0.0395 (4)
H9A0.58680.14920.31330.047*
H9B0.60910.38010.32710.047*
C100.43368 (18)0.3132 (3)0.25591 (11)0.0360 (4)
C110.3878 (2)0.5050 (3)0.23911 (12)0.0465 (5)
H110.42360.61630.26950.056*
C120.2903 (3)0.5326 (3)0.17823 (13)0.0526 (5)
H120.26060.66200.16820.063*
C130.2364 (2)0.3700 (3)0.13206 (12)0.0455 (4)
C140.2793 (2)0.1798 (3)0.14782 (12)0.0491 (5)
H140.24330.06920.11710.059*
C150.3766 (2)0.1526 (3)0.20981 (12)0.0445 (4)
H150.40380.02310.22050.053*
C160.0827 (3)0.2508 (4)0.02453 (16)0.0760 (8)
H16A0.16010.16150.00040.114*
H16B0.02100.30020.01590.114*
H16C0.02630.17990.05690.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01629 (14)0.02364 (17)0.0285 (2)0.00016 (12)0.00173 (13)0.00439 (14)
P20.01804 (15)0.02244 (16)0.0311 (2)0.00183 (12)0.00096 (14)0.00320 (14)
O10.0211 (5)0.0425 (6)0.0319 (6)0.0046 (4)0.0042 (4)0.0013 (5)
O20.0191 (4)0.0422 (6)0.0458 (7)0.0045 (4)0.0003 (5)0.0157 (5)
O30.0299 (5)0.0262 (5)0.0373 (7)0.0021 (4)0.0002 (5)0.0096 (5)
O40.0319 (5)0.0297 (5)0.0337 (6)0.0072 (4)0.0070 (5)0.0003 (5)
O50.0195 (5)0.0337 (6)0.0582 (8)0.0066 (4)0.0068 (5)0.0160 (5)
O60.0200 (4)0.0297 (5)0.0504 (8)0.0015 (4)0.0020 (5)0.0009 (5)
O70.0371 (6)0.0362 (6)0.0371 (7)0.0085 (5)0.0051 (5)0.0124 (5)
O80.0640 (10)0.0773 (11)0.0443 (9)0.0109 (8)0.0196 (8)0.0029 (8)
O90.0745 (11)0.0750 (11)0.0490 (10)0.0068 (9)0.0228 (8)0.0100 (8)
N10.0280 (6)0.0303 (6)0.0313 (7)0.0010 (5)0.0034 (5)0.0038 (5)
N20.0325 (6)0.0291 (6)0.0364 (8)0.0037 (5)0.0072 (6)0.0090 (6)
C10.0319 (8)0.0474 (9)0.0313 (9)0.0057 (7)0.0016 (7)0.0071 (7)
C20.0343 (8)0.0377 (8)0.0265 (8)0.0014 (6)0.0024 (6)0.0059 (7)
C30.0450 (10)0.0372 (9)0.0432 (11)0.0004 (7)0.0025 (8)0.0070 (8)
C40.0459 (10)0.0512 (11)0.0445 (12)0.0066 (8)0.0079 (9)0.0121 (9)
C50.0417 (9)0.0587 (12)0.0319 (10)0.0050 (8)0.0020 (8)0.0037 (9)
C60.0744 (14)0.0412 (10)0.0369 (11)0.0123 (9)0.0061 (10)0.0036 (8)
C70.0614 (12)0.0396 (9)0.0331 (10)0.0004 (8)0.0048 (9)0.0085 (8)
C80.0625 (15)0.109 (2)0.0515 (15)0.0036 (14)0.0244 (12)0.0165 (15)
C90.0296 (7)0.0436 (9)0.0453 (11)0.0017 (7)0.0023 (7)0.0077 (8)
C100.0348 (8)0.0395 (8)0.0341 (9)0.0020 (7)0.0033 (7)0.0067 (7)
C110.0615 (12)0.0386 (9)0.0396 (11)0.0078 (8)0.0079 (9)0.0058 (8)
C120.0701 (14)0.0441 (10)0.0449 (12)0.0030 (10)0.0107 (10)0.0126 (9)
C130.0470 (10)0.0570 (11)0.0328 (10)0.0039 (9)0.0013 (8)0.0074 (9)
C140.0541 (11)0.0489 (11)0.0431 (12)0.0122 (9)0.0006 (9)0.0028 (9)
C150.0494 (10)0.0379 (9)0.0459 (12)0.0026 (8)0.0020 (9)0.0043 (8)
C160.0716 (17)0.095 (2)0.0559 (16)0.0066 (15)0.0233 (13)0.0054 (14)
Geometric parameters (Å, º) top
P1—O31.4860 (13)C3—C41.383 (3)
P1—O21.4942 (12)C3—H30.9300
P1—O11.5656 (13)C4—C51.376 (3)
P1—O41.6042 (13)C4—H40.9300
P2—O71.4744 (13)C5—C61.380 (3)
P2—O61.5028 (12)C6—C71.379 (3)
P2—O51.5517 (12)C6—H60.9300
P2—O41.6126 (12)C7—H70.9300
O1—H10.8200C8—H8A0.9600
O5—H50.8200C8—H8B0.9600
O8—C51.370 (2)C8—H8C0.9600
O8—C81.418 (3)C9—C101.495 (3)
O9—C131.368 (2)C9—H9A0.9700
O9—C161.419 (3)C9—H9B0.9700
N1—C11.494 (2)C10—C151.380 (3)
N1—H1A0.8900C10—C111.393 (3)
N1—H1B0.8900C11—C121.377 (3)
N1—H1C0.8900C11—H110.9300
N2—C91.487 (2)C12—C131.378 (3)
N2—H2A0.8900C12—H120.9300
N2—H2B0.8900C13—C141.371 (3)
N2—H2C0.8900C14—C151.390 (3)
C1—C21.501 (2)C14—H140.9300
C1—H1D0.9700C15—H150.9300
C1—H1E0.9700C16—H16A0.9600
C2—C31.380 (2)C16—H16B0.9600
C2—C71.386 (3)C16—H16C0.9600
O3—P1—O2116.25 (7)O8—C5—C6115.48 (19)
O3—P1—O1112.16 (7)C4—C5—C6119.39 (18)
O2—P1—O1108.81 (7)C7—C6—C5120.56 (19)
O3—P1—O4110.72 (7)C7—C6—H6119.7
O2—P1—O4107.92 (8)C5—C6—H6119.7
O1—P1—O499.63 (6)C6—C7—C2120.72 (18)
O7—P2—O6118.73 (8)C6—C7—H7119.6
O7—P2—O5112.51 (7)C2—C7—H7119.6
O6—P2—O5108.43 (7)O8—C8—H8A109.5
O7—P2—O4109.41 (7)O8—C8—H8B109.5
O6—P2—O4101.55 (7)H8A—C8—H8B109.5
O5—P2—O4104.81 (8)O8—C8—H8C109.5
P1—O1—H1109.5H8A—C8—H8C109.5
P1—O4—P2134.45 (7)H8B—C8—H8C109.5
P2—O5—H5109.5N2—C9—C10110.84 (14)
C5—O8—C8117.59 (19)N2—C9—H9A109.5
C13—O9—C16117.15 (19)C10—C9—H9A109.5
C1—N1—H1A109.5N2—C9—H9B109.5
C1—N1—H1B109.5C10—C9—H9B109.5
H1A—N1—H1B109.5H9A—C9—H9B108.1
C1—N1—H1C109.5C15—C10—C11117.43 (18)
H1A—N1—H1C109.5C15—C10—C9120.98 (17)
H1B—N1—H1C109.5C11—C10—C9121.55 (17)
C9—N2—H2A109.5C12—C11—C10121.12 (18)
C9—N2—H2B109.5C12—C11—H11119.4
H2A—N2—H2B109.5C10—C11—H11119.4
C9—N2—H2C109.5C11—C12—C13120.5 (2)
H2A—N2—H2C109.5C11—C12—H12119.8
H2B—N2—H2C109.5C13—C12—H12119.8
N1—C1—C2112.96 (14)O9—C13—C14124.96 (19)
N1—C1—H1D109.0O9—C13—C12115.6 (2)
C2—C1—H1D109.0C14—C13—C12119.42 (19)
N1—C1—H1E109.0C13—C14—C15119.92 (18)
C2—C1—H1E109.0C13—C14—H14120.0
H1D—C1—H1E107.8C15—C14—H14120.0
C3—C2—C7117.96 (17)C10—C15—C14121.60 (19)
C3—C2—C1121.67 (16)C10—C15—H15119.2
C7—C2—C1120.33 (16)C14—C15—H15119.2
C2—C3—C4121.69 (18)O9—C16—H16A109.5
C2—C3—H3119.2O9—C16—H16B109.5
C4—C3—H3119.2H16A—C16—H16B109.5
C5—C4—C3119.64 (18)O9—C16—H16C109.5
C5—C4—H4120.2H16A—C16—H16C109.5
C3—C4—H4120.2H16B—C16—H16C109.5
O8—C5—C4125.13 (19)
O3—P1—O4—P247.66 (13)C5—C6—C7—C22.2 (3)
O2—P1—O4—P280.60 (12)C3—C2—C7—C60.3 (3)
O1—P1—O4—P2165.91 (11)C1—C2—C7—C6178.26 (18)
O7—P2—O4—P148.92 (13)N2—C9—C10—C1594.9 (2)
O6—P2—O4—P1175.23 (10)N2—C9—C10—C1182.7 (2)
O5—P2—O4—P171.95 (12)C15—C10—C11—C120.7 (3)
N1—C1—C2—C3110.56 (19)C9—C10—C11—C12178.38 (19)
N1—C1—C2—C771.6 (2)C10—C11—C12—C130.4 (4)
C7—C2—C3—C41.4 (3)C16—O9—C13—C142.2 (3)
C1—C2—C3—C4176.49 (18)C16—O9—C13—C12178.6 (2)
C2—C3—C4—C51.2 (3)C11—C12—C13—O9178.5 (2)
C8—O8—C5—C42.6 (3)C11—C12—C13—C140.8 (3)
C8—O8—C5—C6177.0 (2)O9—C13—C14—C15179.08 (19)
C3—C4—C5—O8178.81 (19)C12—C13—C14—C150.1 (3)
C3—C4—C5—C60.7 (3)C11—C10—C15—C141.3 (3)
O8—C5—C6—C7177.14 (19)C9—C10—C15—C14179.06 (18)
C4—C5—C6—C72.4 (3)C13—C14—C15—C100.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.821.822.6347 (18)176
O5—H5···O2ii0.821.752.5535 (18)164
N1—H1A···O3iii0.892.092.941 (2)160
N1—H1B···O3ii0.891.972.857 (2)172
N1—H1C···O20.892.032.915 (2)173
N2—H2B···O60.892.353.156 (2)151
N2—H2A···O6iv0.891.892.734 (2)157
N2—H2B···O40.892.383.150 (2)145
N2—H2C···O7i0.891.852.724 (2)168
C1—H1D···O7ii0.972.493.242 (3)134
C7—H7···O20.932.543.195 (2)127
C16—H16C···Cg1v0.962.933.73 (7)142
C8—H8A···Cg20.962.973.72 (7)137
C1—H1D···Cg2vi0.972.903.54 (7)124
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C8H12NO+·H2O7P22
Mr452.33
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.184 (3), 6.737 (4), 17.066 (2)
α, β, γ (°)97.61 (2), 91.39 (4), 85.72 (3)
V3)1043.6 (7)
Z2
Radiation typeAg Kα, λ = 0.56087 Å
µ (mm1)0.14
Crystal size (mm)0.30 × 0.25 × 0.17
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12631, 10225, 5553
Rint0.026
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.143, 0.98
No. of reflections10225
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.51

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.821.822.6347 (18)176
O5—H5···O2ii0.821.752.5535 (18)164
N1—H1A···O3iii0.892.092.941 (2)160
N1—H1B···O3ii0.891.972.857 (2)172
N1—H1C···O20.892.032.915 (2)173
N2—H2B···O60.892.353.156 (2)151
N2—H2A···O6iv0.891.892.734 (2)157
N2—H2B···O40.892.383.150 (2)145
N2—H2C···O7i0.891.852.724 (2)168
C1—H1D···O7ii0.972.493.242 (3)134
C7—H7···O20.932.543.195 (2)127
C16—H16C···Cg1v0.962.9263.73 (7)142
C8—H8A···Cg20.962.9653.72 (7)137
C1—H1D···Cg2vi0.972.9033.54 (7)124
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+1, y, z.
 

Acknowledgements

This work was supported by the Tunisian Carthage University and the Deanship of Scientific Research at King Saud University through the Research Group Project No. RGP-VPP-089.

References

First citationAhmed, S., Samah, A. & Mohamed, R. (2006). Acta Cryst. E62, m1796–m1798.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBallarini, N., Cavani, F., Cortelli, C., Ligi, S., Pierelli, F., Trifiro, F., Fumagalli, C., Mazzoni, G. & Monti, T. (2006). Top. Catal. 38, 147–156.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2012). In Importance of π-Interactions in Crystal Engineering, 1st ed. London: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o213-o214
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds