metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-4-methyl­pyrimidin-1-ium) hexa­aqua­cobalt(II) di­sulfate dihydrate

aDepartment of Chemistry, Ferdowsi University of Mashhad, 917751436 Mashhad, Iran, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: , joelt@tulane.edu

(Received 20 January 2013; accepted 22 January 2013; online 31 January 2013)

In the title hydrated mixed-cation salt, (C5H8N3)2[Co(H2O)6](SO4)2·2H2O, the complete octa­hedral hexa­aqua complex cation is generated by crystallographic inversion symmetry. In the crystal, the components are linked by O—H⋯O and N—H⋯O hydrogen bonds, the latter, involving pyrimidinium cations and sulfate anions, generating R22(8) loops. These, together with ππ inter­actions between centrosymmetrically related pyrimidinium cations [centroid–centroid separation = 3.5460 (8) Å], lead to the formation of a three-dimensional network.

Related literature

For a report of the structure of the [Co(H2O)6]2+ ion, see: Shiu et al. (2004[Shiu, K.-B., Yen, C.-H., Liao, F.-L. & Wang, S.-L. (2004). Acta Cryst. E60, m35-m37.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H8N3)2[Co(H2O)6](SO4)2·2H2O

  • Mr = 615.49

  • Triclinic, [P \overline 1]

  • a = 6.4116 (6) Å

  • b = 7.7751 (7) Å

  • c = 13.0423 (12) Å

  • α = 80.136 (1)°

  • β = 80.413 (1)°

  • γ = 73.231 (1)°

  • V = 608.57 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 100 K

  • 0.19 × 0.19 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2009[Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.]) Tmin = 0.780, Tmax = 0.893

  • 10780 measured reflections

  • 3085 independent reflections

  • 2944 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.073

  • S = 1.09

  • 3085 reflections

  • 161 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.0838 (9)
Co1—O2 2.0643 (9)
Co1—O3 2.1140 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O8 0.84 1.92 2.7562 (14) 171
O1—H1B⋯O4 0.84 1.97 2.8050 (13) 178
O2—H2A⋯O4i 0.84 1.92 2.7533 (14) 173
O2—H2B⋯O5 0.84 1.87 2.7077 (13) 174
O3—H3C⋯O8i 0.84 1.92 2.7508 (13) 170
O3—H3D⋯O7ii 0.84 1.95 2.7865 (14) 177
N2—H2N⋯O6iii 0.91 1.81 2.7155 (15) 172
N3—H3A⋯O5iii 0.91 1.87 2.7776 (15) 175
N3—H3B⋯O6iv 0.91 1.98 2.8775 (15) 168
O8—H8A⋯O7ii 0.84 1.98 2.7684 (14) 156
O8—H8B⋯O7v 0.84 2.02 2.8582 (14) 172
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) -x+2, -y, -z+1; (iv) -x+1, -y, -z+1; (v) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXWS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXWS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXM (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In an attempt to synthesize a cobalt complex of quinoxaline-2,3-dicarboxylic acid by conventional proton transfer processes, cobalt(II) sulfate hexahydrate and the acid were reacted with 2-amino-4-methylpyrimidine. The crystalline product obtained proved to be [Co(H2O)6][2a-4m-pym]2(SO4)2.2H2O (2a-4m-pym = 2-amino-4-methylpyrimidinium) with the cobalt cation having crystallographiclly imposed centrosymmetry (Fig. 1). The Co—O distances range from 2.0643 (9) to 2.1140 (10) A° while the O—Co—O angles range from 90.69 (4) to 93.59 (4)° leading to a somewhat distorted octahedral coordination geometry. The [Co(H2O)6]2+ cations and uncoordinated water molecules form sheets parallel to [110] which are capped on both sides by sulfate ions and held together by O—H···O hydrogen bonds (Fig. 2). N—H···O interactions bind the pyrimidinium cations to the sulfate ions (Fig. 3) with the cations from adjacent sheets intercalating one another (Fig. 2) and stabilized by pairwise π···π (3.546 A°) interactions between them (center pair of cations in Fig. 2). The N2—H2n···O6 and N3—H3a···O5 hydrogen bonding interactions generate R22(8) synthons.

Related literature top

For a report of the structure of the [Co(H2O)6]2+ ion, see: Shiu et al. (2004).

Experimental top

An aqueous solution of cobalt(II) sulfate hexahydrate (0.4 mmol, 0.8 mg) in distilled water (5 ml) was added to an aqueous solution of quinoxaline-2,3-dicarboxylic acid (0.11 mmol, 25 mg) and 2-amino-4-methyl pyrimidine (0.24 mmol, 26 mg). The mixture refluxed for 5 hrs at 75°C. Orange blocks were obtained by slow evaporation of the reaction mixture at room temperature.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXM (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing of the title compound viewed down a. Hydrogen bonds are indicated by dotted lines.
[Figure 3] Fig. 3. N—H···O hydrogen bonds and the R22(8) synthons (N2, N3, O5 O6).
Bis(2-amino-4-methylpyrimidin-1-ium) hexaaquacobalt(II) disulfate dihydrate top
Crystal data top
(C5H8N3)2[Co(H2O)6](SO4)2·2H2OZ = 1
Mr = 615.49F(000) = 321
Triclinic, P1Dx = 1.679 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4116 (6) ÅCell parameters from 8977 reflections
b = 7.7751 (7) Åθ = 2.8–29.2°
c = 13.0423 (12) ŵ = 0.96 mm1
α = 80.136 (1)°T = 100 K
β = 80.413 (1)°Block, orange
γ = 73.231 (1)°0.19 × 0.19 × 0.12 mm
V = 608.57 (10) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3085 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 29.2°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
h = 88
Tmin = 0.780, Tmax = 0.893k = 1010
10780 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.2936P]
where P = (Fo2 + 2Fc2)/3
3085 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
(C5H8N3)2[Co(H2O)6](SO4)2·2H2Oγ = 73.231 (1)°
Mr = 615.49V = 608.57 (10) Å3
Triclinic, P1Z = 1
a = 6.4116 (6) ÅMo Kα radiation
b = 7.7751 (7) ŵ = 0.96 mm1
c = 13.0423 (12) ÅT = 100 K
α = 80.136 (1)°0.19 × 0.19 × 0.12 mm
β = 80.413 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3085 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
2944 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.893Rint = 0.025
10780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.09Δρmax = 0.59 e Å3
3085 reflectionsΔρmin = 0.40 e Å3
161 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 °. in omega, collected at phi = 0.00, 90.00 and 180.00 °. and 2 sets of 800 frames, each of width 0.45 ° in phi, collected at omega = -30.00 and 210.00 °. The scan time was 10 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.50000.00000.00955 (8)
O10.68016 (15)0.50215 (13)0.06589 (8)0.01452 (19)
H1A0.57610.59650.05920.017*
H1B0.62530.42550.10610.017*
O21.13866 (16)0.27066 (13)0.09714 (8)0.0152 (2)
H2A1.23840.26440.13310.018*
H2B1.05130.21340.13170.018*
O31.01700 (15)0.67088 (13)0.10641 (8)0.01429 (19)
H3C1.13040.70800.09670.017*
H3D0.90250.75380.11930.017*
N10.77618 (19)0.29129 (15)0.48276 (9)0.0141 (2)
N21.13318 (19)0.19273 (15)0.53464 (9)0.0136 (2)
H2N1.22140.12830.58370.016*
N30.8459 (2)0.09569 (16)0.63508 (9)0.0169 (2)
H3A0.93700.02910.68250.020*
H3B0.70470.08840.64430.020*
C10.9176 (2)0.19330 (17)0.55062 (10)0.0126 (2)
C21.2141 (2)0.28771 (18)0.44771 (11)0.0159 (3)
H21.36550.28400.43610.019*
C31.0775 (2)0.38846 (18)0.37710 (11)0.0164 (3)
H31.13070.45550.31550.020*
C40.8539 (2)0.38965 (18)0.39882 (10)0.0143 (2)
C50.6904 (2)0.50542 (19)0.32901 (11)0.0184 (3)
H5A0.63190.42810.29600.028*
H5B0.76190.58070.27460.028*
H5C0.57010.58340.37060.028*
S10.64309 (5)0.07057 (4)0.22320 (2)0.00995 (8)
O40.48922 (15)0.25043 (12)0.19945 (8)0.01356 (19)
O50.86583 (15)0.09036 (13)0.22097 (8)0.0153 (2)
O60.57348 (16)0.01584 (13)0.32903 (8)0.0148 (2)
O70.64425 (16)0.04477 (13)0.14342 (8)0.0164 (2)
O80.36083 (16)0.82758 (13)0.05699 (8)0.01547 (19)
H8A0.41190.88030.09390.019*
H8B0.35130.89940.00090.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00874 (12)0.00915 (12)0.01048 (13)0.00265 (8)0.00139 (9)0.00014 (8)
O10.0100 (4)0.0120 (4)0.0190 (5)0.0025 (3)0.0001 (4)0.0023 (3)
O20.0128 (4)0.0151 (4)0.0179 (5)0.0061 (4)0.0050 (4)0.0048 (4)
O30.0107 (4)0.0149 (4)0.0178 (5)0.0036 (3)0.0001 (4)0.0047 (4)
N10.0149 (5)0.0136 (5)0.0133 (5)0.0032 (4)0.0032 (4)0.0005 (4)
N20.0125 (5)0.0137 (5)0.0144 (5)0.0030 (4)0.0024 (4)0.0013 (4)
N30.0140 (5)0.0206 (6)0.0157 (6)0.0065 (4)0.0047 (4)0.0053 (4)
C10.0136 (6)0.0114 (6)0.0130 (6)0.0029 (4)0.0018 (5)0.0025 (4)
C20.0150 (6)0.0150 (6)0.0176 (6)0.0052 (5)0.0031 (5)0.0045 (5)
C30.0195 (7)0.0142 (6)0.0141 (6)0.0053 (5)0.0031 (5)0.0022 (5)
C40.0187 (6)0.0119 (6)0.0119 (6)0.0028 (5)0.0015 (5)0.0033 (4)
C50.0222 (7)0.0171 (6)0.0155 (6)0.0049 (5)0.0061 (5)0.0017 (5)
S10.00895 (15)0.01018 (15)0.01081 (15)0.00313 (11)0.00176 (11)0.00010 (11)
O40.0121 (4)0.0105 (4)0.0172 (5)0.0015 (3)0.0033 (4)0.0003 (3)
O50.0103 (4)0.0192 (5)0.0165 (5)0.0067 (4)0.0035 (4)0.0039 (4)
O60.0126 (4)0.0167 (5)0.0139 (5)0.0054 (4)0.0010 (4)0.0033 (4)
O70.0178 (5)0.0149 (5)0.0171 (5)0.0022 (4)0.0044 (4)0.0054 (4)
O80.0165 (5)0.0142 (4)0.0172 (5)0.0062 (4)0.0021 (4)0.0024 (4)
Geometric parameters (Å, º) top
Co1—O12.0838 (9)N3—H3A0.9099
Co1—O1i2.0838 (9)N3—H3B0.9100
Co1—O22.0643 (9)N3—C11.3216 (17)
Co1—O2i2.0643 (9)C2—H20.9500
Co1—O3i2.1140 (10)C2—C31.362 (2)
Co1—O32.1140 (10)C3—H30.9500
O1—H1A0.8400C3—C41.412 (2)
O1—H1B0.8400C4—C51.4935 (19)
O2—H2A0.8400C5—H5A0.9800
O2—H2B0.8400C5—H5B0.9800
O3—H3C0.8400C5—H5C0.9800
O3—H3D0.8400S1—O41.4772 (10)
N1—C11.3503 (17)S1—O51.4749 (9)
N1—C41.3352 (17)S1—O61.4851 (10)
N2—H2N0.9101S1—O71.4834 (10)
N2—C11.3621 (17)O8—H8A0.8400
N2—C21.3558 (17)O8—H8B0.8400
O1i—Co1—O1180.0H3A—N3—H3B118.7
O1i—Co1—O389.31 (4)C1—N3—H3A121.5
O1—Co1—O390.69 (4)C1—N3—H3B119.7
O1i—Co1—O3i90.69 (4)N1—C1—N2121.68 (12)
O1—Co1—O3i89.31 (4)N3—C1—N1119.51 (12)
O2i—Co1—O1i93.59 (4)N3—C1—N2118.82 (12)
O2—Co1—O193.59 (4)N2—C2—H2120.1
O2i—Co1—O186.41 (4)N2—C2—C3119.73 (13)
O2—Co1—O1i86.41 (4)C3—C2—H2120.1
O2—Co1—O2i180.0C2—C3—H3121.2
O2i—Co1—O388.21 (4)C2—C3—C4117.61 (12)
O2i—Co1—O3i91.79 (4)C4—C3—H3121.2
O2—Co1—O3i88.21 (4)N1—C4—C3122.45 (12)
O2—Co1—O391.79 (4)N1—C4—C5116.47 (12)
O3—Co1—O3i180.0C3—C4—C5121.07 (12)
Co1—O1—H1A121.3C4—C5—H5A109.5
Co1—O1—H1B133.1C4—C5—H5B109.5
H1A—O1—H1B105.3C4—C5—H5C109.5
Co1—O2—H2A123.6H5A—C5—H5B109.5
Co1—O2—H2B115.8H5A—C5—H5C109.5
H2A—O2—H2B109.5H5B—C5—H5C109.5
Co1—O3—H3C116.1O4—S1—O6110.08 (6)
Co1—O3—H3D115.8O4—S1—O7108.96 (6)
H3C—O3—H3D112.0O5—S1—O4109.75 (6)
C4—N1—C1117.86 (12)O5—S1—O6108.84 (6)
C1—N2—H2N118.7O5—S1—O7109.68 (6)
C2—N2—H2N120.7O7—S1—O6109.52 (6)
C2—N2—C1120.59 (12)H8A—O8—H8B102.1
N2—C2—C3—C40.4 (2)C2—N2—C1—N3178.45 (12)
C1—N1—C4—C32.59 (19)C2—C3—C4—N12.6 (2)
C1—N1—C4—C5176.26 (12)C2—C3—C4—C5176.18 (12)
C1—N2—C2—C31.75 (19)C4—N1—C1—N20.37 (19)
C2—N2—C1—N11.82 (19)C4—N1—C1—N3179.37 (12)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O80.841.922.7562 (14)171
O1—H1B···O40.841.972.8050 (13)178
O2—H2A···O4ii0.841.922.7533 (14)173
O2—H2B···O50.841.872.7077 (13)174
O3—H3C···O8ii0.841.922.7508 (13)170
O3—H3D···O7iii0.841.952.7865 (14)177
N2—H2N···O6iv0.911.812.7155 (15)172
N3—H3A···O5iv0.911.872.7776 (15)175
N3—H3B···O6v0.911.982.8775 (15)168
O8—H8A···O7iii0.841.982.7684 (14)156
O8—H8B···O7vi0.842.022.8582 (14)172
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+2, y, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula(C5H8N3)2[Co(H2O)6](SO4)2·2H2O
Mr615.49
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.4116 (6), 7.7751 (7), 13.0423 (12)
α, β, γ (°)80.136 (1), 80.413 (1), 73.231 (1)
V3)608.57 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.19 × 0.19 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2009)
Tmin, Tmax0.780, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
10780, 3085, 2944
Rint0.025
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.073, 1.09
No. of reflections3085
No. of parameters161
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.40

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXM (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Selected bond lengths (Å) top
Co1—O12.0838 (9)Co1—O32.1140 (10)
Co1—O22.0643 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O80.841.922.7562 (14)171
O1—H1B···O40.841.972.8050 (13)178
O2—H2A···O4i0.841.922.7533 (14)173
O2—H2B···O50.841.872.7077 (13)174
O3—H3C···O8i0.841.922.7508 (13)170
O3—H3D···O7ii0.841.952.7865 (14)177
N2—H2N···O6iii0.911.812.7155 (15)172
N3—H3A···O5iii0.911.872.7776 (15)175
N3—H3B···O6iv0.911.982.8775 (15)168
O8—H8A···O7ii0.841.982.7684 (14)156
O8—H8B···O7v0.842.022.8582 (14)172
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+2, y, z+1; (iv) x+1, y, z+1; (v) x+1, y+1, z.
 

Acknowledgements

We thank the Chemistry Department of Tulane University for support of the X-ray crystallographic facility.

References

First citationBruker (2009). SAINT. Bruker AXWS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXWS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.  Google Scholar
First citationShiu, K.-B., Yen, C.-H., Liao, F.-L. & Wang, S.-L. (2004). Acta Cryst. E60, m35–m37.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds