organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[5-(2-Fluoro­phen­yl)-3-iso­butyl-1H-pyrazol-1-yl]benzoic acid

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, cSoild State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 India, and dDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 7 December 2012; accepted 13 December 2012; online 4 January 2013)

In the title compound, C20H19FN2O2, the dihedral angle between the aromatic rings is 62.1 (1)°, and those between the pyrazole ring and the fluoro­benzene and benzoic acid rings are 52.1 (1) and 53.1 (1)°, respectively. In the crystal, mol­ecules are linked into [010] C(7) chains by O—H⋯N hydrogen bonds.

Related literature

For background to pyrazole derivatives and their uses, see: Ramaiah et al. (1999[Ramaiah, K., Grossert, J. S., Hooper, D. L., Dubey, P. K. & Ramanatham, J. (1999). J. Indian Chem. Soc. 76, 140-144.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19FN2O2

  • Mr = 338.37

  • Monoclinic, P 21 /c

  • a = 9.7732 (14) Å

  • b = 12.2671 (16) Å

  • c = 15.257 (2) Å

  • β = 106.836 (5)°

  • V = 1750.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART X2S CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.980

  • 16424 measured reflections

  • 3094 independent reflections

  • 2517 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 0.98

  • 3094 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.82 1.93 2.7118 (16) 159
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The pyrazole nucleus is an important structure in numerous natural and synthetic compounds and in medicinal chemistry (e.g. Ramaiah et al., 1999). As part of our studies in this area, the title compound was synthesized and its crystal structure determined.

In the title compound, C20H19FN2O2, the dihedral angle between the aromatic rings is 62.1 (1)°, and those between the pyrazole ring and the aromatic ring containing fluorine atom and the pyrazole ring and the aromatic ring containing carboxylic group are 52.1 (1)° and 53.1 (1)°, respectively. In the crystal structure, the molecules are linked into C(7) chains through O—H···N H-bonds.

Related literature top

For background to pyrazole derivatives and their uses, see: Ramaiah et al. (1999).

Experimental top

1-(2-Fluorophenyl)-5-methyl-hexane-1,3-dione (0.01 mmol) and 2-hydrazinobenzoic acid (0.01 mmol) were taken in 15 ml ethanol and the mixture was heated for 12 h. The reaction was monitored by TLC. The solvent was removed by vacuum. The crude mass obtained was purified by column chromatography.

Colourless prisms were obtained by slow evaporation of the solution of the compound in a mixture of dichloromethane and methanol (9:1).

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93- 0.97 Å. All C—H atoms were refined with isotropic displacement parameters (set to 1.2–1.5 times of the Ueq of the parent atom) and O—H atoms were refined freely

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound.
2-[5-(2-Fluorophenyl)-3-isobutyl-1H-pyrazol-1-yl]benzoic acid top
Crystal data top
C20H19FN2O2Prism
Mr = 338.37Dx = 1.284 Mg m3
Monoclinic, P21/cMelting point: 514 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.7732 (14) ÅCell parameters from 228 reflections
b = 12.2671 (16) Åθ = 2.2–25°
c = 15.257 (2) ŵ = 0.09 mm1
β = 106.836 (5)°T = 293 K
V = 1750.7 (4) Å3Prism, colourless
Z = 40.28 × 0.26 × 0.22 mm
F(000) = 712
Data collection top
Bruker SMART X2S CCD
diffractometer
3094 independent reflections
Radiation source: fine-focus sealed tube2517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 1.20 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1413
Tmin = 0.975, Tmax = 0.980l = 1318
16424 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.3164P]
where P = (Fo2 + 2Fc2)/3
3094 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
0 constraints
Crystal data top
C20H19FN2O2V = 1750.7 (4) Å3
Mr = 338.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7732 (14) ŵ = 0.09 mm1
b = 12.2671 (16) ÅT = 293 K
c = 15.257 (2) Å0.28 × 0.26 × 0.22 mm
β = 106.836 (5)°
Data collection top
Bruker SMART X2S CCD
diffractometer
3094 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2517 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.980Rint = 0.042
16424 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.98Δρmax = 0.23 e Å3
3094 reflectionsΔρmin = 0.21 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67611 (17)0.18408 (13)0.80869 (11)0.0433 (4)
C20.57943 (19)0.10016 (18)0.78124 (12)0.0593 (5)
H20.48180.11410.76110.071*
C30.6306 (2)0.00440 (16)0.78423 (13)0.0650 (6)
H30.56710.06210.76580.078*
C40.7749 (2)0.02427 (14)0.81427 (13)0.0610 (5)
H40.80880.09530.81600.073*
C50.86956 (18)0.06077 (13)0.84190 (12)0.0477 (4)
H50.96710.04630.86280.057*
C60.82182 (15)0.16797 (12)0.83906 (9)0.0357 (3)
C70.92409 (15)0.25727 (11)0.87236 (10)0.0340 (3)
C81.02695 (16)0.26669 (12)0.95519 (10)0.0392 (4)
H81.04850.21591.00240.047*
C91.09279 (16)0.36759 (12)0.95454 (10)0.0378 (4)
C101.21498 (18)0.41685 (14)1.02714 (11)0.0511 (4)
H10A1.19610.40951.08590.061*
H10B1.21950.49411.01470.061*
C111.36062 (19)0.36548 (15)1.03400 (12)0.0583 (5)
H111.43270.40991.07730.070*
C121.3732 (2)0.25065 (17)1.07315 (17)0.0761 (6)
H12A1.31150.20261.02950.114*
H12B1.34580.25081.12870.114*
H12C1.47030.22611.08590.114*
C131.3945 (3)0.3702 (3)0.94334 (17)0.0942 (8)
H13A1.33130.32240.90030.141*
H13B1.49160.34780.95190.141*
H13C1.38210.44350.92030.141*
C140.85515 (14)0.37883 (11)0.73233 (9)0.0314 (3)
C150.78672 (16)0.47868 (12)0.71577 (10)0.0393 (4)
H150.79000.52550.76430.047*
C160.71348 (18)0.50905 (13)0.62735 (11)0.0461 (4)
H160.67070.57740.61640.055*
C170.70354 (17)0.43865 (14)0.55532 (11)0.0484 (4)
H170.65290.45880.49600.058*
C180.76933 (17)0.33819 (13)0.57190 (10)0.0426 (4)
H180.76020.28980.52360.051*
C190.84933 (15)0.30803 (11)0.65991 (10)0.0332 (3)
C200.93555 (17)0.20534 (11)0.67171 (10)0.0372 (4)
N10.93084 (12)0.35052 (9)0.82486 (8)0.0327 (3)
N21.03412 (13)0.41900 (9)0.87541 (8)0.0376 (3)
O10.85946 (13)0.12237 (8)0.62925 (8)0.0525 (3)
H10.90970.06760.63700.079*
O21.06073 (13)0.20202 (9)0.71308 (9)0.0558 (3)
F10.62576 (11)0.28686 (9)0.80786 (9)0.0691 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (9)0.0438 (9)0.0405 (8)0.0036 (7)0.0111 (7)0.0071 (7)
C20.0467 (9)0.0770 (14)0.0486 (10)0.0214 (9)0.0049 (8)0.0101 (9)
C30.0784 (14)0.0570 (12)0.0561 (11)0.0366 (11)0.0141 (10)0.0011 (9)
C40.0837 (14)0.0359 (10)0.0670 (12)0.0172 (9)0.0278 (10)0.0013 (8)
C50.0543 (10)0.0357 (9)0.0553 (10)0.0059 (7)0.0194 (8)0.0044 (7)
C60.0424 (8)0.0345 (8)0.0312 (7)0.0066 (6)0.0123 (6)0.0035 (6)
C70.0395 (7)0.0287 (7)0.0352 (8)0.0021 (6)0.0131 (6)0.0026 (6)
C80.0459 (8)0.0357 (8)0.0341 (8)0.0034 (7)0.0084 (6)0.0070 (6)
C90.0454 (8)0.0327 (8)0.0326 (7)0.0025 (6)0.0071 (6)0.0008 (6)
C100.0680 (11)0.0402 (9)0.0363 (8)0.0133 (8)0.0013 (8)0.0011 (7)
C110.0505 (10)0.0629 (12)0.0505 (10)0.0212 (9)0.0026 (8)0.0073 (9)
C120.0611 (12)0.0631 (13)0.0900 (16)0.0011 (10)0.0006 (11)0.0129 (11)
C130.0682 (14)0.141 (2)0.0767 (15)0.0206 (15)0.0256 (12)0.0082 (15)
C140.0346 (7)0.0262 (7)0.0332 (7)0.0011 (6)0.0095 (6)0.0012 (6)
C150.0470 (8)0.0290 (8)0.0410 (8)0.0044 (6)0.0114 (7)0.0041 (6)
C160.0530 (9)0.0337 (8)0.0495 (9)0.0118 (7)0.0116 (7)0.0075 (7)
C170.0515 (9)0.0511 (10)0.0376 (8)0.0099 (8)0.0048 (7)0.0091 (7)
C180.0515 (9)0.0414 (9)0.0331 (8)0.0039 (7)0.0092 (7)0.0032 (7)
C190.0376 (7)0.0275 (7)0.0352 (7)0.0005 (6)0.0117 (6)0.0016 (6)
C200.0500 (9)0.0292 (8)0.0336 (7)0.0022 (7)0.0140 (7)0.0009 (6)
N10.0405 (6)0.0240 (6)0.0314 (6)0.0026 (5)0.0070 (5)0.0009 (5)
N20.0484 (7)0.0258 (6)0.0349 (7)0.0045 (5)0.0062 (5)0.0029 (5)
O10.0647 (7)0.0282 (6)0.0586 (7)0.0048 (5)0.0083 (6)0.0092 (5)
O20.0485 (7)0.0389 (7)0.0751 (9)0.0092 (5)0.0103 (6)0.0032 (6)
F10.0516 (6)0.0598 (7)0.0958 (9)0.0099 (5)0.0212 (6)0.0115 (6)
Geometric parameters (Å, º) top
C1—F11.3522 (19)C11—H110.9800
C1—C61.378 (2)C12—H12A0.9600
C1—C21.378 (2)C12—H12B0.9600
C2—C31.373 (3)C12—H12C0.9600
C2—H20.9300C13—H13A0.9600
C3—C41.373 (3)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.377 (2)C14—C151.3832 (19)
C4—H40.9300C14—C191.394 (2)
C5—C61.392 (2)C14—N11.4338 (17)
C5—H50.9300C15—C161.383 (2)
C6—C71.471 (2)C15—H150.9300
C7—N11.3659 (18)C16—C171.379 (2)
C7—C81.373 (2)C16—H160.9300
C8—C91.396 (2)C17—C181.379 (2)
C8—H80.9300C17—H170.9300
C9—N21.3352 (18)C18—C191.394 (2)
C9—C101.501 (2)C18—H180.9300
C10—C111.532 (3)C19—C201.497 (2)
C10—H10A0.9700C20—O21.2039 (19)
C10—H10B0.9700C20—O11.3151 (18)
C11—C131.514 (3)N1—N21.3669 (16)
C11—C121.521 (3)O1—H10.8200
F1—C1—C6118.34 (14)C11—C12—H12A109.5
F1—C1—C2118.56 (15)C11—C12—H12B109.5
C6—C1—C2123.09 (16)H12A—C12—H12B109.5
C3—C2—C1118.49 (17)C11—C12—H12C109.5
C3—C2—H2120.8H12A—C12—H12C109.5
C1—C2—H2120.8H12B—C12—H12C109.5
C2—C3—C4120.41 (16)C11—C13—H13A109.5
C2—C3—H3119.8C11—C13—H13B109.5
C4—C3—H3119.8H13A—C13—H13B109.5
C3—C4—C5120.13 (18)C11—C13—H13C109.5
C3—C4—H4119.9H13A—C13—H13C109.5
C5—C4—H4119.9H13B—C13—H13C109.5
C4—C5—C6121.12 (17)C15—C14—C19120.03 (13)
C4—C5—H5119.4C15—C14—N1118.60 (12)
C6—C5—H5119.4C19—C14—N1121.37 (12)
C1—C6—C5116.77 (14)C16—C15—C14120.21 (14)
C1—C6—C7122.82 (14)C16—C15—H15119.9
C5—C6—C7120.32 (14)C14—C15—H15119.9
N1—C7—C8106.43 (12)C17—C16—C15120.39 (14)
N1—C7—C6124.95 (12)C17—C16—H16119.8
C8—C7—C6128.60 (13)C15—C16—H16119.8
C7—C8—C9106.51 (13)C16—C17—C18119.48 (14)
C7—C8—H8126.7C16—C17—H17120.3
C9—C8—H8126.7C18—C17—H17120.3
N2—C9—C8110.30 (12)C17—C18—C19121.03 (14)
N2—C9—C10121.24 (13)C17—C18—H18119.5
C8—C9—C10128.43 (13)C19—C18—H18119.5
C9—C10—C11114.19 (15)C14—C19—C18118.75 (13)
C9—C10—H10A108.7C14—C19—C20122.46 (13)
C11—C10—H10A108.7C18—C19—C20118.58 (13)
C9—C10—H10B108.7O2—C20—O1125.16 (13)
C11—C10—H10B108.7O2—C20—C19122.86 (13)
H10A—C10—H10B107.6O1—C20—C19111.94 (13)
C13—C11—C12112.3 (2)C7—N1—N2110.89 (11)
C13—C11—C10111.49 (16)C7—N1—C14129.41 (11)
C12—C11—C10112.06 (16)N2—N1—C14119.52 (11)
C13—C11—H11106.8C9—N2—N1105.87 (11)
C12—C11—H11106.8C20—O1—H1109.5
C10—C11—H11106.8
F1—C1—C2—C3178.45 (15)C14—C15—C16—C172.4 (2)
C6—C1—C2—C30.0 (3)C15—C16—C17—C181.1 (3)
C1—C2—C3—C40.2 (3)C16—C17—C18—C192.0 (3)
C2—C3—C4—C50.2 (3)C15—C14—C19—C182.4 (2)
C3—C4—C5—C60.8 (3)N1—C14—C19—C18177.45 (13)
F1—C1—C6—C5177.89 (14)C15—C14—C19—C20172.29 (13)
C2—C1—C6—C50.5 (2)N1—C14—C19—C207.9 (2)
F1—C1—C6—C71.4 (2)C17—C18—C19—C143.7 (2)
C2—C1—C6—C7177.03 (15)C17—C18—C19—C20171.20 (15)
C4—C5—C6—C10.9 (2)C14—C19—C20—O246.5 (2)
C4—C5—C6—C7177.51 (15)C18—C19—C20—O2128.16 (17)
C1—C6—C7—N154.0 (2)C14—C19—C20—O1135.65 (15)
C5—C6—C7—N1129.63 (16)C18—C19—C20—O149.67 (19)
C1—C6—C7—C8124.18 (18)C8—C7—N1—N20.46 (16)
C5—C6—C7—C852.2 (2)C6—C7—N1—N2178.04 (13)
N1—C7—C8—C90.22 (17)C8—C7—N1—C14174.51 (14)
C6—C7—C8—C9178.22 (14)C6—C7—N1—C147.0 (2)
C7—C8—C9—N20.10 (18)C15—C14—N1—C7130.38 (16)
C7—C8—C9—C10178.06 (16)C19—C14—N1—C749.4 (2)
N2—C9—C10—C11104.15 (18)C15—C14—N1—N255.02 (18)
C8—C9—C10—C1173.8 (2)C19—C14—N1—N2125.15 (14)
C9—C10—C11—C1356.3 (2)C8—C9—N2—N10.37 (17)
C9—C10—C11—C1270.6 (2)C10—C9—N2—N1177.94 (14)
C19—C14—C15—C160.6 (2)C7—N1—N2—C90.52 (16)
N1—C14—C15—C16179.57 (14)C14—N1—N2—C9175.02 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.821.932.7118 (16)159
Symmetry code: (i) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H19FN2O2
Mr338.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.7732 (14), 12.2671 (16), 15.257 (2)
β (°) 106.836 (5)
V3)1750.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART X2S CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.975, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
16424, 3094, 2517
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 0.98
No. of reflections3094
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.821.932.7118 (16)159
Symmetry code: (i) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, for his constant encouragement and Professor T. N. Guru Row, Soild State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his help and valuable suggestions. BSP thanks Dr H. C. Devarajegowda, Department of Physics, Yuvarajas College (constit­uent), University of Mysore, for his guidance.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamaiah, K., Grossert, J. S., Hooper, D. L., Dubey, P. K. & Ramanatham, J. (1999). J. Indian Chem. Soc. 76, 140–144.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds