organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2,4-dihy­dr­oxy-5-(4-nitro­benzamido)­benzoate

aUniversity of Peshawar, Institute of Chemical Sciences, Peshawar, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 3 January 2013; accepted 3 January 2013; online 9 January 2013)

In the title compound, C15H12N2O7, the dihedral angle between the aromatic rings is 4.58 (13)° and the nitro group is rotated from its attached ring by 18.07 (17)°. Intra­molecular N—H⋯O and O—H⋯O hydrogen bonds generate S(5) and S(6) rings, respectively. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, generating [001] C(7) chains. The chains are linked by C—H⋯O inter­actions, forming a three-dimensional network, which incorporates R22(7) and R22(10) loops.

Related literature

For a related structure, see: Gorelik et al. (2010[Gorelik, T., Matveeva, G., Kolb, U., Schleuss, T., Kilbinger, A. F. M., van de Streek, J., Bohle, A. & Brunklaus, G. (2010). CrystEngComm, 12, 1824-1832.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O7

  • Mr = 332.27

  • Monoclinic, C 2/c

  • a = 30.412 (6) Å

  • b = 6.9325 (15) Å

  • c = 14.936 (3) Å

  • β = 111.737 (8)°

  • V = 2925.0 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.28 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.980

  • 10681 measured reflections

  • 2885 independent reflections

  • 1519 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.134

  • S = 0.98

  • 2885 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 2.16 2.595 (3) 111
O3—H3A⋯O2 0.82 1.91 2.619 (3) 144
O4—H4⋯O5i 0.82 1.86 2.670 (2) 170
C8—H8A⋯O3ii 0.96 2.51 3.274 (4) 137
C12—H12⋯O7iii 0.93 2.38 3.297 (4) 171
C15—H15⋯O4ii 0.93 2.46 3.370 (3) 165
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The title compound, (I) (Fig. 1), has been prepared for derivatization and for biological studies. The crystal structure of 4-((4-nitrobenzoyl)amino)benzoic acid (Gorelik et al., 2010) has been published which is related to the title compound.

In (I), the groups A (C1—C8/O1—O4/N1) of methyl 5-amino-2,4-dihydroxybenzoate and B (C9—C15/O5—O7/N2) of 4-nitrobenzoyl are planar with r. m. s. deviation of 0.0252 and 0.0363 Å, respectively. The dihedral angle between A/B is 3.59 (3)°. There exist strong intramolecular H-bondings of N—H···O and O—H···O types (Table 1, Fig. 2) completing S(5) and S(6) ring motifs (Bernstein et al., 1995). There also exist strong intermolecular H-bondings of C—H···O and O—H···O types due to which R22(7) and R22(10) loops are formed (Table 1, Fig. 2) resulting in the formation of three dimensional polymeric network.

Related literature top

For a related structure, see: Gorelik et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equivalent amounts of methyl 5-amino-2,4-dihydroxybenzoate (0.20 g, 1.1 mmol) and 4-nitrobenzoyl chloride (0.20 g, 1.1 mmol) were heated at 333 K for 3 h in dimethylformamide (DMF). The reaction mixture was freeze dried, neutralized with aq. NaHCO3 (5%) and extracted with dichloromethane (DCM), dried over Na2SO4 and evaporated in vacuo to give pure product which was recrystallized from methanol and water solution to afford yellow needles.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form various ring motifs to form three dimensional polymeric network.
Methyl 2,4-dihydroxy-5-(4-nitrobenzamido)benzoate top
Crystal data top
C15H12N2O7F(000) = 1376
Mr = 332.27Dx = 1.509 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1519 reflections
a = 30.412 (6) Åθ = 1.4–26.0°
b = 6.9325 (15) ŵ = 0.12 mm1
c = 14.936 (3) ÅT = 296 K
β = 111.737 (8)°Needle, yellow
V = 2925.0 (11) Å30.28 × 0.18 × 0.16 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2885 independent reflections
Radiation source: fine-focus sealed tube1519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 1.4°
ω scansh = 3537
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 85
Tmin = 0.970, Tmax = 0.980l = 1818
10681 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0575P)2]
where P = (Fo2 + 2Fc2)/3
2885 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H12N2O7V = 2925.0 (11) Å3
Mr = 332.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.412 (6) ŵ = 0.12 mm1
b = 6.9325 (15) ÅT = 296 K
c = 14.936 (3) Å0.28 × 0.18 × 0.16 mm
β = 111.737 (8)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2885 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1519 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.055
10681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 0.98Δρmax = 0.18 e Å3
2885 reflectionsΔρmin = 0.24 e Å3
220 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10274 (6)0.1155 (3)0.32019 (12)0.0472 (7)
O20.05741 (6)0.1342 (3)0.40795 (13)0.0569 (8)
O30.09767 (6)0.1238 (3)0.59618 (13)0.0556 (8)
O40.26255 (6)0.0020 (3)0.72631 (12)0.0551 (8)
O50.25654 (6)0.0216 (3)0.39997 (11)0.0441 (7)
O60.49252 (7)0.2190 (4)0.50312 (16)0.0817 (10)
O70.50869 (7)0.1537 (4)0.65151 (16)0.0963 (12)
N10.26968 (7)0.0090 (3)0.55853 (14)0.0378 (8)
N20.48095 (8)0.1732 (4)0.56944 (19)0.0571 (10)
C10.13985 (9)0.0859 (4)0.48802 (17)0.0319 (9)
C20.13784 (9)0.0904 (4)0.58047 (19)0.0364 (9)
C30.17868 (9)0.0616 (4)0.66047 (18)0.0415 (10)
C40.22102 (9)0.0301 (4)0.65078 (17)0.0371 (9)
C50.22394 (8)0.0249 (3)0.55857 (17)0.0303 (9)
C60.18331 (8)0.0531 (3)0.47889 (16)0.0314 (9)
C70.09636 (10)0.1146 (4)0.40347 (18)0.0390 (10)
C80.06012 (10)0.1408 (5)0.23493 (19)0.0624 (13)
C90.28430 (8)0.0313 (3)0.48462 (17)0.0298 (9)
C100.33614 (8)0.0680 (3)0.51086 (16)0.0301 (8)
C110.36749 (9)0.1024 (4)0.60418 (17)0.0425 (10)
C120.41477 (9)0.1343 (4)0.62442 (19)0.0448 (10)
C130.43065 (9)0.1345 (4)0.54982 (19)0.0382 (9)
C140.40103 (9)0.1016 (4)0.45639 (19)0.0482 (10)
C150.35354 (9)0.0687 (4)0.43751 (18)0.0425 (10)
H10.291690.016640.614750.0453*
H30.177300.063580.721640.0499*
H3A0.076160.147900.544840.0833*
H40.258430.018390.777010.0826*
H60.184810.050320.417830.0377*
H8A0.067880.131620.178350.0937*
H8B0.046670.265210.236920.0937*
H8C0.037650.042180.233150.0937*
H110.356230.104000.654190.0511*
H120.435540.155190.687410.0538*
H140.412600.101270.406800.0578*
H150.333010.046760.374440.0509*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0365 (11)0.0729 (14)0.0296 (10)0.0091 (10)0.0093 (9)0.0050 (10)
O20.0332 (12)0.0922 (17)0.0453 (12)0.0137 (11)0.0146 (10)0.0050 (11)
O30.0351 (12)0.0936 (17)0.0440 (12)0.0141 (12)0.0216 (10)0.0101 (12)
O40.0339 (11)0.1073 (18)0.0236 (9)0.0067 (11)0.0101 (9)0.0008 (11)
O50.0321 (10)0.0767 (15)0.0233 (9)0.0060 (10)0.0099 (8)0.0008 (9)
O60.0442 (14)0.144 (2)0.0601 (15)0.0172 (14)0.0232 (12)0.0166 (15)
O70.0364 (13)0.189 (3)0.0497 (14)0.0125 (16)0.0002 (11)0.0097 (16)
N10.0263 (12)0.0631 (17)0.0222 (10)0.0026 (11)0.0069 (9)0.0004 (11)
N20.0335 (15)0.087 (2)0.0471 (16)0.0061 (14)0.0106 (13)0.0062 (15)
C10.0295 (15)0.0362 (17)0.0312 (14)0.0024 (12)0.0128 (12)0.0022 (12)
C20.0346 (16)0.0428 (18)0.0368 (15)0.0043 (14)0.0189 (13)0.0039 (13)
C30.0367 (17)0.063 (2)0.0287 (14)0.0020 (15)0.0165 (13)0.0005 (14)
C40.0345 (16)0.0483 (19)0.0266 (13)0.0013 (14)0.0090 (12)0.0004 (13)
C50.0266 (15)0.0385 (17)0.0284 (13)0.0013 (12)0.0131 (11)0.0010 (12)
C60.0345 (16)0.0361 (16)0.0246 (13)0.0033 (12)0.0122 (12)0.0014 (12)
C70.0383 (18)0.0457 (18)0.0350 (15)0.0051 (14)0.0159 (13)0.0029 (13)
C80.0466 (19)0.098 (3)0.0312 (16)0.0178 (19)0.0013 (14)0.0066 (17)
C90.0317 (15)0.0314 (16)0.0276 (14)0.0019 (12)0.0125 (12)0.0010 (12)
C100.0323 (15)0.0312 (16)0.0273 (13)0.0008 (12)0.0116 (11)0.0039 (12)
C110.0372 (17)0.063 (2)0.0296 (14)0.0045 (15)0.0149 (13)0.0008 (14)
C120.0348 (17)0.065 (2)0.0295 (15)0.0044 (15)0.0059 (12)0.0001 (14)
C130.0244 (15)0.0484 (18)0.0405 (16)0.0013 (14)0.0104 (12)0.0033 (14)
C140.0394 (18)0.077 (2)0.0328 (15)0.0059 (16)0.0189 (13)0.0019 (15)
C150.0301 (16)0.068 (2)0.0287 (14)0.0075 (15)0.0101 (12)0.0035 (14)
Geometric parameters (Å, º) top
O1—C71.328 (3)C4—C51.413 (3)
O1—C81.453 (3)C5—C61.376 (3)
O2—C71.219 (4)C9—C101.499 (4)
O3—C21.347 (4)C10—C151.382 (4)
O4—C41.360 (3)C10—C111.387 (3)
O5—C91.235 (3)C11—C121.373 (4)
O6—N21.210 (4)C12—C131.369 (4)
O7—N21.211 (3)C13—C141.371 (4)
O3—H3A0.8200C14—C151.384 (4)
O4—H40.8200C3—H30.9300
N1—C91.343 (3)C6—H60.9300
N1—C51.411 (3)C8—H8A0.9600
N2—C131.472 (4)C8—H8B0.9600
N1—H10.8600C8—H8C0.9600
C1—C71.465 (4)C11—H110.9300
C1—C61.397 (4)C12—H120.9300
C1—C21.405 (4)C14—H140.9300
C2—C31.382 (4)C15—H150.9300
C3—C41.366 (4)
C7—O1—C8115.4 (2)C9—C10—C15117.9 (2)
C2—O3—H3A109.00C11—C10—C15118.3 (2)
C4—O4—H4109.00C9—C10—C11123.8 (2)
C5—N1—C9130.3 (2)C10—C11—C12121.5 (2)
O6—N2—C13118.7 (2)C11—C12—C13118.5 (2)
O6—N2—O7123.6 (3)N2—C13—C12119.5 (2)
O7—N2—C13117.7 (2)C12—C13—C14122.1 (3)
C9—N1—H1115.00N2—C13—C14118.4 (2)
C5—N1—H1115.00C13—C14—C15118.5 (3)
C6—C1—C7121.5 (2)C10—C15—C14121.1 (2)
C2—C1—C7119.4 (3)C2—C3—H3120.00
C2—C1—C6119.1 (2)C4—C3—H3120.00
O3—C2—C3117.2 (2)C1—C6—H6119.00
C1—C2—C3119.6 (3)C5—C6—H6119.00
O3—C2—C1123.2 (2)O1—C8—H8A109.00
C2—C3—C4120.8 (2)O1—C8—H8B109.00
O4—C4—C3123.9 (2)O1—C8—H8C109.00
O4—C4—C5115.5 (2)H8A—C8—H8B109.00
C3—C4—C5120.6 (2)H8A—C8—H8C109.00
N1—C5—C4115.0 (2)H8B—C8—H8C109.00
C4—C5—C6118.6 (2)C10—C11—H11119.00
N1—C5—C6126.4 (2)C12—C11—H11119.00
C1—C6—C5121.2 (2)C11—C12—H12121.00
O1—C7—O2122.2 (2)C13—C12—H12121.00
O1—C7—C1114.2 (3)C13—C14—H14121.00
O2—C7—C1123.6 (2)C15—C14—H14121.00
N1—C9—C10116.2 (2)C10—C15—H15119.00
O5—C9—N1121.8 (2)C14—C15—H15119.00
O5—C9—C10122.1 (2)
C8—O1—C7—O20.2 (4)C2—C3—C4—O4179.6 (3)
C8—O1—C7—C1179.1 (2)C2—C3—C4—C50.5 (4)
C9—N1—C5—C4176.6 (2)O4—C4—C5—N10.1 (3)
C9—N1—C5—C63.7 (4)O4—C4—C5—C6179.7 (2)
C5—N1—C9—O50.8 (4)C3—C4—C5—N1179.9 (2)
C5—N1—C9—C10179.3 (2)C3—C4—C5—C60.3 (4)
O6—N2—C13—C12162.4 (3)N1—C5—C6—C1179.9 (2)
O6—N2—C13—C1417.0 (4)C4—C5—C6—C10.1 (3)
O7—N2—C13—C1219.0 (4)O5—C9—C10—C11172.1 (2)
O7—N2—C13—C14161.7 (3)O5—C9—C10—C157.5 (3)
C6—C1—C2—O3179.0 (2)N1—C9—C10—C118.0 (3)
C6—C1—C2—C30.3 (4)N1—C9—C10—C15172.4 (2)
C7—C1—C2—O31.3 (4)C9—C10—C11—C12179.7 (2)
C7—C1—C2—C3179.4 (3)C15—C10—C11—C120.8 (4)
C2—C1—C6—C50.1 (4)C9—C10—C15—C14180.0 (2)
C7—C1—C6—C5179.5 (2)C11—C10—C15—C140.4 (4)
C2—C1—C7—O1177.3 (2)C10—C11—C12—C131.0 (4)
C2—C1—C7—O23.4 (4)C11—C12—C13—N2178.5 (3)
C6—C1—C7—O13.0 (4)C11—C12—C13—C140.8 (4)
C6—C1—C7—O2176.3 (3)N2—C13—C14—C15178.8 (3)
O3—C2—C3—C4178.9 (3)C12—C13—C14—C150.5 (4)
C1—C2—C3—C40.4 (4)C13—C14—C15—C100.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.862.162.595 (3)111
O3—H3A···O20.821.912.619 (3)144
O4—H4···O5i0.821.862.670 (2)170
C8—H8A···O3ii0.962.513.274 (4)137
C12—H12···O7iii0.932.383.297 (4)171
C15—H15···O4ii0.932.463.370 (3)165
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H12N2O7
Mr332.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)30.412 (6), 6.9325 (15), 14.936 (3)
β (°) 111.737 (8)
V3)2925.0 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.28 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
10681, 2885, 1519
Rint0.055
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.134, 0.98
No. of reflections2885
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.862.162.595 (3)111
O3—H3A···O20.821.912.619 (3)144
O4—H4···O5i0.821.862.670 (2)170
C8—H8A···O3ii0.962.513.274 (4)137
C12—H12···O7iii0.932.383.297 (4)171
C15—H15···O4ii0.932.463.370 (3)165
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x+1, y, z+3/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGorelik, T., Matveeva, G., Kolb, U., Schleuss, T., Kilbinger, A. F. M., van de Streek, J., Bohle, A. & Brunklaus, G. (2010). CrystEngComm, 12, 1824–1832.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds