organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl N-(2-benzoyl-3-oxo-3-phenyl­propano­yl)carbamate

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310 Şehitkamil–Gaziantep, Turkey, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr, dmntahir_uos@yahoo.com

(Received 4 January 2013; accepted 5 January 2013; online 12 January 2013)

In the title compound, C19H17NO5, the dihedral angle between the phenyl groups is 79.55 (15)°. The terminal eth­oxy group is disordered over two orientations in a 0.873 (6):0.127 (6) ratio. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds into [001] chains which incorporate R12(6) loops. A very weak C—H⋯π contact also occurs.

Related literature

For background to the carboxamide [–C(O)NH–] group, see: Sönmez (2001[Sönmez, M. (2001). Turk. J. Chem. 25, 181-185.]). For further synthetic details, see: Fabian et al. (1992[Fabian, W. F., Kollenz, G., Akcamur, Y., Kök, T. R., Tezcan, M., Akkurt, M. & Hiller, W. (1992). Monatsch. Chem. 123, 265-275.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17NO5

  • Mr = 339.34

  • Monoclinic, C 2/c

  • a = 33.088 (8) Å

  • b = 12.732 (3) Å

  • c = 8.7110 (18) Å

  • β = 97.896 (9)°

  • V = 3635.0 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.35 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.986

  • 14531 measured reflections

  • 3579 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.132

  • S = 1.01

  • 3579 reflections

  • 234 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.37 3.025 (2) 133
N1—H1⋯O4i 0.86 2.08 2.842 (2) 147
C8—H8⋯O3i 0.98 2.38 3.263 (3) 150
C19B—H19FCg2ii 0.96 2.96 3.786 (5) 145
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The carboxamide [–C(O)NH–] group, which seems to be everywhere throughout nature in the primary structure of proteins, is an important ligand construction unit for coordination chemists (Sönmez, 2001). The high stability of the amide linkage toward hydrolysis is of crucial importance to biological systems, since it allows the construction of peptides from relatively simple amino acid precursors.

In the title compound (I), (Fig. 1), the C1–C6 and C10–C15 phenyl rings make a dihedral angle of 79.55 (15)° with each other. The C7–C8–C16–O3, C8–C16–N1–C17, O3–C16–N1–C17, C16–N1–C17–O4 and C16–N1–C17–O5 torsion angles are -23.0 (3), -176.6 (2), 3.9 (4), 2.6 (4) and -177.2 (2)°, respectively.

In the crystal structure, N—H···O and C—H···O hydrogen bonds (Table 1, Fig. 2) connect the neighbouring molecules, into chains running along the c axis, forming the R21(6) motifs (Fig. 2). Furthermore, C—H···π interactions between the H19F hydrogen atom of the methyl group and the C10–C15 phenyl ring (with centroid Cg2) is also observed (Table 1).

Related literature top

For background to the carboxamide [–C(O)NH–] group, see: Sönmez (2001). For further synthetic details, see: Fabian et al. (1992).

Experimental top

Dibenzoylaceticacid-N-carboxyethylamide was prepared from reaction of 4-benzoyl-5-phenyl-2,3-furandione and ethyl urethane as the method reported earlier (Fabian et al., 1992). These compounds were refluxed in benzene for 5 h. The solvent was evaporated under reduced pressure to give an oily residue which was treated with ether and finally crystallized from absolute ethanol as colourless needles. Analysis calculated for (C19H17NO5): C 67.25, H 5.01, N 4.14. Found: C 67.22, H 5.06, N 4.30.

Refinement top

All H atoms were positioned geometrically and refined by using a riding model, with N—H = 0.86 Å (amine), C—H = 0.93 (aromatic), C—H = 0.96 (methyl), C—H = 0.97 (methylene) and 0.98 Å (methine), and Uiso(H) = 1.2 or 1.5Ueq(C,N). The C atoms of the terminal ethoxy group are disordered over two positions with occupancy ratio 0.873 (6):0.127 (6). The temperature factors of the disordered C atoms were refined with the EADP restraint.

The unit cell contains a pair of voids of 44 (2)Å3 volume located about an inversion centre but the residual electron density (highest peak = 0.160 e Å-3and deepest hole = -0.126 e Å-3) in the difference Fourier map suggests that no solvent molecule occupies this void.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level. Only the major disorder component is shown.
[Figure 2] Fig. 2. The packing and hydrogen bonding of the title compound, viewing along the b axis. H atoms not involved in hydrogen bonding and the minor disordered component are omitted for clarity.
Ethyl N-(2-benzoyl-3-oxo-3-phenylpropanoyl)carbamate top
Crystal data top
C19H17NO5F(000) = 1424
Mr = 339.34Dx = 1.240 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 270 reflections
a = 33.088 (8) Åθ = 3.1–21.4°
b = 12.732 (3) ŵ = 0.09 mm1
c = 8.7110 (18) ÅT = 296 K
β = 97.896 (9)°Needle, white
V = 3635.0 (14) Å30.35 × 0.18 × 0.16 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3579 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 26.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3740
Tmin = 0.981, Tmax = 0.986k = 1515
14531 measured reflectionsl = 810
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.910P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3579 reflectionsΔρmax = 0.16 e Å3
234 parametersΔρmin = 0.13 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (4)
Crystal data top
C19H17NO5V = 3635.0 (14) Å3
Mr = 339.34Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.088 (8) ŵ = 0.09 mm1
b = 12.732 (3) ÅT = 296 K
c = 8.7110 (18) Å0.35 × 0.18 × 0.16 mm
β = 97.896 (9)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3579 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1910 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.986Rint = 0.050
14531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0494 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
3579 reflectionsΔρmin = 0.13 e Å3
234 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.18768 (6)0.74420 (16)0.0969 (2)0.0913 (9)
O20.09155 (6)0.76202 (14)0.08336 (19)0.0757 (8)
O30.12375 (5)0.56205 (12)0.09053 (15)0.0564 (6)
O40.05773 (5)0.42206 (13)0.13912 (16)0.0578 (6)
O50.03265 (5)0.39586 (14)0.08394 (17)0.0693 (7)
N10.08534 (6)0.50073 (15)0.08736 (18)0.0494 (7)
C10.21155 (8)0.5710 (2)0.1313 (2)0.0558 (10)
C20.24785 (9)0.5949 (3)0.0759 (3)0.0819 (12)
C30.27677 (11)0.5189 (4)0.0679 (4)0.1085 (18)
C40.27046 (12)0.4194 (3)0.1159 (4)0.1102 (17)
C50.23524 (12)0.3949 (3)0.1725 (4)0.0984 (17)
C60.20565 (9)0.4704 (2)0.1804 (3)0.0707 (11)
C70.18068 (8)0.6541 (2)0.1304 (3)0.0553 (10)
C80.13836 (7)0.62652 (16)0.1695 (2)0.0435 (8)
C90.11479 (8)0.72705 (18)0.1908 (3)0.0511 (9)
C100.12157 (8)0.78140 (18)0.3436 (3)0.0520 (9)
C110.14062 (9)0.7351 (2)0.4765 (3)0.0754 (11)
C120.14478 (11)0.7874 (3)0.6156 (3)0.1070 (18)
C130.13103 (12)0.8877 (3)0.6216 (4)0.1085 (18)
C140.11213 (11)0.9365 (2)0.4910 (4)0.0946 (14)
C150.10659 (9)0.8823 (2)0.3516 (3)0.0717 (11)
C160.11539 (7)0.56060 (17)0.0400 (2)0.0444 (8)
C170.05827 (7)0.43737 (18)0.0035 (2)0.0475 (8)
C18B0.00031 (11)0.3297 (3)0.0107 (4)0.0681 (16)0.874 (6)
C19B0.01476 (14)0.2202 (3)0.0081 (6)0.122 (2)0.874 (6)
C19A0.0059 (10)0.230 (2)0.104 (4)0.122 (2)0.127 (6)
C18A0.0143 (10)0.302 (2)0.003 (3)0.0681 (16)0.127 (6)
H20.252550.662970.043890.0984*
H10.083060.502830.184480.0593*
H50.231110.326850.206080.1180*
H60.181660.453050.218930.0846*
H80.141260.586130.266110.0522*
H110.150870.667260.472170.0903*
H120.156960.754320.705410.1281*
H130.134490.923670.715460.1301*
H140.103071.005400.495760.1135*
H150.092790.913960.263390.0861*
H18C0.009180.353820.094190.0818*0.874 (6)
H18D0.023370.333260.068290.0818*0.874 (6)
H19D0.006330.176110.044010.1830*0.874 (6)
H19E0.022210.195820.112380.1830*0.874 (6)
H19F0.038170.217840.045870.1830*0.874 (6)
H30.300850.535460.029430.1298*
H40.290180.368010.110080.1319*
H18A0.035510.263310.046080.0818*0.127 (6)
H18B0.005730.324480.088420.0818*0.127 (6)
H19A0.026770.189320.043370.1830*0.127 (6)
H19B0.017830.271770.177400.1830*0.127 (6)
H19C0.014180.183780.157420.1830*0.127 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0800 (16)0.0636 (13)0.1396 (18)0.0162 (11)0.0482 (13)0.0004 (12)
O20.0850 (15)0.0718 (13)0.0665 (12)0.0153 (10)0.0035 (10)0.0004 (9)
O30.0666 (12)0.0714 (11)0.0345 (8)0.0136 (9)0.0190 (7)0.0040 (7)
O40.0639 (12)0.0765 (12)0.0335 (9)0.0142 (9)0.0081 (7)0.0070 (7)
O50.0696 (13)0.0926 (13)0.0477 (9)0.0354 (10)0.0153 (8)0.0001 (8)
N10.0573 (14)0.0659 (13)0.0265 (9)0.0173 (10)0.0107 (8)0.0042 (8)
C10.0473 (18)0.0715 (19)0.0478 (14)0.0040 (14)0.0034 (11)0.0022 (12)
C20.056 (2)0.095 (2)0.097 (2)0.0000 (18)0.0189 (16)0.0082 (17)
C30.059 (2)0.146 (4)0.125 (3)0.022 (2)0.029 (2)0.017 (3)
C40.077 (3)0.127 (3)0.127 (3)0.045 (2)0.015 (2)0.017 (2)
C50.083 (3)0.097 (3)0.115 (3)0.028 (2)0.013 (2)0.026 (2)
C60.058 (2)0.081 (2)0.0727 (18)0.0107 (16)0.0079 (13)0.0116 (15)
C70.0559 (19)0.0575 (16)0.0534 (14)0.0127 (14)0.0111 (12)0.0060 (12)
C80.0475 (16)0.0496 (14)0.0339 (11)0.0052 (11)0.0075 (9)0.0025 (9)
C90.0540 (18)0.0521 (15)0.0488 (14)0.0059 (12)0.0131 (12)0.0011 (11)
C100.0574 (17)0.0474 (15)0.0547 (14)0.0077 (12)0.0205 (12)0.0095 (11)
C110.096 (2)0.0686 (18)0.0586 (17)0.0088 (16)0.0003 (15)0.0192 (14)
C120.149 (4)0.102 (3)0.065 (2)0.027 (2)0.0033 (19)0.0311 (18)
C130.142 (4)0.104 (3)0.079 (2)0.011 (2)0.013 (2)0.041 (2)
C140.129 (3)0.064 (2)0.098 (2)0.0025 (19)0.041 (2)0.0261 (18)
C150.091 (2)0.0568 (18)0.0722 (18)0.0022 (15)0.0287 (15)0.0056 (13)
C160.0494 (16)0.0486 (14)0.0363 (12)0.0022 (11)0.0102 (10)0.0017 (10)
C170.0522 (17)0.0552 (14)0.0357 (12)0.0056 (12)0.0080 (10)0.0028 (10)
C18B0.050 (3)0.079 (3)0.076 (2)0.020 (2)0.0109 (19)0.0027 (16)
C19B0.079 (3)0.079 (3)0.211 (6)0.007 (2)0.032 (3)0.025 (3)
C19A0.079 (3)0.079 (3)0.211 (6)0.007 (2)0.032 (3)0.025 (3)
C18A0.050 (3)0.079 (3)0.076 (2)0.020 (2)0.0109 (19)0.0027 (16)
Geometric parameters (Å, º) top
O1—C71.214 (3)C13—C141.370 (5)
O2—C91.212 (3)C14—C151.387 (4)
O3—C161.207 (2)C18A—C19A1.53 (4)
O4—C171.195 (2)C18B—C19B1.482 (5)
O5—C171.325 (3)C2—H20.9300
O5—C18B1.454 (4)C3—H30.9300
O5—C18A1.50 (3)C4—H40.9300
N1—C161.361 (3)C5—H50.9300
N1—C171.373 (3)C6—H60.9300
N1—H10.8600C8—H80.9800
C1—C21.388 (4)C11—H110.9300
C1—C71.470 (4)C12—H120.9300
C1—C61.373 (4)C13—H130.9300
C2—C31.369 (6)C14—H140.9300
C3—C41.359 (6)C15—H150.9300
C4—C51.363 (6)C18A—H18B0.9700
C5—C61.381 (5)C18A—H18A0.9700
C7—C81.527 (4)C18B—H18D0.9700
C8—C91.523 (3)C18B—H18C0.9700
C8—C161.523 (3)C19A—H19A0.9600
C9—C101.490 (4)C19A—H19C0.9600
C10—C111.373 (4)C19A—H19B0.9600
C10—C151.382 (4)C19B—H19E0.9600
C11—C121.373 (4)C19B—H19F0.9600
C12—C131.359 (5)C19B—H19D0.9600
C17—O5—C18B118.64 (19)C3—C4—H4120.00
C17—O5—C18A105.9 (11)C5—C4—H4120.00
C16—N1—C17126.89 (16)C4—C5—H5120.00
C17—N1—H1117.00C6—C5—H5120.00
C16—N1—H1117.00C1—C6—H6120.00
C2—C1—C7118.3 (3)C5—C6—H6120.00
C2—C1—C6118.7 (3)C7—C8—H8109.00
C6—C1—C7123.0 (2)C9—C8—H8109.00
C1—C2—C3120.5 (3)C16—C8—H8109.00
C2—C3—C4120.3 (3)C10—C11—H11119.00
C3—C4—C5120.0 (4)C12—C11—H11120.00
C4—C5—C6120.4 (3)C11—C12—H12120.00
C1—C6—C5120.1 (3)C13—C12—H12120.00
C1—C7—C8119.4 (2)C12—C13—H13120.00
O1—C7—C1121.8 (2)C14—C13—H13120.00
O1—C7—C8118.8 (2)C13—C14—H14120.00
C9—C8—C16109.97 (19)C15—C14—H14120.00
C7—C8—C9109.54 (19)C10—C15—H15120.00
C7—C8—C16109.95 (17)C14—C15—H15120.00
O2—C9—C8119.7 (2)H18A—C18A—H18B108.00
O2—C9—C10121.4 (2)O5—C18A—H18A110.00
C8—C9—C10118.8 (2)O5—C18A—H18B110.00
C9—C10—C11123.3 (2)C19A—C18A—H18A109.00
C11—C10—C15118.9 (2)C19A—C18A—H18B110.00
C9—C10—C15117.8 (2)C19B—C18B—H18C110.00
C10—C11—C12121.0 (3)C19B—C18B—H18D110.00
C11—C12—C13119.8 (3)O5—C18B—H18D110.00
C12—C13—C14120.8 (3)O5—C18B—H18C110.00
C13—C14—C15119.5 (3)H18C—C18B—H18D108.00
C10—C15—C14120.1 (3)C18A—C19A—H19A109.00
O3—C16—N1124.45 (19)C18A—C19A—H19B109.00
N1—C16—C8113.28 (16)H19A—C19A—H19C109.00
O3—C16—C8122.3 (2)H19B—C19A—H19C110.00
O4—C17—N1125.9 (2)C18A—C19A—H19C109.00
O4—C17—O5125.4 (2)H19A—C19A—H19B110.00
O5—C17—N1108.74 (16)C18B—C19B—H19F109.00
O5—C18A—C19A111 (2)H19E—C19B—H19F109.00
O5—C18B—C19B108.5 (3)H19D—C19B—H19E110.00
C1—C2—H2120.00H19D—C19B—H19F109.00
C3—C2—H2120.00C18B—C19B—H19D109.00
C2—C3—H3120.00C18B—C19B—H19E109.00
C4—C3—H3120.00
C18B—O5—C17—O43.0 (4)C1—C7—C8—C1669.7 (3)
C18B—O5—C17—N1176.9 (2)C7—C8—C9—O295.7 (3)
C17—O5—C18B—C19B88.0 (3)C7—C8—C9—C1083.1 (3)
C16—N1—C17—O42.7 (4)C16—C8—C9—O225.2 (3)
C16—N1—C17—O5177.2 (2)C16—C8—C9—C10156.0 (2)
C17—N1—C16—O33.9 (4)C7—C8—C16—O323.0 (3)
C17—N1—C16—C8176.6 (2)C9—C8—C16—N182.8 (2)
C6—C1—C2—C31.2 (4)C7—C8—C16—N1156.55 (19)
C7—C1—C2—C3177.1 (3)C9—C8—C16—O397.7 (3)
C2—C1—C6—C50.8 (4)C8—C9—C10—C15167.1 (2)
C7—C1—C6—C5177.4 (3)O2—C9—C10—C11166.1 (3)
C2—C1—C7—O17.1 (4)O2—C9—C10—C1511.7 (4)
C6—C1—C7—O1174.7 (2)C8—C9—C10—C1115.1 (4)
C6—C1—C7—C86.5 (3)C9—C10—C11—C12177.6 (3)
C2—C1—C7—C8171.7 (2)C15—C10—C11—C120.2 (4)
C1—C2—C3—C40.8 (5)C9—C10—C15—C14179.9 (3)
C2—C3—C4—C50.1 (5)C11—C10—C15—C142.2 (4)
C3—C4—C5—C60.5 (5)C10—C11—C12—C132.1 (5)
C4—C5—C6—C10.1 (5)C11—C12—C13—C141.6 (6)
O1—C7—C8—C16109.2 (2)C12—C13—C14—C150.8 (6)
O1—C7—C8—C911.8 (3)C13—C14—C15—C102.7 (5)
C1—C7—C8—C9169.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.373.025 (2)133
N1—H1···O4i0.862.082.842 (2)147
C8—H8···O3i0.982.383.263 (3)150
C19B—H19F···Cg2ii0.962.963.786 (5)145
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC19H17NO5
Mr339.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)33.088 (8), 12.732 (3), 8.7110 (18)
β (°) 97.896 (9)
V3)3635.0 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.981, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
14531, 3579, 1910
Rint0.050
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.132, 1.01
No. of reflections3579
No. of parameters234
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.373.025 (2)133
N1—H1···O4i0.862.082.842 (2)147
C8—H8···O3i0.982.383.263 (3)150
C19B—H19F···Cg2ii0.962.963.786 (5)145
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFabian, W. F., Kollenz, G., Akcamur, Y., Kök, T. R., Tezcan, M., Akkurt, M. & Hiller, W. (1992). Monatsch. Chem. 123, 265–275.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSönmez, M. (2001). Turk. J. Chem. 25, 181–185.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds