organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o290-o291

rac-N-Benzyl­isatincreatinine (unknown solvate)

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
*Correspondence e-mail: pacrooks@uams.edu

(Received 11 December 2012; accepted 4 January 2013; online 26 January 2013)

The title compound, C19H18N4O3 [systematic name: (RS)-1-benzyl-3-hy­droxy-3-(2-imino-3-methyl-5-oxoimidazolidin-4-yl)-2,3-dihydro-1H-indol-2-one], was prepared as a racemate (RR and SS) by the aldol condensation of N-benzyl­isatin with creatinine in the presence of sodium acetate in acetic acid. The r.m.s. deviation of the isatin ring system is 0.033 Å. The benzyl group is disordered over two orientations, with refined occupancies of 0.847 (7) and 0.153 (7). The dihedral angles between the isatin ring system and the benzene ring (major disorder component) and the imidazole ring are 82.82 (7) and 51.31 (3)°, respectively, In the crystal, mol­ecules are linked into (001) sheets by N—H⋯O and O—H⋯N hydrogen bonds, which incorporate R22(9) ring motifs. The crystal was grown from mixed solvents (ethanol, methanol and possibly also ethyl acetate). These solvents are disordered in the crystal and the resulting electron density was found to be uninter­pretable. The solvent contribution to the scattering was removed with the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. The formula mass and density do not take account of the solvent.

Related literature

For details on the development of isatin derivatives as anti­cancer agents, see: Penthala et al. (2010a[Penthala, N. R., Reddy, T. R. Y., Nikhil, R. M. & Crooks, P. A. (2010a). Bioorg. Med. Chem. Lett. 20, 4468-4471.],b[Penthala, N. R., Reddy, T. R. Y., Nikhil, R. M. & Crooks, P. A. (2010b). Bioorg. Med. Chem. Lett. 20, 591—593.]). For similar structures, see: Tang et al. (2009[Tang, Y., Chen, G., Zhang, J. & Chen, S. (2009). Acta Cryst. E65, o2597.]); Penthala et al. (2009a[Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009a). Acta Cryst. E65, o552.],b[Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009b). Acta Cryst. E65, o2909-o2910.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N4O3

  • Mr = 350.37

  • Orthorhombic, P b c a

  • a = 13.4466 (2) Å

  • b = 10.6921 (2) Å

  • c = 27.2057 (5) Å

  • V = 3911.43 (12) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 90 K

  • 0.12 × 0.10 × 0.04 mm

Data collection
  • Bruker X8 Proteum CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.973

  • 55165 measured reflections

  • 3602 independent reflections

  • 3344 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.04

  • 3602 reflections

  • 287 parameters

  • 222 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯N12i 0.84 1.97 2.8065 (13) 175
N13—H13A⋯O11ii 0.88 2.24 2.9321 (13) 135
N13—H13B⋯O1iii 0.88 1.97 2.8410 (14) 173
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELX97.

Supporting information


Comment top

In continuation of our work on the development of anti-cancer agents (Penthala et al., 2010a,b), we have synthesized a series of new compounds containing isatin and creatinine moieties to screen for anticancer activity against a panel of 60 human cancer cell lines (Penthala et al., 2010a). The title compound was prepared by the aldol condensation of N-benzylindol-2,3-dione (N-benzylisatin) with 2-amino-1-methyl-1H-imidazol-4(5H)-one (creatinine) in the presence of sodium acetate in acetic acid. Earlier, we reported on the crystal structure of isatin creatinine analogs containing N-methyl and N-phenyl substituents (Penthala et al., 2009a,b). To obtain detailed information on the structural conformations of the molecules for analysis of structure-activity relationships (SAR), we determined the X-ray crystal structure of the title compound (Fig. 1). In the crystal, the benzyl group is disordered over two positions, with refined occupancies of 0.847 (7) and 0.153 (7). The isatin ring is almost planar, with r.m.s deviations from the mean plane = 0.0508 (11) Å, and with bond distances and angles comparable to those reported for other isatin derivatives (Tang et al., 2009). The benzene ring of the benzyl group makes a dihedral angle with the mean plane of the isatin ring of 82.82 (7)°. The title compound was isolated as a racemate (RR and SS). In the crystal, the molecules are linked into 2-D pleated-sheet networks in the ab plane by a series of intermolecular N—H—O and O—H—N hydrogen bonds. Within these sheets, the hydrogen bonds O9—H···N12, N13—H13A···O11 and N13—H13B···O1 create R22(9) ring motifs.

Related literature top

For details on the development of isatin derivatives as anticancer agents, see: Penthala et al. (2010a,b). For similar structures, see: Tang et al. (2009); Penthala et al. (2009a,b).

Experimental top

The title compound was prepared according to a previously reported procedure (Penthala et al., 2009a,b). Recrystallization from ethanol afforded the title compound as pale yellow plates. Spectroscopic data for rac-N-benzylisatincreatinine: 1H NMR (DMSO-d6): δ 3.17 (s, 3H, CH3), 4.21 (s, 1H, CH), 4.74–4.91 (ABq, J= 16.2 Hz), 6.57 (s, 1H, OH), 6.64–6.67 (d, J= 8.1 HZ, 1H, –C4H), 6.91–6.96 (t, J=7.5 Hz, 1H, –C5H), 7.11–7.34 (m, 5H, –C6H, –C7H and Ar—H), 7.45–7.47 (d, J=7.2 Hz, 2H, Ar—H),7.56 (bs, 2H, NH2); 13C NMR (DMSO-d6): δ 32.67, 42.89, 69.52, 76.02, 108.99, 121.89, 123.72, 126.99, 127.14 (2 C) 127.43, 128.22 (2 C), 129.34, 136.01, 143.15, 171.96 (C=N), 174.42 (isatin C=O), 182.26 (creatinine C=O).

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (CArH), 0.84 Å (O—H), 0.88 Å (N—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

The benzyl ring is disordered over two positions with refined occupancy factors of 0.847 (7) and 0.153 (7). To ensure stable refinement of the minor component, a number of constraints and restraints were applied. The constraint (an SHELXL97 EADP instruction on atoms C16 and C16') forces the displacement parameters for these nearly superimposed atoms to be equal. The restraints (SHELXL97 commands SAME, FLAT, DELU and SIMU) ensure chemically and physically reasonable parameters for the disordered atoms.

The solvent used to grow the crystal was a mixture of ethanol and methanol, but it likely also contained an unknown amount of ethyl acetate. The resulting electron density was largely uninterpretable. It was decided to remove it with the SQUEEZE routine in PLATON (Spek, 2009).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELX97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding in the crystal structure of (I). Dashed lines represent hydrogen bonds.
1-Benzyl-3-hydroxy-3-(2-imino-3-methyl-5-oxoimidazolidin-4-yl)- 2,3-dihydro-1H-indol-2-one top
Crystal data top
C19H18N4O3F(000) = 1472
Mr = 350.37Dx = 1.190 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 9086 reflections
a = 13.4466 (2) Åθ = 4.6–68.9°
b = 10.6921 (2) ŵ = 0.68 mm1
c = 27.2057 (5) ÅT = 90 K
V = 3911.43 (12) Å3Plate, pale yellow
Z = 80.12 × 0.10 × 0.04 mm
Data collection top
Bruker X8 Proteum CCD
diffractometer
3602 independent reflections
Radiation source: fine-focus rotating anode3344 reflections with I > 2σ(I)
Graded multilayer optics monochromatorRint = 0.043
Detector resolution: 5.6 pixels mm-1θmax = 68.7°, θmin = 4.6°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 1212
Tmin = 0.911, Tmax = 0.973l = 3231
55165 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0555P)2 + 1.5834P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3602 reflectionsΔρmax = 0.28 e Å3
287 parametersΔρmin = 0.30 e Å3
222 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00043 (9)
Crystal data top
C19H18N4O3V = 3911.43 (12) Å3
Mr = 350.37Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 13.4466 (2) ŵ = 0.68 mm1
b = 10.6921 (2) ÅT = 90 K
c = 27.2057 (5) Å0.12 × 0.10 × 0.04 mm
Data collection top
Bruker X8 Proteum CCD
diffractometer
3602 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3344 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.973Rint = 0.043
55165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038222 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3602 reflectionsΔρmin = 0.30 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.34991 (6)0.33786 (8)0.64888 (3)0.0243 (2)
C10.41054 (9)0.42315 (12)0.65145 (4)0.0212 (3)
N20.40105 (8)0.53751 (10)0.63017 (4)0.0240 (2)
C30.48704 (9)0.61071 (13)0.63800 (4)0.0252 (3)
C40.50442 (11)0.73157 (14)0.62246 (5)0.0339 (3)
H40.45510.77810.60540.041*
C50.59772 (12)0.78247 (14)0.63292 (6)0.0396 (4)
H50.61200.86570.62290.047*
C60.66974 (11)0.71461 (14)0.65753 (5)0.0359 (3)
H60.73310.75080.66350.043*
C70.64986 (10)0.59308 (13)0.67374 (5)0.0283 (3)
H70.69900.54640.69090.034*
C80.55730 (9)0.54224 (12)0.66432 (4)0.0231 (3)
O90.56962 (6)0.31592 (8)0.66485 (3)0.0238 (2)
H90.54980.25160.67960.036*
C90.51144 (9)0.41884 (11)0.67907 (4)0.0202 (3)
C100.49128 (8)0.41474 (11)0.73572 (4)0.0180 (3)
H100.45920.33390.74530.022*
O110.34262 (6)0.54407 (8)0.74190 (3)0.0234 (2)
C110.42968 (9)0.52621 (11)0.75378 (4)0.0188 (3)
N120.48658 (7)0.60115 (9)0.78275 (4)0.0200 (2)
N130.65376 (7)0.59593 (10)0.80798 (4)0.0228 (2)
H13A0.71130.55670.80860.027*
H13B0.64740.66910.82240.027*
C130.57697 (9)0.54496 (11)0.78532 (4)0.0188 (3)
N140.58264 (7)0.43382 (9)0.76280 (3)0.0185 (2)
C140.66413 (9)0.34513 (12)0.76781 (5)0.0240 (3)
H14A0.71410.36160.74240.036*
H14B0.63860.25980.76400.036*
H14C0.69450.35430.80040.036*
C150.31240 (10)0.58041 (13)0.60432 (5)0.0262 (3)
H15A0.29290.66300.61760.031*
H15B0.25740.52140.61110.031*
C160.3251 (2)0.5920 (3)0.54852 (14)0.0295 (5)0.847 (7)
C170.2898 (2)0.6974 (3)0.52528 (8)0.0565 (8)0.847 (7)
H170.26310.76450.54400.068*0.847 (7)
C180.2932 (3)0.7056 (3)0.47406 (8)0.0724 (11)0.847 (7)
H180.26870.77830.45800.087*0.847 (7)
C190.3315 (2)0.6099 (3)0.44696 (10)0.0573 (8)0.847 (7)
H190.33370.61590.41210.069*0.847 (7)
C200.3668 (3)0.5051 (4)0.46988 (15)0.0397 (7)0.847 (7)
H200.39360.43840.45090.048*0.847 (7)
C210.3636 (3)0.4957 (4)0.52102 (15)0.0313 (7)0.847 (7)
H210.38810.42270.53680.038*0.847 (7)
C16'0.3153 (14)0.5782 (19)0.5524 (9)0.0295 (5)0.153 (7)
C17'0.2496 (12)0.6474 (16)0.5261 (4)0.054 (2)0.153 (7)
H17'0.20470.70020.54330.065*0.153 (7)
C18'0.2450 (13)0.6442 (17)0.4741 (4)0.060 (2)0.153 (7)
H18'0.19820.69350.45650.072*0.153 (7)
C19'0.3107 (13)0.5673 (16)0.4500 (6)0.054 (2)0.153 (7)
H19'0.30980.56320.41510.065*0.153 (7)
C20'0.3770 (18)0.497 (2)0.4756 (9)0.042 (2)0.153 (7)
H20'0.42200.44380.45870.050*0.153 (7)
C21'0.3787 (17)0.503 (2)0.5264 (9)0.033 (2)0.153 (7)
H21'0.42550.45330.54390.040*0.153 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0232 (4)0.0268 (5)0.0229 (4)0.0029 (4)0.0027 (3)0.0017 (4)
C10.0227 (6)0.0254 (6)0.0154 (5)0.0006 (5)0.0014 (4)0.0013 (5)
N20.0241 (5)0.0277 (6)0.0202 (5)0.0014 (4)0.0022 (4)0.0059 (4)
C30.0273 (6)0.0290 (7)0.0193 (6)0.0040 (5)0.0020 (5)0.0038 (5)
C40.0402 (8)0.0320 (7)0.0295 (7)0.0029 (6)0.0008 (6)0.0104 (6)
C50.0493 (9)0.0330 (8)0.0364 (8)0.0140 (7)0.0008 (7)0.0116 (6)
C60.0373 (8)0.0409 (8)0.0295 (7)0.0162 (6)0.0000 (6)0.0063 (6)
C70.0280 (7)0.0359 (7)0.0210 (6)0.0067 (6)0.0015 (5)0.0040 (5)
C80.0257 (6)0.0276 (6)0.0161 (6)0.0036 (5)0.0023 (5)0.0027 (5)
O90.0236 (4)0.0257 (5)0.0221 (4)0.0010 (3)0.0040 (3)0.0004 (3)
C90.0199 (6)0.0230 (6)0.0178 (6)0.0008 (5)0.0006 (4)0.0010 (4)
C100.0172 (6)0.0189 (6)0.0178 (6)0.0008 (4)0.0004 (4)0.0016 (4)
O110.0178 (4)0.0229 (4)0.0295 (5)0.0006 (3)0.0024 (3)0.0009 (3)
C110.0181 (6)0.0203 (6)0.0179 (5)0.0011 (4)0.0011 (4)0.0040 (4)
N120.0182 (5)0.0209 (5)0.0208 (5)0.0006 (4)0.0003 (4)0.0001 (4)
N130.0191 (5)0.0234 (5)0.0258 (5)0.0024 (4)0.0041 (4)0.0046 (4)
C130.0196 (6)0.0223 (6)0.0146 (5)0.0002 (5)0.0007 (4)0.0031 (4)
N140.0181 (5)0.0187 (5)0.0186 (5)0.0014 (4)0.0015 (4)0.0001 (4)
C140.0198 (6)0.0215 (6)0.0308 (6)0.0028 (5)0.0044 (5)0.0001 (5)
C150.0248 (6)0.0340 (7)0.0199 (6)0.0057 (5)0.0006 (5)0.0044 (5)
C160.0267 (10)0.0427 (11)0.0191 (9)0.0057 (7)0.0021 (7)0.0076 (7)
C170.0808 (19)0.0593 (16)0.0294 (9)0.0366 (14)0.0088 (11)0.0144 (10)
C180.106 (2)0.078 (2)0.0330 (10)0.0440 (19)0.0066 (13)0.0227 (12)
C190.0693 (17)0.083 (2)0.0196 (9)0.0199 (15)0.0079 (10)0.0136 (12)
C200.0358 (13)0.0602 (14)0.0230 (14)0.0012 (11)0.0021 (10)0.0050 (11)
C210.0316 (15)0.0380 (11)0.0243 (14)0.0012 (10)0.0027 (9)0.0008 (9)
C16'0.0267 (10)0.0427 (11)0.0191 (9)0.0057 (7)0.0021 (7)0.0076 (7)
C17'0.068 (4)0.064 (4)0.030 (3)0.024 (4)0.005 (4)0.012 (4)
C18'0.081 (5)0.072 (5)0.026 (3)0.031 (4)0.002 (4)0.019 (4)
C19'0.069 (4)0.075 (5)0.019 (4)0.014 (4)0.001 (4)0.008 (4)
C20'0.044 (4)0.059 (4)0.023 (4)0.005 (4)0.000 (4)0.001 (4)
C21'0.029 (4)0.051 (4)0.020 (4)0.003 (4)0.001 (4)0.004 (4)
Geometric parameters (Å, º) top
O1—C11.2253 (15)C14—H14A0.9800
C1—N21.3588 (16)C14—H14B0.9800
C1—C91.5516 (16)C14—H14C0.9800
N2—C31.4124 (17)C15—C16'1.41 (2)
N2—C151.4582 (16)C15—C161.533 (4)
C3—C41.3796 (19)C15—H15A0.9900
C3—C81.3933 (18)C15—H15B0.9900
C4—C51.397 (2)C16—C211.374 (3)
C4—H40.9500C16—C171.377 (3)
C5—C61.383 (2)C17—C181.397 (3)
C5—H50.9500C17—H170.9500
C6—C71.398 (2)C18—C191.362 (4)
C6—H60.9500C18—H180.9500
C7—C81.3821 (18)C19—C201.368 (4)
C7—H70.9500C19—H190.9500
C8—C91.5107 (17)C20—C211.396 (3)
O9—C91.4046 (15)C20—H200.9500
O9—H90.8400C21—H210.9500
C9—C101.5654 (16)C16'—C17'1.357 (16)
C10—N141.4468 (14)C16'—C21'1.368 (17)
C10—C111.5322 (16)C17'—C18'1.418 (13)
C10—H101.0000C17'—H17'0.9500
O11—C111.2295 (14)C18'—C19'1.373 (15)
C11—N121.3597 (16)C18'—H18'0.9500
N12—C131.3576 (15)C19'—C20'1.359 (16)
N13—C131.3204 (15)C19'—H19'0.9500
N13—H13A0.8800C20'—C21'1.385 (17)
N13—H13B0.8800C20'—H20'0.9500
C13—N141.3392 (16)C21'—H21'0.9500
N14—C141.4555 (15)
O1—C1—N2125.66 (11)N14—C14—H14B109.5
O1—C1—C9125.97 (11)H14A—C14—H14B109.5
N2—C1—C9108.37 (10)N14—C14—H14C109.5
C1—N2—C3110.95 (10)H14A—C14—H14C109.5
C1—N2—C15124.43 (11)H14B—C14—H14C109.5
C3—N2—C15124.59 (11)C16'—C15—N2117.0 (8)
C4—C3—C8122.34 (12)N2—C15—C16114.35 (15)
C4—C3—N2127.69 (12)C16'—C15—H15A112.9
C8—C3—N2109.96 (11)N2—C15—H15A108.7
C3—C4—C5117.03 (13)C16—C15—H15A108.7
C3—C4—H4121.5C16'—C15—H15B101.4
C5—C4—H4121.5N2—C15—H15B108.7
C6—C5—C4121.55 (13)C16—C15—H15B108.7
C6—C5—H5119.2H15A—C15—H15B107.6
C4—C5—H5119.2C21—C16—C17119.6 (3)
C5—C6—C7120.43 (13)C21—C16—C15121.4 (3)
C5—C6—H6119.8C17—C16—C15118.9 (3)
C7—C6—H6119.8C16—C17—C18119.8 (3)
C8—C7—C6118.64 (13)C16—C17—H17120.1
C8—C7—H7120.7C18—C17—H17120.1
C6—C7—H7120.7C19—C18—C17120.4 (2)
C7—C8—C3119.95 (12)C19—C18—H18119.8
C7—C8—C9131.44 (12)C17—C18—H18119.8
C3—C8—C9108.58 (11)C18—C19—C20120.0 (3)
C9—O9—H9109.5C18—C19—H19120.0
O9—C9—C8112.56 (10)C20—C19—H19120.0
O9—C9—C1112.14 (10)C19—C20—C21120.2 (3)
C8—C9—C1101.67 (9)C19—C20—H20119.9
O9—C9—C10110.23 (9)C21—C20—H20119.9
C8—C9—C10110.90 (9)C16—C21—C20120.0 (3)
C1—C9—C10109.04 (9)C16—C21—H21120.0
N14—C10—C11100.73 (9)C20—C21—H21120.0
N14—C10—C9110.50 (9)C17'—C16'—C21'117.0 (18)
C11—C10—C9112.80 (9)C17'—C16'—C15120.0 (18)
N14—C10—H10110.8C21'—C16'—C15123.0 (16)
C11—C10—H10110.8C16'—C17'—C18'122.8 (14)
C9—C10—H10110.8C16'—C17'—H17'118.6
O11—C11—N12126.63 (11)C18'—C17'—H17'118.6
O11—C11—C10123.45 (11)C19'—C18'—C17'117.6 (12)
N12—C11—C10109.88 (10)C19'—C18'—H18'121.2
C13—N12—C11105.83 (10)C17'—C18'—H18'121.2
C13—N13—H13A120.0C20'—C19'—C18'120.5 (16)
C13—N13—H13B120.0C20'—C19'—H19'119.8
H13A—N13—H13B120.0C18'—C19'—H19'119.8
N13—C13—N14122.37 (11)C19'—C20'—C21'119.9 (19)
N13—C13—N12122.79 (11)C19'—C20'—H20'120.0
N14—C13—N12114.84 (10)C21'—C20'—H20'120.0
C13—N14—C10108.04 (9)C16'—C21'—C20'122.2 (19)
C13—N14—C14125.31 (10)C16'—C21'—H21'118.9
C10—N14—C14126.52 (10)C20'—C21'—H21'118.9
N14—C14—H14A109.5
O1—C1—N2—C3176.47 (11)O11—C11—N12—C13179.47 (11)
C9—C1—N2—C33.04 (13)C10—C11—N12—C131.45 (12)
O1—C1—N2—C155.67 (19)C11—N12—C13—N13175.47 (11)
C9—C1—N2—C15174.83 (10)C11—N12—C13—N144.15 (13)
C1—N2—C3—C4179.33 (13)N13—C13—N14—C10171.44 (10)
C15—N2—C3—C41.5 (2)N12—C13—N14—C108.18 (13)
C1—N2—C3—C81.47 (14)N13—C13—N14—C1412.39 (18)
C15—N2—C3—C8179.33 (11)N12—C13—N14—C14167.99 (10)
C8—C3—C4—C51.9 (2)C11—C10—N14—C137.92 (11)
N2—C3—C4—C5177.19 (13)C9—C10—N14—C13111.54 (10)
C3—C4—C5—C60.3 (2)C11—C10—N14—C14168.19 (10)
C4—C5—C6—C71.5 (2)C9—C10—N14—C1472.35 (14)
C5—C6—C7—C80.5 (2)C1—N2—C15—C16'101.9 (9)
C6—C7—C8—C31.71 (19)C3—N2—C15—C16'80.6 (9)
C6—C7—C8—C9176.14 (13)C1—N2—C15—C16109.52 (19)
C4—C3—C8—C73.0 (2)C3—N2—C15—C1672.9 (2)
N2—C3—C8—C7176.26 (11)C16'—C15—C16—C2162 (8)
C4—C3—C8—C9175.30 (12)N2—C15—C16—C2150.4 (3)
N2—C3—C8—C95.45 (14)C16'—C15—C16—C17113 (8)
C7—C8—C9—O955.07 (17)N2—C15—C16—C17134.8 (2)
C3—C8—C9—O9126.90 (11)C21—C16—C17—C180.11 (19)
C7—C8—C9—C1175.25 (13)C15—C16—C17—C18174.8 (2)
C3—C8—C9—C16.72 (12)C16—C17—C18—C190.1 (2)
C7—C8—C9—C1068.94 (17)C17—C18—C19—C200.0 (4)
C3—C8—C9—C10109.09 (11)C18—C19—C20—C210.1 (4)
O1—C1—C9—O953.15 (15)C17—C16—C21—C200.0 (3)
N2—C1—C9—O9126.36 (11)C15—C16—C21—C20174.8 (2)
O1—C1—C9—C8173.61 (11)C19—C20—C21—C160.1 (4)
N2—C1—C9—C85.89 (12)N2—C15—C16'—C17'161.4 (9)
O1—C1—C9—C1069.22 (15)C16—C15—C16'—C17'91 (8)
N2—C1—C9—C10111.28 (11)N2—C15—C16'—C21'22.3 (12)
O9—C9—C10—N1467.00 (12)C16—C15—C16'—C21'93 (8)
C8—C9—C10—N1458.33 (12)C21'—C16'—C17'—C18'0.1 (3)
C1—C9—C10—N14169.48 (10)C15—C16'—C17'—C18'176.5 (14)
O9—C9—C10—C11178.88 (9)C16'—C17'—C18'—C19'0.1 (3)
C8—C9—C10—C1153.55 (13)C17'—C18'—C19'—C20'0.2 (7)
C1—C9—C10—C1157.60 (12)C18'—C19'—C20'—C21'0.2 (9)
N14—C10—C11—O11176.13 (11)C17'—C16'—C21'—C20'0.1 (7)
C9—C10—C11—O1166.08 (14)C15—C16'—C21'—C20'176.5 (14)
N14—C10—C11—N125.78 (12)C19'—C20'—C21'—C16'0.0 (10)
C9—C10—C11—N12112.01 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···N12i0.841.972.8065 (13)175
N13—H13A···O11ii0.882.242.9321 (13)135
N13—H13B···O1iii0.881.972.8410 (14)173
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y, z+3/2; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H18N4O3
Mr350.37
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)90
a, b, c (Å)13.4466 (2), 10.6921 (2), 27.2057 (5)
V3)3911.43 (12)
Z8
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.12 × 0.10 × 0.04
Data collection
DiffractometerBruker X8 Proteum CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.911, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
55165, 3602, 3344
Rint0.043
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.04
No. of reflections3602
No. of parameters287
No. of restraints222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008), SHELX97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···N12i0.841.972.8065 (13)175
N13—H13A···O11ii0.882.242.9321 (13)135
N13—H13B···O1iii0.881.972.8410 (14)173
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y, z+3/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

This investigation was supported by NIH/National Cancer Institute grant RO1 CA140409.

References

First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Nikhil, R. M. & Crooks, P. A. (2010a). Bioorg. Med. Chem. Lett. 20, 4468–4471.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Nikhil, R. M. & Crooks, P. A. (2010b). Bioorg. Med. Chem. Lett. 20, 591—593.  Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009a). Acta Cryst. E65, o552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPenthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009b). Acta Cryst. E65, o2909–o2910.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Y., Chen, G., Zhang, J. & Chen, S. (2009). Acta Cryst. E65, o2597.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages o290-o291
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds